首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Six dryland pastures were established at Lincoln University, Canterbury, New Zealand, in February 2002. Production and persistence of cocksfoot pastures established with subterranean, balansa, white or Caucasian clovers, and a perennial ryegrass‐white clover control and a lucerne monoculture were monitored for nine years. Total annual dry‐matter (10.0–18·5 t DM ha?1) and sown legume yields from the lucerne monoculture exceeded those from the grass‐based pastures in all but one year. The lowest lucerne yield (10 t ha?1 yr?1) occurred in Year 4, when spring snow caused ungrazed lucerne to lodge and senesce. Cocksfoot with subterranean clover was the most productive grass‐based pasture. Yields were 8·7–13·0 t DM ha?1 annually. Subterranean clover yields were 2·4–3·7 t ha?1 in six of the nine years which represented 26–32% of total annual production. In all cocksfoot‐based pastures, the contribution of sown pasture components decreased at a rate equivalent to 3·3 ± 0·05% per year (R= 0·83) and sown components accounted for 65% of total yield in Year 9. In contrast, sown components represented only 13% of total yield in the ryegrass‐white clover pastures in Year 9, and their contribution declined at 10·1 ± 0·9% per year (R= 0·94). By Year 9, 79% of the 6.6 t ha?1 produced from the ryegrass‐white clover pasture was from unsown species and 7% was dead material. For maximum production and persistence, dryland farmers on 450–780 mm yr?1 rainfall should grow lucerne or cocksfoot‐subterranean clover pastures in preference to ryegrass and white clover. Inclusion of white clover as a secondary legume component to sub clover would offer opportunities to respond to unpredictable summer rainfall after sub clover has set seed.  相似文献   

2.
Four‐species mixtures and pure stands of perennial ryegrass, tall fescue, white clover and red clover were grown in three‐cut and five‐cut systems at Ås, southern Norway, at a low fertilization rate (100 kg N ha?1 year?1). Over a three‐year experiment, we found strong positive effects of species diversity on annual dry‐matter yield and yield stability under both cutting frequencies. The overyielding in mixtures relative to pure stands was highest in the five‐cut system and in the second year. Among the possible pairwise species interaction effects contributing to the diversity effect, the grass–grass interaction was the strongest, being significant in both cutting systems and in all years. The grass–legume interactions were sometimes significant, but no significant legume–legume interaction could be detected. Competitive relationships between species varied from year to year and also between cutting systems. Estimations based on species identity effects and pair‐specific interactions suggested that the optimal proportions of red clover, white clover, perennial ryegrass and tall fescue in seed mixtures would have been around 0·1, 0·2, 0·4 and 0·3 in the three‐cut system, and 0·1, 0·3, 0·3 and 0·3 in the five‐cut system.  相似文献   

3.
The dry matter (DM) yield and herbage quality of swards of sainfoin ( Onobrychis viciifolia ), meadow fescue ( Festuca pratensis ,) and tetraploid perennial ryegrass ( Lolium perenne ) grown in monocultures and in four sainfoin:grass mixtures (0·33 sainfoin:0·66 meadow fescue, 0·66 sainfoin:0·33 meadow fescue, 0·33 sainfoin:0·66 perennial ryegrass and 0·66 sainfoin:0·33 perennial ryegrass), established by direct sowing or undersowing in spring barley, were investigated over 3 years in a field experiment in the UK. Direct sowing produced a mean yield across all species and mixtures of 1·8 t DM ha−1 in the establishment year, whereas undersowing produced no measurable yield except for that of the spring barley. Undersowing reduced the yields of sainfoin and sainfoin-grass mixtures in the first full-harvest year but not in the second. The annual yield of a monoculture of sainfoin was 7·53 t DM ha−1 and that of sainfoin-grass mixtures was 8·33 t DM ha−1 averaged over 3 years. Both sainfoin and the sainfoin-grass mixtures had higher annual DM yields than the grass monocultures. The mixture of 0·66 sainfoin:0·33 meadow fescue gave the highest mean annual yield (9·07 t DM ha−1) over the 3 years. There was a higher proportion of sainfoin maintained in mixtures with perennial ryegrass than with meadow fescue. The proportion of sainfoin in sainfoin–meadow fescue mixtures declined from 0·62 in the first year to 0·32 in the third year, whereas the proportion in sainfoin–perennial ryegrass increased from 0·48 in the first year to 0·67 in the second year and remained stable in the third year.  相似文献   

4.
In grass–legume swards, biologically fixed nitrogen (N) from the legume can support the N requirements of the grass, but legume N fixation is suppressed by additional fertilizer N application. This study sought to identify a fertilizer N application rate that maximizes herbage and N yields, N fixation and apparent N transfer from white clover to companion grasses under intensive grazing at a site with high soil‐N status. During a 3‐year period (2011–2013), swards of perennial ryegrass and of perennial ryegrass–white clover, receiving up to 240 kg N ha?1 year?1, were compared using isotope dilution and N‐difference methods. The presence of white clover increased herbage and N yields by 12–44% and 26–72%, respectively. Applications of N fertilizer reduced sward white clover content, but the effect was less at below 120 kg N ha?1. The proportion of N derived from the atmospheric N fixation was 25–70%. Nitrogen fixation ranged from 25 to 142 kg N ha?1 measured using the isotope dilution method in 2012 and from 52 to 291 kg N ha?1 using the N‐difference method across all years. Fertilizer N application reduced the percentage and yield of fixed N. Transfer of N from white clover to grass was not confirmed, but there was an increased N content in grass and soil‐N levels. Under intensive grazing, the maximum applied N rate that optimized herbage and N yields with minimal effect on white clover content and fixation rates was 60–120 kg N ha?1.  相似文献   

5.
Forage peanut improvement for use in grass–legume mixtures is expected to have a great impact on the sustainability of Brazilian livestock production. Eighteen cloned Arachis spp. ecotypes were evaluated under clipping in a Brazilian Cerrado region and results analysed using a mixed model methodology. The objective was to estimate genetic and phenotypic parameters and to select the best ecotypes based on selection index applied on their predicted genotypic value. The traits of total dry‐matter (DM) and leaf DM yield presented moderate (0·30 <  < 0·50) to high (>0·50) broad‐sense heritability, in contrast to the low genetic variability in nutritional quality‐associated traits. Ecotypes of Arachis spp. contained average crude protein concentrations of 224 g kg?1 DM in leaves and 138 g kg?1 DM in stems, supporting the potential role of these species to overcome the low protein content in Cerrado pastures. The correlations between yield traits and traits associated with low nutritional value in leaves were consistently significant and positive. Genetic correlations among all the yield traits evaluated during the rainy or dry seasons were significant and positive. The ecotypes were ranked based on selection index. The next step is to validate long‐term selection of grass–Arachis in combination with pastures under competition and adjusted grazing in the Cerrado region.  相似文献   

6.
Mixtures and pure stands of perennial ryegrass, tall fescue, white clover and red clover were grown in a three‐cut and a five‐cut system in southern Norway, at a low fertilization rate (100 kg N ha?1 year?1). The nutritional quality (annual weighted averages) of the dried forage from the two‐first harvesting years was analysed. There was no significant effect of species diversity on crude protein (CP) concentration. In the three‐cut system, we found a significant species diversity effect leading to 10% higher concentrations of acid detergent fibre (ADF), 20–22% lower concentrations of water‐soluble carbohydrate (WSC) and 4% lower net energy for lactation (NEL) concentrations in mixtures compared with pure stands (averaged across the two‐first years). In the five‐cut system, similar effects were seen in the first year only. This diversity effect was associated with a reduction in WSC and NEL concentrations and an increase in ADF, NDF and CP concentrations in the grass species, and not in red clover, when grown in mixtures. This is thought to be a combined result of better N availability and more shading in the mixtures. Species diversity reduced the intra‐annual variability in nutritional quality in both cutting systems.  相似文献   

7.
A pre‐existing mechanistic model of grass growth, developed to simulate grass production in the UK, was extended to include a variety of grass–legume mixtures and used to predict comparative yields across a range of sites in northern Europe, using experimental data from a series of experiments at fifteen sites. Specifically, predictions were made of the comparative yields of grass (Lolium perenne L.), white clover (Trifolium repens L.), red clover (T. pratense L.), lucerne (Medicago sativa L.), lotus (Lotus corniculatus L.) and galega (Galega orientalis Lam.). The results indicated that the model could generate simulated differences in yields between forage crops, which accorded with observed rankings. However, the predictions were more accurate for total yields than individual cuts, for a country than for an individual site, and for monocultures than for grass–legume mixtures. Nevertheless, the results appeared sufficiently robust to be used to prepare forecasts of yield productivity in different agro‐climatic zones in northern Europe. Using estimates of the production costs and economic values for the forages, it was also possible to assess their comparative profitability. The study indicated that red clover, whether grown singly or in a mixture with grass economically outperformed all silage systems based on pure grass swards, even those receiving 400 kg N ha?1. White clover and lucerne were also consistently more profitable than grass‐based systems, receiving 200 kg N ha?1. In relative terms, lucerne appeared to be more profitable in the south and east of the region, while white clover outperformed lucerne in the north and west. In the north and east of the region, there was some evidence that galega might also hold promise as a silage crop, but lotus was not found to be viable under north European environmental conditions.  相似文献   

8.
There is a lack of information on the effects of companion species in grass–legume mixtures on herbage yield and quality changes during prolonged growth. Such information is relevant for harvest planning and estimation of consequences for feeding value of conserved feed when harvesting is delayed. Perennial ryegrass was sown with each of four legumes: red clover, white clover, lucerne and birdsfoot trefoil, and white clover was sown with hybrid ryegrass, meadow fescue and timothy. Effects of species composition on herbage yield, contents of N, neutral detergent fibre (NDF), acid detergent fibre (ADF) and lignin, ash and in vitro organic matter digestibility (IVOMD) were studied in entire herbage and in component species during 2 years in a small‐plot cutting trial in Denmark. In May and August, the dynamic development of components of feed value and their interrelationships were investigated by sampling at optimum harvest date (i.e., normal practice) ± 1 week (t = ?1 to t = +1). Herbage digestibility and contents of N and ash decreased while those of fibre compounds increased during the 2 weeks from t = ?1 to t = 1 in all species. In May, contents of ADF and lignin increased at a faster rate in legumes than in grasses; in August, NDF and ADF increased most quickly in legumes. Generally, N contents and IVOMD declined at similar rates in grasses and legumes, but, within each group, differences in yield and quality development occurred among species. The relationship between weekly growth rate and change in quality parameters differed among species and functional groups, i.e., grasses and legumes. Results are discussed in the context of quantifying the impact of delaying the harvest date of grass–legume mixtures and relationships between productivity and components of feed quality.  相似文献   

9.
Temperate pasture legumes (e.g. Trifolium and Medicago spp.) often have a higher phosphorus (P) requirement for maximum productivity than pasture grasses. This is partly attributed to differences between legumes and grasses in their ability to acquire P from soil. We are the first to report differences in root morphology traits important for soil P acquisition in a range of novel pasture legumes being developed for use in temperate pastures of southern Australia. Up to a 3·6‐fold range in specific root length (SRL) (79–281 m root g?1 root) and 6·1‐fold range in root hair length (RHL) (0·12–0·75 mm) was found between the pasture species. The commonly used Trifolium subterraneum and Medicago sativa had relatively low SRLs and short root hairs, while Ornithopus compressus, O. sativus and Biserrula pelecinus had RHLs and SRLs more similar to those of two grass species that were also assessed. Specific root length was highly correlated with average root diameter, and root traits were relatively stable at different plant ages. We surmise that large differences among pasture legume species in the effective volume of soil explored could translate into significant differences in their critical P requirements (i.e. soil P concentration to achieve 90% of maximum shoot yield).  相似文献   

10.
Botanical analyses were carried out on the herbage from plots of twelve early cultivars of perennial ryegrass (Lolium perenne) cut in their fourth year and the results related to visual persistence assessments carried out on the cultivars at the end of the second and third harvest years. Persistence assessments were found to be highly and positively correlated with the yields of sown cultivars (r=+0.96***,r=+0.99***) and to be highly and negatively correlated with the yields of unsown herbage species (r =+0.98***, r =?094***). The plots of the less persistent cultivars were invaded by unsown grass species and docks which contributed in varying degrees to total DM yield, reducing the correlation of total yield with persistence. Assessments of botanical composition of swards made at the end of the second year provided reliable predictions of the relative persistence of the cultivars. The results of the investigations indicated that assessment of persistence, as well as yield potential, is fundamentally important in cultivar evaluation.  相似文献   

11.
Sainfoin (Onobrychis viciifolia Scop.) is one of the most drought-tolerant perennial legumes that can thrive in dry, alkaline soils. A 3-year study in the Central Anatolian Region of Turkey compared the persistence, productivity and nutritive value of sainfoin planted with nurse crops, namely Hungarian vetch (Vicia pannonica Crantz.) or triticale (× Triticosecale Wittm, ex A. Camus), at three seeding rates. Sainfoin and nurse crop emergence were significantly affected by the companion nurse crop, sowing rate and establishment year. The number of sainfoin plants at emergence was lower during a drier “bad” year (110 plant/m2) than in a “good” precipitation year (236 plant/m2). Triticale had a more negative impact on sainfoin growth than vetch. Planting nurse crops at high seeding rates (90 kg/ha) reduced the number of sainfoin seedlings as compared to the control, while the low seeding rate had little impact on sainfoin emergence. Planting sainfoin with triticale resulted in much greater yield exceeding 10 t/ha, but reduced the forage nutritive value compared to sainfoin monocultures and sainfoin–vetch mixtures. The seeding rate of the nurse crops during a dry year did not affect DM yield in the year of establishment nor in the following year. The findings of this study indicate that planting sainfoin with a nurse crop can substantially increase the DM yield in the year of establishment without yield penalties in the subsequent years, despite fewer established plants, as compared to sainfoin monocultures.  相似文献   

12.
The benefits of white clover (Trifolium repens L.) in pastures are widely recognized. However, white clover is perceived as being unreliable due to its typically low content and spatial and temporal variability in mixed (grass‐legume) pastures. One solution to increase the clover proportion and quality of herbage available to grazing animals may be to spatially separate clover from grass within the same field. In a field experiment, perennial ryegrass (Lolium perenne L.) and white clover were sown as a mixture and compared with alternating strips of ryegrass and clover (at 1·5 and 3 m widths), or in adjacent monocultures (strips of 18 m width within a 36‐m‐wide field). Pastures were stocked by ewes and lambs for three 10‐month grazing periods. Over the 3 years of the experiment, spatial separation of grass and clover, compared with a grass–clover mixture, increased clover herbage production, although its proportion in the sward declined through time (0·49–0·54 vs 0·34 in the mixture in the first year, 0·28–0·33 vs 0·15 in the second year and 0·03–0·18 vs 0·01 in the third year). Total herbage production in the growing season in the spatially separated treatments decreased from 11384 kg DM ha?1 in the first year to 8150 kg DM ha?1 in the third year. Crude protein concentration of clover and grass components in the 18‐m adjacent monoculture treatment was greater than the mixture treatment for both clover (310 vs 280 g kg?1 DM) and grass (200 vs 180 g kg?1 DM). There was no clear benefit in liveweight gain beyond the first year in response to spatially separating grass and clover into monocultures within the same field.  相似文献   

13.
Interspecific hybrids between white clover (Trifolium repens L.) and Caucasian clover (Trifolium ambiguum M. Bieb.) have been developed to introgress the rhizomatous growth habit into white clover, to increase persistence and drought tolerance. The forage quality of T. repens, T. ambiguum and the backcross 1 (BC1) and backcross 2 (BC2) hybrids and companion grass, when grown in mixtures with an intermediate perennial ryegrass (Lolium perenne L.) under a cutting‐only management, was measured. In vitro dry‐matter digestibility (DMD), water‐soluble carbohydrate (WSC) and crude protein (CP) concentrations of the legume and grass fractions were measured throughout the growing season over three harvest years. Trifolium repens had a lower WSC but a higher CP concentration than the perennial ryegrass companion in all harvest years and at all cuts. The legume fractions from the BC1 and BC2 hybrid plots had a higher WSC and a lower CP concentration but an in vitro DMD value comparable with white clover throughout the growing season and in each harvest year. The grass fractions from the mixtures with the backcross hybrids had a higher WSC and a lower CP concentration than the grass fraction from the T. repens plots, in all harvest years and throughout the growing season. No difference in in vitro DMD between parental species and backcross hybrids was observed. The implications of these results for the development of these hybrids and animal performance are discussed.  相似文献   

14.
Warm‐season grasses and legumes have the potential to provide forage throughout the Mediterranean summer when there are high temperatures and low rainfall and when cool‐season grasses become less productive. Twenty‐nine non‐native, warm‐season pasture species (twenty‐three grasses and six legumes) were assessed for their adaptability to the coastal plain of southern Italy in terms of their productivity and nutritional quality. The investigated species were compared with two reference species widely used in a Mediterranean environment: a grass (Festuca arundinacea) and a legume (Medicago sativa). The species differed in their phenological and biological characteristics, i.e. start of vegetative resumption, first flowering and cold resistance, from each other and from the control species. From the second year after establishment, warm‐season perennial grasses had high dry‐matter (DM) yields and, in many cases, a more than adequate nutritional quality. As for legumes, the control, M. sativa gave the best results in all the investigated characters. Among the grasses, seven species (Chloris gayana, Eragrostis curvula, Panicum coloratum, Paspalum dilatatum, Pennisetum clandestinum, Sorghum almum, Sorghum spp. hybrid) had DM yields greater than the control species and had their maximum growth during the hottest period of the year, when F. arundinacea, the control grass species, was dormant. Eragrostis curvula had the highest annual DM yield (21·1 t ha?1) and P. clandestinum provided the best combination of agronomic and yield characteristics which were similar to those of M. sativa. The seven above‐mentioned species have the potential to supply hay or grazing and contribute to broadening and stabilizing the forage production calendar in Mediterranean‐type environments.  相似文献   

15.
The short life span, irregular forage production and susceptibility to weed colonization of cool‐season grass–legume pastures are serious problems in grazing dairy systems in warm‐temperate regions. The inclusion of warm‐season species has the potential to mitigate these problems. In this study, we evaluated the effect of the inclusion of two warm‐season grasses with different growth habits on seasonal forage biomass, soil cover and weed colonization. Three different pasture mixtures were evaluated under grazing: conventional pasture (CP) [tall fescue (Festuca arundinacea), white clover (Trifolium repens) and birdsfoot trefoil (Lotus corniculatus)], CP with Paspalum dilatatum and CP with Paspalum notatum (CP + Pn). Forage biomass and soil cover were sampled thirteen times during a 3‐year trial, and sampling times were grouped by season for the analyses. The mixtures with Paspalum showed higher soil cover in the autumn, while in the winter CP had higher soil cover than CP + Pn. Competition with tall fescue was similar between mixtures with Paspalum, when considering biomass, but it was higher in CP + Pn when considering soil cover. The inclusion of P. notatum increased biomass during the autumn but decreased the mixture performance during winter by reducing tall fescue soil cover. The addition of a warm‐season grass species with a moderate competing ability like P. dilatatum is likely to avoid a negative impact on the cool‐season component of the pasture.  相似文献   

16.
Protein degradability in forage legumes is of global importance because utilization efficiency of forage has economic and environmental consequences. However, there are no published studies on the effect of legume stand structure on differences in crude protein (CP) fractions. The main objective of the present research was therefore to investigate differences in CP fractions in leaves and stems of lucerne (Medicago sativa L.) during the growing season. Stand traits were measured over 2 years, and forage was sampled at the early bud and early flower stages in the first, second and third cuts. Stems had significantly higher concentrations (in g kg?1 CP) of non‐protein (fraction A: 430 g kg?1 CP) and indigestible nitrogen (fraction C: 92 g kg?1 CP) than leaves and had lower relative content of true protein (fraction B: 478 g kg?1 CP). In the total forage (stems and leaves combined), about 80% of the variation in CP fractions was explained by year, cut and maturity. Year was the most important factor, particularly for the B fractions. Cut was the second‐most important factor; its main effect was that the relative abundance of fraction A declined from 394 g kg?1 CP in the first cut to 293 in g kg?1 CP the third cut. Maturity increased the amounts of indigestible fraction C and protein fractions B1 and B3. This was associated with the leaf weight ratio, which had an inverse relationship with maximal stem length and dry matter yield. Variation partitioning showed that 75% of CP fraction variability associated with cut, maturity and year could be explained by the evaluated stand traits. This research has highlighted the need to consider plant morphological traits when legume CP fractions are evaluated.  相似文献   

17.
A small-plot experiment was carried out with grass-lotus (Lotus spp.) swards on a lowland (185 m) clay-soil site in S-W England. Two species of lotus (Lotus corniculatus cv. Leo and L. pedunculatus, syn, L. uliginosus, cv. Maku) were each sown at 10 kg seed ha?1 with lour grass species each at two grass-seed rates: Festuca pratensis at 6 or 3 kg ha?1 and Phleum pratense, Agrostis capillaris and Poa pratensis at 4 or 2 kg ha?1. Assessments were made over three harvest years (1992–94). during which no fertilizers were applied. Mean total herbage dry matter (DM) harvested from cv. Leo swards was 90 t ha?1 in year 1, 8–9 t ha?1 in year 2 and 4 0 t ha?1 in year 3. and from cv. Maku swards 6–6 t ha?1 in year 1. 8–9 t ha?1 in year 2 and 3–9 t ha?1 in year 3. Highest three-year mean total yields were with F. pratensis as the companion grass (7–4 t ha?1 year?1), followed by Phleum pratense (7–0 t ha?1), A. capillaris (6–9 t ha?1) and Poa pratensis (6–2 t ha?1). The lower grass-seed rate resulted in a greater proportion of lotus in the total harvested DM in year I. The higher grass-seed rate resulted in higher yields from F. pratensis swards in year 1, but there were no significant effects for other species or in subsequent years. Lotus as a proportion of harvested DM declined from about 70% in year 1 to about 20% in year 3. The mean DM yield of lotus herbage in years 1, 2 and 3, respectively, was 5–5, 2–8 and 0–8 t ha?1 from cv. Leo swards, and 4–0, 3–3 and 0–8 t ha?1 from cv. Maku swards. Lotus herbage was of higher digestibility from cv. Leo [digestible organic matter (DOM) of 661 g kg?1 of lotus DM] compared with cv. Maku (551 g kg?1 DM). Mean N content of lotus herbage was 35 g N kg?1 DM. Digestibility of companion grass herbage was highest for Phleum pratense (557 g kg?1 DM) and lowest for A. capillaris (493 g kg?1 DM). It is concluded that lotus may be an alternative legume to white clover for low-input, low-fertility situations. However, further research is needed to evaluate its performance on different sites and under different management regimes, particularly grazing, and to overcome the apparent problems of its persistence.  相似文献   

18.
Production and nutritive value of forage in silvopastural systems can be improved by introducing shade‐ tolerant grass and legume species in appropriate mixtures. The management of these systems can present a challenge regarding the selection of the proper grass and legume species as well as the maintenance of the optimum balance between the two species in the grass–legume stand. The objectives of the present study were to evaluate the performance of pure stands and mixtures (75:25, 50:50, 25:75) of Dactylis glomerata:Trifolium subterraneum under full sun, 60% shade and 90% shade. Dry matter production of D. glomerata was not affected by shading, while that of T. subterraneum was drastically reduced. Shading increased the crude protein (CP) and acid detergent lignin content, but did not affect the acid detergent fibre and neutral detergent fibre content. The dry matter production of the 75:25 and 25:75 mixtures was higher compared to the one of the 50:50 mixture, while the CP content of the 75:25 mixture was the highest under moderate shading. However, relative yield, aggressivity index and competitive balance index indicated higher competitive ability for D. glomerata compared with T. subterraneum especially under shade. Therefore, the 25:75 mixture is suggested as the most suitable under moderate shade (60%), to perpetuate the stand and avoid the frequent re‐sowing of T. subterraneum.  相似文献   

19.
A research programme was undertaken over two consecutive years with the purpose of studying the effect of herb–clover swards on lamb production performance year‐round. The focus of this study was on two consecutive late spring and early summer periods (2011, 2012). In each year, three sward treatments were compared on grazed paddocks with 40 lambs ha?1: (i) grass–clover mixture (perennial ryegrass [Lolium perenne L.] and white clover [Trifolium repens]); (ii) plantain–clover mixture (plantain [Plantago lanceolata], white clover and red clover [Trifolium pratense]); and (iii) chicory–plantain–clover mixture (plantain, chicory [Cichorium intybus L.] and white and red clovers). Lambs were weighed at 2‐week intervals, and carcass weights and GR tissue depth measurements were obtained at slaughter. In both years, lambs on treatments (ii) and (iii) had greater (< 0·05) final live weight, liveweight gain, carcass weight, dressing‐out percentage and GR tissue depth measurements, and lower feed conversion ratio compared to lambs on treatment (i). Lamb production was similar in treatments (ii) and (iii) (> 0·05) in each year. Therefore, during the late spring and early summer period, herb–clover mixture swards were found to be a superior option to perennial ryegrass–white clover for finishing lambs.  相似文献   

20.
Interspecific hybridization with the close relative Trifolium nigrescens Viv. (Ball clover) is a possible strategy to increase the seed yield potential of white clover (T. repens L.). Fertile F1 plants have been used as the basis for several generations of backcrossing using T. repens as the recurrent parent. Forage quality of the parental species and backcross hybrids when grown in mixtures with perennial ryegrass (Lolium perenne L.) was compared in field plots over three harvest years. The dry‐matter digestibility (DMD) and crude protein (CP) concentration of the legume fraction was greater than that of perennial ryegrass, but the water‐soluble carbohydrate (WSC) concentration of the legume components was lower than that of perennial ryegrass. Differences in forage quality between T. repens and the backcross hybrids were relatively small. The WSC concentration of the backcrosses was less than T. repens but the CP concentration was greater. Significant differences in the forage quality of the companion grass were observed when grown with the parental species and the hybrids; however, these differences were attributed to the plots with T. nigrescens and the F1 plants, where the clover content was low. Few differences in the forage quality of the grass were measured when grown with T. repens and the backcross hybrids. The impact of these results on the use of these hybrids in cultivar development programmes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号