首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Systemic acquired resistance (SAR) to Colletotrichum orbiculare was induced in young cucumber (Cucumis sativus) plants within 3 h of ASM (acibenzolar-S-methyl) application onto the first leaves. A potent signal associated with significant accumulation of hydrogen peroxide in xylem fluids from severed stems appeared to be rapidly translocated from elicited lower leaves within 3 h and 6 h after treatment. Some metabolites of the shikimate, phenylpropanoid and lignin biosynthetic pathways were quantified and significant increases in the levels of shikimic acid were observed in ASM-treated plants challenge-inoculated with the anthracnose fungus. Furthermore, the expression of the 5-enolpyruvylshikimate-3-phosphate synthase gene (EPSPS) was 1.5 times higher within 12 h after ASM treatment in challenge-inoculated plants than in the untreated control. The involvement of lipoxygenase activity, shikimic acid and others such as caffeic acid in the induction of SAR is discussed.  相似文献   

2.
For sustainable control of rice blast with fungicides, efficient monitoring of the emergence and spread of fungicide-resistant isolates is needed. We developed simple and reliable PCR-based DNA markers to detect isolates resistant to melanin biosynthesis inhibitor targeting scytalone dehydratase (MBI-D) and quinone outside inhibitor (QoI) fungicides. Through the use of DNA templates prepared from mycelia on filter paper or from infected leaves, these markers enable rapid (a few hours) genotyping of point mutations that confer resistance. The developed multiplex marker detected resistance to both MBI-D and QoI in a single PCR and further reduced the time needed for diagnosis.  相似文献   

3.
The impacts of elevated CO2 and soil water on the population dynamics, adult fecundity and nymphal period of the bird cherry-oat aphidRhopalsiphum padi (Linnaeus) were evaluated in three experiments: (i)Combined effects of CO 2 and soil water on aphid populations. Spring wheat was grown in pots at three CO2 concentrations (350, 550 and 700 ppm) and three soil water levels (40%, 60% and 80% of field water capacity, FWC) in field open-top chambers (OTC) and infested with the bird cherry-oat aphid. Aphid population dynamics were recorded throughout the growing season; at the same time, adult fecundity and duration of the nymphal period were recorded. Chemical composition of spring wheat leaves was also analyzed. (ii)Indirect effects of CO 2 concentrations and soil water on aphid adult fecundity and nymphal period. The experiment was conducted with the leaf discs method in the laboratory. Aphids were reared on leaf discs excised from the treated wheat in OTC with different CO2 and soil water levels. (iii)Direct effects of CO 2 concentrations on aphid adult fecundity and nymphal period. Aphids were reared on leaf discs excised from the wheat grown under natural conditions. The experiment was conducted with the leaf disc method in OTC with the three CO2 concentrations. It was found that the direct effect of CO2 concentration on aphid population parameters was minor. CO2 and soil water affected aphid population indirectly through their effects on wheat characteristics. The aphid population under 550 ppm CO2 was far larger than the one under 350 ppm CO2, whereas the population under 700 ppm CO2 was slightly higher than that under 550 ppm CO2. The largest aphid population was obtained with the 60% soil water treatment, regardless of CO2 treatment. The effects of CO2 concentration on aphid population were, however, not significantly correlated with soil water level. Adult fecundity increased with CO2 concentration, the highest fecundity being achieved under 60% FWC treatments. The nymphal period was not affected by CO2 concentration. The shortest period occurred under 60% FWC. Atmospheric CO2 and soil water had significant effects on the chemical composition of the wheat leaves. Aphid population size was positively correlated with leaf water content, concentrations of soluble proteins, soluble carbohydrates and starch, and negatively correlated with DIMBOA and tannins concentrations. http://www.phytoparasitica.org posting Oct. 20, 2003.  相似文献   

4.
The L11Y strain of Tomato mosaic virus (ToMV) causes severe chlorosis on infected tobacco leaves. Sequencing analysis for the genome showed that L11Y contained multiple nucleotide changes and that some led to amino acid substitutions, when compared with that of the common L strain of ToMV. The chimeric virus, which has the CP of L11Y in the context of the L strain RNA genome, caused severe chlorosis on infected tobacco plants, suggesting that the CP of L11Y containing three amino acid changes (E33S, A86T and E97K) was the determinant of the chlorosis. Two of these amino acid changes (A86T and E97K) were associated with the induction of chlorosis when present together in the CP. Severe destruction and deformation of chloroplasts and the formation of discrete dark-staining materials adjacent to chloroplasts were observed with electron microscopy in L11Y-infected plants. Fewer virus particles accumulated in the cytoplasm of L11Y-infected plant cells. The level of accumulation of CP subgenomic RNA and CP in the infected protoplasts was similar between L and L11Y. Fewer virus particles accumulated in L11Y-infected protoplasts, and many of them were shorter-than-full-length. The nucleotide sequence data reported is available in DDBJ/EMBL/GenBank databases as accession AB355139.  相似文献   

5.
Tomato chlorotic dwarf viroid (TCDVd) manually inoculated to transgenic (cv.‘Desiree’) potato plants containing antimicrobial cationic peptides failed to develop symptoms in above ground plant parts, but infected tubers were symptomatic. Plants from the infected tubers (second generation plants) emerged as either severely stunted (bushy stunt isolate, BSI) or tall and symptomless. Molecular characterization of BSI isolates showed TCDVd sequence variants 95 to 98% identical to TCDVd sequences from the database, while a viroid variant identical to TCDVd type isolate (acc # AF162131) was cloned from symptomless plants. The TCDVd BSI variants had novel U165C, GU177-178AA, and UCAC181-184CUUU nucleotide substitutions in the terminal right (TR) domain of the viroid molecule. The cloned viroid cDNAs of the BSI were infectious to experimental (cv. ‘Sheyenne’) tomato plants causing stunted plants with profuse auxiliary shoots. Visual evaluation of the susceptibility of the BSI to 18 potato and 21 tomato cultivars revealed severe symptoms in most cultivars of both species. The progeny variants accumulating in each potato and tomato cultivar exhibited the same novel TR domain in most cultivars, with only a slight variation in a few. The severity of the stunting symptoms induced by TCDVd from BSI isolates in both potato and tomato cultivars has not been noted previously with other TCDVd isolates and, as such, it is proposed that this new isolate be recognized as a distinct genotype. Emergence of this type of sequence variant in commercial fields or commercial tomato greenhouses could potentially cause relevant losses in both crops.  相似文献   

6.
Rice production is currently expanding from the south-eastern regions of Australia into northern Australia where indigenous species of wild rice occur widely. A survey of fungal diseases on wild (Oryza australiensis, Oryza spp.) and cultivated rice (Oryza sativa) in North Queensland, Australia, in May 2014 revealed a diverse range of fungal genera species, including important pathogens of cultivated rice. Whilst a single isolate of Magnaporthe oryzae (causal agent of rice blast) was obtained from wild rice, Bipolaris oryzae (causal agent of brown spot) was the predominant pathogen detected under North Queensland conditions. For the first time for Australia, we report Rhizoctonia oryzae-sativae (causal agent of aggregate sheath spot) occurring on wild rice. Other pathogens detected on wild rice included Curvularia lunata, Cochliobolus intermedius, Cochliobolus geniculatus, and Fusarium equiseti present in the majority of wild rice samples. Nearby cultivated rice fields harboured additional pathogens not found in wild rice including Fusarium graminearum, Leptosphaeria spegazzinii and Cochliobolus lunatus, causing scab disease, glume blight and leaf blight, respectively. We also confirmed that Bipolaris oryzae from wild rice can infect cultivated rice. This study highlights the importance of wild rice species as alternative hosts harbouring pathogens of cultivated rice and the likely disease threats to expansion of cultivated rice into the same region(s) where wild rice is endemic.  相似文献   

7.
Colletotrichum leaf disease of Hever brasiliensis (rubber tree) caused by C. gloeosporioides is one of the major causes of declining rubber tree yields. Little is known about the fungal molecular characters that are important for pathogenicity on rubber tree and fungicide resistance. In this study, we cloned the CgPBS2 gene, the key component of the Hog1 pathway which controls various aspects of osmoregulation and fungicide resistance in various fungal pathogens, including the causal agent of Colletotrichum leaf disease of rubber tree. We characterized the function of the CgPBS2 gene by reverse genetics. Because the Hog1 pathway plays an important role in stress responses, we obtained a CgPBS2 gene deletion mutant by PEG-mediated transformation of protoplasts after reducing the concentration of sucrose in the screening medium from 1.0 M to 0.2 M. Then, the complemented transformants and GFP-labelled CgPBS2 gene transformants were selected directly under highly hyperosmotic medium (PDA?+?1.5 M sorbitol) without using other selectable gene markers. Phenotypic observations showed that the CgPBS2 protein was mainly localized in the conidial cytoplasm of the CgPBS2-GFP transformants. In addition, disruption of CgPBS2 led to sensitivity to hyperosmosis and high salt concentration as well as resistance to the fungicide fludioxonil. No obvious difference in virulence was observed between the null mutant and the wild-type strain. These results provide insights into the role of the CgPBS2 gene in osmotic stress, salt stress and fludioxonil resistance and suggest that osmotic stress sensitivity can be used as a selection marker.  相似文献   

8.
Harpin HrpZ from the plant-pathogen Pseudomonas spp. elicits the hypersensitive response (HR), pathogen defense responses, and enhances growth in plants. To identify regions of HrpZ related to these bioactivities, we constructed 11 mutants of HrpZPsgS1, a 346-amino-acid harpin protein from P. savastanoi pv. glycinea S1. Results showed that proteins HrpZ74–204 and HrpZ1–194 could not induce macroscopic HR but could elicit microscopic HR in tobacco. The HR elicitation activity of mutant proteins with other C-terminal deletions in HrpZPsgS1, such as HrpZ1–102, HrpZ△195–238, HrpZ△241–248, HrpZ△254–298, and HrpZ△290–313, was reduced. The activity of the remaining mutants, other than HrpZ200–346, which lacks part of the N-terminus, was similar to wild-type. These results indicate that the C-terminus is indispensable for HR elicitation, and that parts of the N-terminus play a regulatory role. Also, mutants HrpZΔ89–124 and HrpZΔ254–298 enhanced growth in rice more than wild-type HrpZPsgS1. These mutants were also more effective at inducing resistance to Xanthomonas oryzae pv. oryzae in rice and to Tobacco Mosaic Virus (TMV) in tobacco. qRT-PCR assays showed that HrpZΔ89–124 and HrpZΔ254–298 induced higher levels of expression in genes related to HR, pathogen defense, and growth. Therefore, the modified proteins HrpZΔ89–124 and HrpZΔ254–298 may have potential for development as protein-type biocontrol agents.  相似文献   

9.
10.
Xanthomonas oryzae pv. oryzae strain T7174R is lysed by bacteriophage OP1h and OP1h2. Three mutants tolerant to both OP1h and OP1h2 were isolated by transposon mutagenesis. The mutants had an insertion of the transposon in XOO1687, which is predicted to encode a TonB-dependent receptor gene. Plasmid pHMIroNB that contained XOO1687 of T7174R was constructed, and the mutant was transformed with the plasmid. The transformant recovered sensitivity to OP1h and OP1h2. Electron microscopic analysis demonstrated that OP1h and OP1h2 can adsorb to the wild type and the transformant, but they could not adsorb to the phage-tolerant mutant. These results suggest that the TonB-dependent receptor gene relates to adsorption and infection of T7174R by OP1h2 and OP1h. Y. Inoue and S. Tsuge have contributed equally to this work.  相似文献   

11.
Pythium and Phytophthora species were isolated from kalanchoe plants with root and stem rots. Phytophthora isolates were identified as Phytophthora nicotianae on the basis of morphological characteristics and restriction fragment length polymorphism (RFLP) analysis of the rDNA-internal transcribed spacer regions. Similarly, the Pythium isolates were identified as Pythium myriotylum and Pythium helicoides. In pathogenicity tests, isolates of the three species caused root and stem rots. Disease severity caused by the Pythium spp. and Ph. nicotianae was the greatest at 35°–40°C and 30°–40°C, respectively. Ph. nicotianae induced stem rot at two different relative humidities (60% and >95%) at 30°C. P. myriotylum and P. helicoides caused root and stem rots at high humidity (>95%), but only root rot at low humidity (60%).  相似文献   

12.
During a 6-year study, grapevine propagation materials and young grapevines were analysed to evaluate the presence of internal wood discolouration and the occurrence of fungal species involved in Petri disease. The intensity of wood discolouration increased with the ageing of the plants. The maximum incidence of dark streaks was observed in the rootstock while necrosis originating from buds or nodes were notably present in the trunk and cordon of older vines. In contrast, the highest levels of brown-red halo symptoms, defined as discoloured areas around the pith, were recorded in the early growth stages. Phaeoacremonium spp. and Phaeomoniella chlamydospora were usually isolated from the rooted-grafts and the 3-year old plants, respectively. The number of infected grapevines increased with age. Most of the P. chlamydospora strains were isolated from dark streaks or dots, while Phaeoacremonium spp. were detected in brown-red halo symptoms and other symptomatic or asymptomatic wood. The greatest incidence of the two fungal taxa was recorded in the lower parts of the grapevine, including the roots and rootstock.  相似文献   

13.
The differential interactions of V. longisporum (VL) and V. dahliae (VD) on the root surface and in the root and shoot vascular system of Brassica napus were studied by confocal laser scanning microscopy (CLSM), using GFP tagging and conventional fluorescence dyes, acid fuchsin and acridin orange. VL and VD transformants expressing sGFP were generated by Agrobacterium-mediated transformation. GFP signals were less homogenous and GFP tagging performed less satisfactory than the conventional fluorescence staining when both were studied with CLSM. Interactions of both pathogens were largely restricted to the root hair zone. At 24 h post-inoculation (hpi), hyphae of VL and VD were found intensely interwoven with the root hairs. Hyphae of VL followed the root hairs towards the root surface. At 36 hpi, VL hyphae started to cover the roots with a hyphal net strictly following the grooves of the junctions of the epidermal cells. VL started to penetrate the root epidermal cells without any conspicuous infection structures. Subsequently, hyphae grew intracellularly and intercellularly through the root cortex towards the central cylinder, without inducing any visible plant responses. Colonisation of the xylem vessels in the shoot with VL was restricted to individual vessels entirely filled with mycelium and conidia, while adjacent vessels remained completely unaffected. This may explain why no wilt symptoms occur in B. napus infected with VL. Elevated amounts of fungal DNA were detectable in the hypocotyls 14 days post-inoculation (dpi) and in the leaves 35 dpi. Root penetration was also observed for VD, however, with no directed root surface growth and mainly an intercellular invasion of the root tissue. In contrast to VL, VD started ample formation of conidia on the roots, and was unable to spread systemically into the shoots. VD did not form microsclerotia in the root tissue as widely observed for VL. This study confirms that VD is non-pathogenic on B. napus and demonstrates that non-host resistance against this fungus materializes in restriction of systemic spread rather than inhibition of penetration.  相似文献   

14.
MOHAMED  EJETA  BUTLER  HOUSLEY 《Weed Research》1998,38(4):257-265
Freshly harvested Striga asiatica L. seeds will germinate in response to a stimulant only after the passage of time, an after-ripening period, and exposure to moisture at a suitable temperature, a conditioning period. To investigate the role of seed moisture content in the regulation of the after-ripening period, seeds were placed in chambers having specific relative humidity of 6%, 14%, 33%, 75% and 91% for 30, 60, 90 and 150 days. The seeds were then conditioned and germination percentage, response to tetrazolium and seed moisture contents were measured. Seeds at moisture contents less than 10% at the start of conditioning had germination of greater than 93%. Seeds at moisture contents over 10% at the start of conditioning could germinate between 60% and 3%, with germination decreasing as seed moisture content at the start of conditioning increased. The highest moisture content (17%) and lowest germination percentage (3%) occurred in seeds stored at 91% relative humidity for 150 days. There was a linear relationship of a high degree of correlation (0.997) between a positive tetrazolium test and germination capacity. Germination capacity of seeds could be changed from 90% to 3% by prolonged storage in water (dilute benomyl solution), causing `wet dormancy', then returned to 90% germination by returning to dry storage. Seed moisture content at the beginning of conditioning appears to control the responsiveness of the seeds to germination stimulants. The implications of these findings to the control of the parasite are discussed.  相似文献   

15.
16.
There is a long history of using natural products as the basis for creating new pesticides but there is still a relatively low percentage of naturally derived pesticides relative to the number of pharmaceuticals derived from natural sources. Biopesticides as defined and regulated by the US Environmental Protection Agency (EPA) have been around for 70 years, starting with Bacillus thuringiensis, but they are experiencing rapid growth as the products have got better and more science‐based, and there are more restrictions on synthetic chemical pesticides. As such, biopesticides are still a small percentage (approximately US$3–4 billion) of the US$61.3 billion pesticide market. The growth of biopesticides is projected to outpace that of chemical pesticides, with compounded annual growth rates of between 10% and 20%. When integrated into crop production and pest management programs, biopesticides offer the potential for higher crop yields and quality than chemical‐only programs. Added benefits include reduction or elimination of chemical residues, therefore easing export, enabling delay in the development of resistance by pests and pathogens to chemicals and shorter field re‐entry, biodegradability and production using agricultural raw materials versus fossil fuels, and low risk to non‐target organisms, including pollinators. Challenges to the adoption of biopesticides include lack of awareness and education in how to deploy their unique modes of action in integrated programs, testing products alone versus in integrated programs, and lingering perceptions of cost and efficacy. © 2019 Society of Chemical Industry  相似文献   

17.
Repetitive sequence-based polymerase chain reaction (rep-PCR) analysis using BOX and ERIC as primers showed a highly divergent phylogeny among field strains of Burkholderia glumae. To elucidate the sources of oxolinic acid (OA) resistance in field strains of B. glumae isolated from rice seedlings cultivated in Mie, Toyama, and Iwate prefectures, Japan, the amino acid at position 83 of GyrA (GyrA83), which is involved in OA resistance, and the DNA patterns from the rep-PCR and the partial nucleotide sequences of gyrB and rpoD from various strains were analyzed. The ten Mie strains, in which GyrA83 was isoleucine (Ile), were divided into two groups based on the band patterns in rep-PCR analysis, although the nucleotide sequences of gyrB and rpoD were identical among the strains. Based on the band patterns in the rep-PCR analysis and the gyrB and rpoD sequences, two highly OA-resistant Toyama strains, Pg-13 and Pg-14, for which GyrA83 was serine (Ser) and Ile, respectively, were in the same lineage. This suggests that the bacteria might acquire OA resistance faster than phylogenic diversity as determined with the repetitive sequences BOX and ERIC and with gyrB and rpoD. Furthermore, three Iwate strains (H95, H101, and H104), isolated from seedlings of different cultivars grown in different years and having Ile at GyrA83, are probably in the same lineage, suggesting that OA-resistant bacteria might be transferred among different cultivars.  相似文献   

18.
Acremonium cucurbitacearum is a soil-borne pathogen that causes collapse of muskmelon and watermelon plants. Cluster analysis based on RAPD patterns, obtained from use of 25 primers, divided isolates of A. cucurbitacearum from Spain and USA into two major groups. Most isolates from the USA fell into group 1, however, genetic similarity was not highly correlated with geographical origins or with previously established VCG groups. Analysis of 5.8S-ITS sequences showed very little sequence variation among isolates of A. cucurbitacearum, most had identical 5.8S-ITS sequence. Nodulisporium melonis, previously reported to cause a similar disease in Japan, had a 5.8S-ITS sequence that was identical to that of isolate A-419 proposed as the type strain of A cremonium cucurbitacearum suggesting that the two fungal pathogens should be considered a single species. Phylogenetic analysis, based on the 5.8S-ITS region, indicated that A cremonium cucurbitacearum is a monophyletic taxon more closely related to Plectosphaerella cucumerina than to other species of the genus Acremonium. Based on the 5.8S-ITS nucleotide sequence, a polymerase chain reaction was designed and used for specific detection of A. cucurbitacearum in diseased plants.  相似文献   

19.
Alstroemeria plants were surveyed for viruses in Japan from 2002 to 2004. Seventy-two Alstroemeria plants were collected from Aichi, Nagano, and Hokkaido prefectures and 54.2% were infected with some species of virus. The predominant virus was Alstroemeria mosaic virus, followed by Tomato spotted wilt virus, Youcai mosaic virus (YoMV), Cucumber mosaic virus (CMV), Alstroemeria virus X and Broad bean wilt virus-2 (BBWV-2). On the basis of nucleotide sequence of the coat protein genes, all four CMV isolates belong to subgroup IA. CMV isolates induced mosaic and/or necrosis on Alstroemeria. YoMV and BBWV-2 were newly identified by traits such as host range, particle morphology, and nucleotide sequence as viruses infecting Alstroemeria. A BBWV-2 isolate also induced mosaic symptoms on Alstroemeria seedlings.  相似文献   

20.
The survival of Xanthomonas axonopodis pv. vignicola, incitant of cowpea bacterial blight and pustule, in residues of infested cowpea leaves was studied in the field in the forest savanna transition zone of South Benin and under variable controlled conditions. The pathogen survived for up to 60 days when placed on the soil surface, and up to 45 days buried at depths of 10 and 20 cm. In the glasshouse, bacteria survived in residue mixed with soil for at least 2 months in dry soil and less than 2 months in moist soil. The pathogen survived at least 30 days in the field after spray-inoculation on the weed species Euphorbia heterophylla, Digitaria horizontalis and Synedrella nodiflora; 20 days on Panicum subalbidum; 10 days on Euphorbia hirta; and 5 days on Talinum triangulare. After leaf-infiltration under glasshouse conditions, the pathogen was detected after 90 days in D. horizontalis; 75 days in T. triangulare, P. subalbidum and S. nodiflora; 60 days in E. hirta, and 30 days in E. heterophylla. Among 12 legume species tested as alternative hosts of X. axonopodis pv. vignicola, only Sphenostylis stenocarpa (African yam bean) showed typical symptoms of cowpea bacterial blight in a glasshouse experiment following artificial inoculation. This is the first time this legume species has been identified as a potential host of X. axonopodis pv.vignicola. Crop residue and weeds are likely sources of primary inoculum when planting two consecutive cowpea crops per year and they probably play a role in dissemination of the pathogen during the cropping season. The alternate host may form a bridge for primary inoculum between cropping seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号