首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. G. Górny 《Plant Breeding》1999,118(6):511-516
Inheritance of the nitrogen and phosphorus utilization efficiencies (NUE and PUE, respectively) and that of the tolerance (T) to limited NP nutrition was investigated in spring barley crosses at the vegetative growth stages. Plants were grown in sand-vermiculite cultures under high and low NP nutrition. In a diallel set (Ps and F2s), both general combining ability (GCA) and specific combining ability (SCA) effects were significant for the variation in NUE and PUE, while the variation in T was mainly associated with GCA effects. The contribution of nonadditive genes for the utilization efficiencies was found to increase under nutrient shortages. Overdominance of genes was detected. The characters exhibited low heritabilities (0.10-0.42). Generation means analysis in two cross-combinations revealed significant effects of epistatic gene interactions. It was assumed that the involvement of both the dominance effects and epistatic interactions would not facilitate selection efforts to improve the characters in spring barley at its vegetative growth. Such selection should be performed among families of later generations. The genotype-nutrition interactions observed suggest that selection under diverse nutrition rates would be necessary for the more precise evaluation of barley efficiency under less favourable soil fertility.  相似文献   

2.
3.
Germination of eight spring barley varieties, grown in two years at eight different locations in State varietal trials in the Czech republic, was analysed. All the combinations were tested under optimal conditions for germination as recommended by ISTA and also at low temperatures (5 and 10°C), and underwater stress (- 2 and - 4 bar). Germination under low temperature and water stress was considered as a character of seed vitality. Varieties in nearly all experiments were a significant source of variation and their relative contribution to the total variation was higher for vitality (5.7–38.7%) than for germination (2.0–4.3%). However, the percentage of germination were not related to the percentage of vitality. The location in nearly all the experiments caused the greatest variation and the impact was greater for germination than for vitality. Provenance effects were different for germination and for vitality; grains harvested in the lowland had the highest germination values, but not the highest vitality values. The results should encourage breeding for seed vitality and some reconsideration of provenance effects on seed vitality.  相似文献   

4.
Five experiments, involving 24 genotypes, were carried out over three seasons to estimate the increase both in grain yield and other selected agronomic traits, and in potential malt extract of spring barley achieved by plant breeders during a period of over 160 years. In all experiments there was neither a chemical control of fungal diseases nor physical support of the tall, older genotypes to prevent yield losses from attack by fungi and lodging, respectively. In all experiments the most modern cultivars yielded more than the older ones. Significant breeding progress was also observed for plant height, resistance score, protein content and potential malt extract. The trend over time was generally of a curvilinear nature, showing no or only a slight increase till the 1950s and/or 1960s, and a greater rate of increase during the last 40 years of barley breeding. Using data from the official trials of cultivars and advanced breeding lines a linear increase in yield per year of 60 kg/ha since the 1950s was calculated for the low‐rainfall conditions of eastern Austria.  相似文献   

5.
About 320 European spring barley varieties and about 40 spring barley lines were tested in the field for reaction to a local population of the spot form of the net blotch fungus Pyrenophora teres forma maculata with the imperfect stage Drechslera teres. The European barley varieties showed a wide range of disease reactions, from nearly resistant to very susceptible. At least three groups of genetically related barley varieties could be distinguished: (0)‘Agneta’ and ‘Clermont’, (2)‘Nordal’ and ‘Arve’, and (3)‘Tellus’,‘Pamina’, ‘Albert’ and ‘Birka’. The parentages of these three groups of barley are mutually distantly related and may thus constitute three different sources of resistance to the pathogen population used. The range of disease reaction is similar in varieties from different European countries but it differs among different breeding stations. The relatively high level of resistance is fairly uniformly distributed in contemporary barley varieties all over most of Western Europe. Over time, from about 1830‐1982, the average level of resistance varied around 4.0 (scale value) (from 2.8 to 4.8). However, since about 1940 the variation in disease reaction has become much wider (from 108 to 6.9) for unknown reason(s).  相似文献   

6.
R. Jonsson    T. Säll    T. Kraft  M. Gustafsson 《Plant Breeding》1999,118(4):313-317
The inheritance of seedling resistance to a Swedish isolate of Pyrenophora teres f. teres was investigated in four resistance sources of spring barley. Accessions CI 2330, CI 5791, CI 5822 and CI 9779 were used as resistance sources, and the cultivar ‘Alexis’ was used as a susceptible parent in different crosses. From the disease reaction in the F1, F2 and F3 generations it was concluded that the resistance was governed by the same two complementary genes in CI 5791, CI 822 and CI 9776. One of these genes was present in CI 2330. The first three cultivars were highly resistant to the isolate used in this investigation. These results, when combined with earlier studies, suggest that CI 5791, CI 5822 and CI 9776 may be of great value as sources of resistance to barley net blotch. Spearman's rank correlation between the disease reaction of F2 plants and their F3 progeny was highly significant (r = 0.75; P ≥ 0.001) It is suggested that selection in the F2 generation is effective. In a backcross breeding scheme, single plant reactions in F1 or F2 need to be confirmed in later generations.  相似文献   

7.
V. &#;ip    J. Chrpová    J. Vacke  J. Ovesná 《Plant Breeding》2004,123(1):24-29
The effects of the Yd2 gene on tolerance to barley yellow dwarf virus (BYDV) and other agronomically important characters in spring barley were evaluated in a set of randomly selected doubled haploid (DH) lines of an‘Igri’/‘Atlas 68’ cross and three crosses between CIMMYT Yd2 materials and the Czech malting barley ‘Akcent’. The cleaved amplified polymorphic site (CAPS) diagnostic marker Yd2 was used for identification of the Yd2 gene and this analysis showed high agreement with the results of field infection tests. Yd2 lines exhibited significantly lower symptom scores and lower reductions of some grain yield characters, but their resistance level was not consistent over the years. The presence of secondary stresses (high temperature/drought) in 2000 led to relatively higher sensitivity to BYDV infection, strengthened by the long life cycle of genotypes. In cases where secondary stresses were mild (in 2002), the longer life cycle significantly increased sensitivity to BYDV infection only in the absence of the Yd2 gene (in susceptible genotypes). The examination of different vegetative, grain yield and malting quality characters separately for groups of Yd2 and non‐ Yd2 lines did not show any evidence of adverse effect of the Yd2 gene on any character.  相似文献   

8.
陈晓影  刘鹏  程乙  董树亭  张吉旺  赵斌  任佰朝 《作物学报》2019,45(10):1565-1575
采用大田试验与土柱试验相结合的方式,设置距离地表-5 cm (P5)、-10 cm (P10)、-15 cm (P15)和-20 cm(P20)施用磷肥处理,以不施磷肥为对照(CK),研究磷肥施用深度对夏玉米根系分布、干物质积累与产量形成及磷肥吸收和利用效率的影响。结果表明,磷肥施用深度显著影响夏玉米根系干重及根长,表现为P15P10P20P5CK。与常规磷肥施用深度(P5)处理相比,P15处理玉米籽粒产量两年平均提高23.1%,根干重及总根长两年平均提高13.1%、22.9%; P15、P20处理均增加了-20 cm以下土层的根干重比例及根长比例,土柱试验分别达到35.4%和36.4%、58.7%和59.3%,大田试验根干重两年均达到19.0%,根长比重分别达到39.8%和39.9%。根系分布的优化促进了植株磷素积累与转运, P10、P15、P20处理较P5处理磷积累量2年平均提高10.6%、25.2%和14.7%,磷转运量平均提高46.9%、76.6%和57.6%,籽粒产量相应增加12.9%、23.1%和10.6%。P15比P5处理的磷肥偏生产力、农学利用效率和表观利用效率两年平均值分别提高19.1 kg kg~(–1)、19.1 kg kg~(–1)和25.2%。磷肥深施能够增加深层土壤根系的分布比例,提高植株对磷肥的吸收、利用效率,显著提高夏玉米产量,在本试验条件下以磷肥集中施用在-15 cm处效果最好。  相似文献   

9.
An understanding of the partition between pre-anthesis and post-anthesis N uptake and their contribution to total grain N and protein content in spring two-rowed barley (Hordeum vulgare spp. distichum L.) is important to achieve additional breeding progress for both fodder and malting barley. N translocation from the vegetative tissues at anthesis to the kernel, N translocation efficiency, and N harvest index (NHI) were studied in field experiments during 4 years (1995–1998). Plants were harvested at anthesis and maturity and divided into leaf+culm, chaff and grain. Significant cultivar differences in N translocation, N translocation efficiency and NHI were determined. Across cultivars, the highest N translocation was in a favorable year (93 kg ha−1) and the lowest in a year with poor growing conditions (40 kg ha−1). Cultivar differences in N translocation were related to dry matter and pre-anthesis N accumulation (R2>0.70). N translocation efficiency varied more among the cultivars (0.27–0.66) than years (0.47–0.52). Post-anthesis N uptake was negatively correlated (P<0.01) with N translocation. NHI ranged among the cultivars from 0.49 to 0.73 and among the years from 0.57 to 0.74. The cultivars Arapiles, Schooner, Cantala, Kaskade and Pek stored in the grain more than 70% and Hiproly less than 50% of above-ground N at maturity. Translocated N participated with 85, 56, 42, and 61% in grain N in 1995, 1996, 1997, and 1998, respectively. The ratio of translocated N to grain N could be an indicator of growing conditions; a higher ratio indicates good growing conditions over the entire growth period, a lower ratio indicates poor conditions during pre-anthesis, and a medium ratio indicates some temperature and water deviations from the long-term average. Straw N concentration was in significant positive (P<0.01) correlation with N translocation and translocation efficiency. Straw N concentration adequately represents N efficiency utilization for synthesis of grain protein, and because it saves time and money compared to N harvest index determination, it can be used for the testing of breeding materials for the development of new barley cultivars.  相似文献   

10.
磷是植物必需营养元素之一,以多种方式影响作物氮吸收、利用。花生属于豆科作物,氮素营养来源包括土壤、肥料和根瘤固氮。本研究以山东省主推品种花育22号(大花生)和花育20号(小花生)为材料,设置5个施磷(P2O5)水平(0、45、90、135和180 kg hm–2),利用15N示踪技术,进行了2年桶栽试验。结果表明,施磷提高了两花生品种肥料氮、土壤氮及根瘤固氮积累量,其中根瘤固氮积累量的增幅大于土壤氮和肥料氮,年份和品种间表现基本一致;随施磷量增加,根瘤数量、鲜重及根瘤固氮积累比例呈增加趋势,土壤氮、肥料氮积累比例呈降低趋势;施磷量在45~90 kg hm–2范围内,氮肥利用效率、荚果氮素利用效率及产量均呈增加趋势,施磷量超过90 kg hm–2,上述三指标呈降低趋势或不再增加;磷肥农学效率随施磷量增加而降低;根瘤固氮积累量与荚果产量、植株全氮积累量呈极显著正相关,与土壤氮、肥料氮积累比例及氮素荚果利用效率呈极显著负相关。根瘤固氮积累比例与土壤氮和肥料氮积累量、供氮比例及氮肥利用率呈极显著负相关。综上,施磷能增加花生根瘤固氮供氮量及供氮比例,降低对肥料氮和土壤氮的依赖,但过量施磷不利于氮、磷效率和产量的提高。45~90 kg hm–2 (P2O5)为花生适宜施磷量。  相似文献   

11.
A genetic map was constructed using DNA‐based markers in a barley mapping population derived from the cross ‘Tankard’בLivet’, that was developed to explore the genetic control over grain damage in spring barley cultivars. Quantitative trait loci (QTL) were located for husk skinning, gape between the lemma and palea and splitting of the fused pericarp/testa/aleurone tissues. The QTL accounted for 70% of the genetic variation in Split and 60% of the genetic variation in Gape and Skinning. The QTL were clustered on chromosomes 1H, 4H, 5H, 6H and 7H. QTL analysis indicates the possibility of transgressive segregation for grain splitting and so the breeding of lines with more extreme splitting. This is of concern to the malting industry as, without extensive phenotypic assessment, such lines could be commercialized, as was the case of Landlord, and put malting barley supplies at risk. These findings are discussed in relation to the genetic control over traits including grain length and width.  相似文献   

12.
Barley (Hordeum vulgare L.) is often grown on alkaline zinc (Zn)‐deficient soils where reductions in yield and grain quality are frequently reported. Currently, the use of Zn‐based fertilizer along with Zn‐deficiency‐tolerant genotypes is considered the most thorough approach for cropping the Zn‐deficient soils; however, developing or breeding genotypes with higher Zn efficiency requires a good understanding of the inheritance of tolerance to Zn deficiency. This study was conducted to determine genetic control of this trait in barley. Two parental cultivars ('Skiff, moderately tolerant; and ‘Forrest’, sensitive), 185 F2 plants, and 48 F2‐derived F3 families from this cross were screened to determine inheritance of tolerance to Zn deficiency using a visual score of deficiency symptoms. The segregation ratios observed indicated that greater tolerance to Zn deficiency in ‘Skiff compared with ‘Forrest’ at the seedling stage is controlled by a single gene with no dominance. The results also indicate that visual scores are useful for genetic analysis of tolerance to Zn deficiency.  相似文献   

13.
To investigate the genetic variation of phosphate (P) uptake and P utilization efficiency, 24 high-yielding spring barley cultivars were grown in two pot experiments on a loess loam-sand mixture. In the first experiment, the plants grew until maturity under P stress (50% of the maximum yield), and in the second experiment, the plants grew until the stage of tillering (DC 25) at a low or at a high P supply.

At maturity, the range between cultivars with the highest and the lowest values were 30% for total dm yield (grain and straw), 28% for grain yield, 24% for P uptake efficiency (P in grain and straw), 26% for P concentration in grains and 24% for P utilization efficiency quotient PEQ (g dm grain per mg P in shoots) (mean of all cultivars = 100%). Grain yield was correlated with P uptake per plant, r = 0.71***, and with PEQ, r = 0.60**. Between P uptake and PEQ, there was only a weak relationship (r = −0.14). Therefore, a combination of high uptake efficiency and high PEQ in a cultivar may be possible.

At growth stage DC 25, the cultivars showed a significant variability in shoot biomass, P concentration, P removal, P influx, acitvity of acid phophatases (Pase) and root length. The ranking of the cultivars, however, was very different at the two P levels, but the root-length and the Pase activity were more influenced by genotype than by the P supply.

As the relationships between grain yield, P removal, PEQ and the characters of the young plants cultivated under P stress were very weak (r < 0.43), selection for P efficiency at the stage of tillering cannot be recommended.  相似文献   


14.
Genetic analysis of resistance in barley to barley yellow dwarf virus   总被引:1,自引:0,他引:1  
J. Ovesná    J. Vacke    L. Kucera    J. Chrpová    I. Nováková    A. Jahoor  V. &#;ip 《Plant Breeding》2000,119(6):481-486
The inheritance of resistance to barley yellow dwarf virus (BYDV) was studied in the selected 24 spring and winter barley cultivars that showed a high or intermediate resistance level in 1994‐97 field infection tests. The polymerase chain reaction diagnostic markers YLM and Ylp were used to identify the resistance gene Yd2. The presence of the Yd2 gene was detected with both markers in all the resistant spring barley cultivars and lines from the CIMMYT/ICARDA BYDV nurseries. The results of field tests and genetic analyses in winter barley corresponded with marker analyses only when the Ylp marker was used. Genes non‐allelic with Yd2 were detected by genetic analyses and the Ylp marker in moderately resistant spring barley cultivars ‘Malvaz’, ‘Atribut’ and ‘Madras’, and in the winter barley cultivars ‘Perry’ and ‘Sigra’. Significant levels of resistance to BYDV were obtained by combining the resistance gene Yd2 with genes detected in moderately resistant cultivars. The utilization of analysed resistance sources in barley breeding is discussed.  相似文献   

15.
K. Rikiishi    T. Matsuura    M. Maekawa    K. Noda  K. Takeda 《Plant Breeding》2003,122(2):99-104
The barley cultivar ‘Lenins’ was found to be a genotype showing high shoot regeneration ability in cultures derived from immature embryos. Five cultivars different from ‘Lenins’ in shoot regeneration ability were reciprocally crossed with ‘Lenins’ and the inheritance of tissue culture traits was investigated. F2 plants showed continuous distributions in callus growth and percentage of shoot regeneration, suggesting that these traits were controlled by polygenes. The F2 population, derived from a cross between ‘Lenins’ and ‘6721′, showed a monogenic segregation for the number of regenerated shoots, and the segregation ratio fitted 1:2:1. Tissue culture traits of ‘Lenins’ were controlled by several genes, whereas the number of regenerated shoots related to the efficiency of shoot regeneration is controlled by one major gene.  相似文献   

16.
A 4-year field study was carried out to determine dry matter and nitrogen accumulation until anthesis and at grain filling period and dry matter translocation and utilization in grain filling of barley. Twenty two-rowed spring barley (Hordeum vulgare ssp. distichum L.) cultivars originated from different countries (Yugoslavia, Germany, Australia, the Czeck Republic, Netherlands, France and USA) were grown during 1995–1998 on a non-calcareous chernozem soil near Novi Sad (45° 20′N, 15° 51′E, 86 m asl). Dry matter and nitrogen accumulation depended on the cultivar and year. In a year with favorable weather conditions, 58% of dry matter was accumulated during pre-anthesis, while in a year with less favorable weather the amount was 48%. In the favorable year 91% and in unfavorable year 65% of nitrogen was accumulated until anthesis. The results indicated that the greater amount of dry matter and nitrogen accumulated before anthesis. Dry matter translocation efficiency depended on the cultivar and ranged from 3 to 16.4%, while the contribution of pre-anthesis assimilates to kernel varied from 4 to 24.2%. Cultivars that have been developed for the growing conditions of the area where the experimental site was located, i.e. adapted ones, did not use pre-anthesis dry matter for grain filling. High positive correlations (P<0.01) were found between biomass at anthesis and biological yield, dry matter translocation efficiency, contribution of translocated dry matter to grain yield, and total plant nitrogen at maturity. Accumulated nitrogen at anthesis was positively correlated (P<0.01) with growing degree–days until anthesis, dry matter at anthesis and dry matter translocation parameters. Heritability for the investigated characters was rather high, over 0.60.  相似文献   

17.
J. Zhang 《Plant Breeding》2003,122(2):112-115
In order to find new dwarfing genes, the inheritance of plant height in 25 Chinese barley dwarf accessions was studied and allelism tests carried out, not only between the dwarfing genes found but also with the known dwarfing genes uz, br, sdw and denso. The results showed that out of the 25 dwarf accessions, 20 were due to monogenic recessiveness and four to digenic recessiveness. Only the short plant character in ‘1974E’ was controlled by a recessive together with a dominant dwarfing gene. In the present study, seven recessive and one dominant new dwarfing genes were identified. Five recessive genes were found in the monogenic mutants ‘91G318’, ‘91D27’ and ‘93‐597’ and in the Tibetan monogenic dwarf landraces ‘Jia Jiu’ and ‘BQK’, respectively. The other two recessives were found in the Tibetan digenic dwarf landraces ‘ZLL’ and ‘ZLLQK’, and the one dominant gene in the digenic mutant ‘1974E’.  相似文献   

18.
Phosphorus (P) is an important macronutrient required for plant growth and yield formation. Since decades, breeders aim to optimize P efficiency in crops. We studied a set of 47 wild barley (Hordeum vulgare ssp. spontaneum, Hsp) introgression lines (ILs) in hydroponic culture to identify quantitative trait loci (QTLs) improving growth and nutrient content under P deficiency. Applying a mixed model analysis, a total of 91 independent QTLs were located among 39 ILs, of which 64 QTLs displayed trait‐improving Hsp effects. For example, an unknown Hsp allele on barley chromosome 4H increased shoot dry weight under P deficiency in three overlapping ILs by 25.9%. Likewise, an Hsp allele on barley chromosome 6H increased root dry weight under P deficiency in two overlapping ILs by 27.6%. In total, 31 QTLs confirmed Hsp effects already identified in previous field and glasshouse experiments with the same ILs. We conclude that wild barley contains numerous trait‐improving QTL alleles, which are active under P deficiency. In future, the underlying genes can be subjected to cloning and, simultaneously, used in elite barley breeding.  相似文献   

19.
Genetic analyses of heading date, tiller number, plant height, grain yield, kernel weight, and plump and thin kernels were made in three six-rowed barley crosses (Hordeum vulgare L.) involving four cultivars. Six populations, P1 , P2 , F1 , F2 , BC1 , and BC2 , from each cross were grown and evaluated at Fargo and Prosper, North Dakota, 1982. Parental means within crosses generally were different except for tiller number. Comparison of generation means suggested that late heading was dominant to early, high kernel weight was dominant to low, and kernel plumpness was influenced by additive gene action. The relationship between yield and heading date was not consistent among crosses and positive r values were quite low. It should be possible to select early maturing, high yielding segregates with plump kernels. Heterosis over the mid-parent was quite similar among crosses for heading date, but there was no heterosis over the high parent. Inbreeding depression was fairly constant for heading date, but was less consistent for yield. The lack of uniformity for estimates of inbreeding depression can be related to environmental variation and to its influence on type of gene action. The ratio of additive to dominance variance was inconsistent among crosses for heading date and yield. These data suggest selection for these characters should be delayed past the F 2 generation. Broad sense heritabilities for heading date ranged from 42 to 86%. Values obtained for grain yield were more consistent among broad sense than narrow sense estimates. Genetic advance estimates were low due to lack of additive variance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Zhang  Jing 《Plant Breeding》2000,119(6):523-524
The inheritance of agronomic traits from the barley dwarfing gene donors ‘Xiaoshan Lixiahuang’ and ‘Cangzhou Luodamai’ was studied. The results indicated that dwarf plants, six‐row and short spikes, dense spikelets and naked kernels, respectively, were controlled by one pair of recessive genes, but a toothed awn was determined by one pair of dominant genes in both barley cultivars. The genes for the six characters in ‘Xiaoshan Lixiahuang’ were allelic to those in ‘Cangzhou Luodamai’. Genetic linkage was found among the genes for plant height, spike length and spikelet density. They were located on the long arm of chromosome 3 (3HL) in the order: plant height, spikelet density, spike length. The genes for naked kernels, six‐row spikes and tooth awns were independent of each other, and carried on the long arms of chromosomes 1(7H), 2(H) and 7(5H), respectively. The dwarfing genes were the same as the gene uz in Japanese and Korean barley cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号