首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of mitochondrial biogenesis in skeletal muscle by CaMK   总被引:2,自引:0,他引:2  
Endurance exercise training promotes mitochondrial biogenesis in skeletal muscle and enhances muscle oxidative capacity, but the signaling mechanisms involved are poorly understood. To investigate this adaptive process, we generated transgenic mice that selectively express in skeletal muscle a constitutively active form of calcium/calmodulin-dependent protein kinase IV (CaMKIV*). Skeletal muscles from these mice showed augmented mitochondrial DNA replication and mitochondrial biogenesis, up-regulation of mitochondrial enzymes involved in fatty acid metabolism and electron transport, and reduced susceptibility to fatigue during repetitive contractions. CaMK induced expression of peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1), a master regulator of mitochondrial biogenesis in vivo, and activated the PGC-1 gene promoter in cultured myocytes. Thus, a calcium-regulated signaling pathway controls mitochondrial biogenesis in mammalian cells.  相似文献   

2.
Hepatic glucose sensing via the CREB coactivator CRTC2   总被引:1,自引:0,他引:1  
Chronic hyperglycemia contributes to the development of diabetes-associated complications. Increases in the concentration of circulating glucose activate the hexosamine biosynthetic pathway (HBP) and promote the O-glycosylation of proteins by O-glycosyl transferase (OGT). We show that OGT triggered hepatic gluconeogenesis through the O-glycosylation of the transducer of regulated cyclic adenosine monophosphate response element-binding protein (CREB) 2 (TORC2 or CRTC2). CRTC2 was O-glycosylated at sites that normally sequester CRTC2 in the cytoplasm through a phosphorylation-dependent mechanism. Decreasing amounts of O-glycosylated CRTC2 by expression of the deglycosylating enzyme O-GlcNAcase blocked effects of glucose on gluconeogenesis, demonstrating the importance of the HBP in the development of glucose intolerance.  相似文献   

3.
为了探讨人参皂苷Rb3在降低血糖方面的分子调控机制,利用HepG2细胞为研究材料,系统分析了人参皂苷Rb3对肝糖异生关键酶PEPCK、G6Pase和转录因子FOXO1、HNF4α的影响。结果表明,人参皂苷Rb3可以显著抑制HepG2细胞肝糖异生途径关键转录因子FOXO1、HNF4α蛋白表达,从而抑制PEPCK和G6Pase酶活性及糖异生作用,该作用能够被AMPK抑制剂Compound C部分阻断,推测人参皂苷Rb3抑制肝糖异生作用是通过激活AMPK信号通路实现。AMPK信号转导通路作为重要的糖脂代谢靶点,在糖尿病及相关代谢类疾病的调控中发挥着重要的作用,为探讨人参皂苷Rb3治疗糖尿病的作用机制提供了新的理论依据。  相似文献   

4.
Glucose homeostasis depends on insulin responsiveness in target tissues, most importantly, muscle and liver. The critical initial steps in insulin action include phosphorylation of scaffolding proteins and activation of phosphatidylinositol 3-kinase. These early events lead to activation of the serine-threonine protein kinase Akt, also known as protein kinase B. We show that mice deficient in Akt2 are impaired in the ability of insulin to lower blood glucose because of defects in the action of the hormone on liver and skeletal muscle. These data establish Akt2 as an essential gene in the maintenance of normal glucose homeostasis.  相似文献   

5.
李林  艾阳  谢正露  曹洋  张源淑 《中国农业科学》2016,49(15):3046-3053
【目的】选取分娩1周后的泌乳期荷斯坦奶牛6头,提前适应期1周后,正式饲喂从2013年6月29日至8月5日,总共35 d(5周),使泌乳奶牛处于热应激状态。进而检测泌乳奶牛乳产量及乳蛋白含量,血液中生长激素(GH)、胰岛素样生长因子(IGF-I)、葡萄糖以及肝脏中热休克蛋白70(HSP70)和糖异生作用的变化情况,拟从GH-IGF-I轴的角度阐明泌乳奶牛发生热应激时对糖异生作用及乳品质下降的机制。为进一步揭示奶牛热应激的发生机理及控制奶牛热应激的发生提供理论依据。【方法】分别统计第1—5周泌乳奶牛的产奶量及分析乳蛋白含量,并采集泌乳奶牛颈静脉血液和进行活体采取肝脏组织的方法,检测血液中葡萄糖和GH、IGF-I的含量,采用实时荧光定量PCR(q RT-PCR)技术对奶牛肝脏组织中HSP70和糖异生的关键酶丙酮酸羧化酶(PC)、磷酸烯醇式丙酮酸羧激酶(PEPCK)以及生长激素受体(GHR)、胰岛素样生长因子受体(IGFR)进行检测。【结果】在35 d的饲喂过程中,日间平均气温在32℃以上的持续时间达25 d,且最高温度为38℃,高温持续时间大于72 h,即此气候条件下奶牛处于一个热应激状态。随着泌乳奶牛热应激程度的不断加深,从第1周到第5周产奶量和乳蛋白含量都有不同程度的下降。通过比较第5周和第1周泌乳奶牛肝脏中HSP70的表达,发现第5周HSP70的表达量极显著高于第1周。检测血液中GH、IGF-I以及葡萄糖的含量,发现在第5周的时候其含量均高于第1周且差异显著(P0.05);检测泌乳奶牛肝脏组织中PC和PEPCK的表达水平,发现第5周显著高于第1周(P0.05);通过检测第5周与第1周肝脏组织中GH和IGF-I受体的表达水平,发现GHR和IGFR同样上调,其中IGFR显著上调(P0.05)。【结论】随着泌乳奶牛热应激的程度的不断加深,血液中的葡萄糖含量显著升高,其可能是由于垂体分泌的GH刺激肝脏产生更多的IGF-I,即通过GHIGF-I轴上调肝脏糖异生途径关键酶的表达,使糖异生途径处于激活状态。而乳中乳蛋白含量的下降可能是由于其前体物被过多的用来进行糖异生作用,增加血液中葡萄糖含量,维持机体正常供能所致。  相似文献   

6.
Accumulation of misfolded protein in the endoplasmic reticulum (ER) triggers an adaptive stress response-termed the unfolded protein response (UPR)-mediated by the ER transmembrane protein kinase and endoribonuclease inositol-requiring enzyme-1alpha (IRE1alpha). We investigated UPR signaling events in mice in the absence of the proapoptotic BCL-2 family members BAX and BAK [double knockout (DKO)]. DKO mice responded abnormally to tunicamycin-induced ER stress in the liver, with extensive tissue damage and decreased expression of the IRE1 substrate X-box-binding protein 1 and its target genes. ER-stressed DKO cells showed deficient IRE1alpha signaling. BAX and BAK formed a protein complex with the cytosolic domain of IRE1alpha that was essential for IRE1alpha activation. Thus, BAX and BAK function at the ER membrane to activate IRE1alpha signaling and to provide a physical link between members of the core apoptotic pathway and the UPR.  相似文献   

7.
The adenosine monophosphate (AMP)-activated protein kinase (AMPK) regulates whole-body and cellular energy balance in response to energy demand and supply. AMPK is an αβγ heterotrimer activated by decreasing concentrations of adenosine triphosphate (ATP) and increasing AMP concentrations. AMPK activation depends on phosphorylation of the α catalytic subunit on threonine-172 (Thr(172)) by kinases LKB1 or CaMKKβ, and this is promoted by AMP binding to the γ subunit. AMP sustains activity by inhibiting dephosphorylation of α-Thr(172), whereas ATP promotes dephosphorylation. Adenosine diphosphate (ADP), like AMP, bound to γ sites 1 and 3 and stimulated α-Thr(172) phosphorylation. However, in contrast to AMP, ADP did not directly activate phosphorylated AMPK. In this way, both ADP/ATP and AMP/ATP ratios contribute to AMPK regulation.  相似文献   

8.
The association between obesity and diabetes supports an endocrine role for the adipocyte in maintaining glucose homeostasis. Here we report that mice lacking the adipocyte hormone resistin exhibit low blood glucose levels after fasting, due to reduced hepatic glucose production. This is partly mediated by activation of adenosine monophosphate-activated protein kinase and decreased expression of gluconeogenic enzymes in the liver. The data thus support a physiological function for resistin in the maintenance of blood glucose during fasting. Remarkably, lack of resistin diminishes the increase in post-fast blood glucose normally associated with increased weight, suggesting a role for resistin in mediating hyperglycemia associated with obesity.  相似文献   

9.
Adenosine monophosphate-activated protein kinase (AMPK) is a conserved sensor of intracellular energy activated in response to low nutrient availability and environmental stress. In a screen for conserved substrates of AMPK, we identified ULK1 and ULK2, mammalian orthologs of the yeast protein kinase Atg1, which is required for autophagy. Genetic analysis of AMPK or ULK1 in mammalian liver and Caenorhabditis elegans revealed a requirement for these kinases in autophagy. In mammals, loss of AMPK or ULK1 resulted in aberrant accumulation of the autophagy adaptor p62 and defective mitophagy. Reconstitution of ULK1-deficient cells with a mutant ULK1 that cannot be phosphorylated by AMPK revealed that such phosphorylation is required for mitochondrial homeostasis and cell survival during starvation. These findings uncover a conserved biochemical mechanism coupling nutrient status with autophagy and cell survival.  相似文献   

10.
11.
【背景】颗粒细胞类固醇激素的合成能力对卵泡发育及成熟具有重要作用,但其关键的调控因子尚不完全清楚。笔者前期的研究表明肝激酶B1(liver kinase B1,LKB1)基因参与细胞的脂类代谢,类固醇激素的合成与脂类代谢密切相关,并且有研究结果亦显示LKB1敲除可引起小鼠卵巢早衰,表明LKB1对维持卵巢的功能很关键,其在颗粒细胞的确切功能需要进一步研究。【目的】探究LKB1在牛卵泡中的表达模式及其对颗粒细胞类固醇激素生成相关基因的调控作用, 为母牛繁殖生理调控研究提供理论依据。【方法】采用免疫组织化学染色对LKB1蛋白在卵泡中进行定位研究;同时分离培养牛原代颗粒细胞,并以促卵泡素受体(follicle stimulating hormone receptor, FSHR)蛋白作为标记基因,细胞免疫荧光染色鉴定颗粒细胞及纯度;然后以原代颗粒细胞为模型,采用siRNA沉默LKB1的技术,利用qRT-PCR方法检测LKB1功能缺失对类固醇激素合成相关基因表达的影响,另一方面采用腺病毒过表达LKB1,qRT-PCR和ELISA技术验证LKB1对类固醇激素合成相关基因表达的调控作用及雌二醇分泌。【结果】 1) LKB1蛋白在卵泡中的细胞均表达,但颗粒细胞的染色信号强于膜细胞,进一步的定量分析显示颗粒细胞的表达量显著高于卵泡膜细胞。2) 分离培养的牛原代卵泡颗粒细胞贴壁生长、细胞形态多呈圆形,能被颗粒细胞标志基因FSHR抗体标记。3) RNAi技术能显著抑制LKB1的表达。与对照相比,siRNA1和siRNA2干扰LKB1的效率分别为48% (P<0.05)和52% (P<0.05);沉默LKB1显著降低颗粒细胞类固醇激素合成基因 STAR (P<0.01)、CYP11A1 (P<0.01)和CYP19A1 (P<0.05)的表达,分别下调了约为对照组的60%、80%和50%。4) LKB1过表达腺病毒及对照组对颗粒细胞均具有高的感染效率,LKB1过表达效率高达10倍(P<0.01);过表达LKB1显著上调STAR (P<0.01)、CYP11A1 (P<0.01)和CYP19A1 (P<0.05)的表达,进一步研究显示LKB1基因功能获得促进颗粒细胞雌二醇的分泌(P<0.05)。【结论】LKB1在卵泡颗粒细胞中高表达,促进类固醇激素生成基因STAR CYP11A1CYP19A1的表达和雌二醇的分泌。本研究将为LKB1调控牛颗粒细胞类固醇激素合成的功能提供直接的理论依据。  相似文献   

12.
Insulin resistance is a major hallmark in the development of type II diabetes, which is characterized by the failure of insulin to promote glucose uptake in muscle and to suppress glucose production in liver. The serine-threonine kinase Akt (PKB) is a principal target of insulin signaling that inhibits hepatic glucose output when glucose is available from food. Here we show that TRB3, a mammalian homolog of Drosophila tribbles, functions as a negative modulator of Akt. TRB3 expression is induced in liver under fasting conditions, and TRB3 disrupts insulin signaling by binding directly to Akt and blocking activation of the kinase. Amounts of TRB3 RNA and protein were increased in livers of db/db diabetic mice compared with those in wild-type mice. Hepatic overexpression of TRB3 in amounts comparable to those in db/db mice promoted hyperglycemia and glucose intolerance. Our results suggest that, by interfering with Akt activation, TRB3 contributes to insulin resistance in individuals with susceptibility to type II diabetes.  相似文献   

13.
Neonatal hepatitis induced by alpha 1-antitrypsin: a transgenic mouse model   总被引:8,自引:0,他引:8  
Transgenic mouse lineages were established that carry the normal (M) or mutant (Z) alleles of the human alpha 1-antitrypsin (alpha 1-Pi) gene. All of the alpha 1-Pi transgenic mice expressed the human protein in the liver, cartilage, gut, kidneys, lymphoid macrophages, and thymus. The human M-allele protein was secreted normally into the serum. However, the human Z-allele protein accumulated in several cell types, but particularly in hepatocytes, and was found in serum in tenfold lower concentrations than the M-allele protein. Mice in one lineage carrying the mutant Z allele expressed high levels of human alpha 1-Pi RNA and displayed significant runting (50% of normal weight) in the neonatal period. This lineage was found to have alpha 1-Pi-induced liver pathology in the neonatal period, concomitant with the accumulation of human Z protein in diastase-resistant cytoplasmic globules that could be revealed in the Periodic acid-Schiff reaction (PAS). The phenotype of mice in the strain expressing high levels of the Z allele is remarkably similar to human neonatal hepatitis, and this strain may prove to be a useful animal model for studying this disease.  相似文献   

14.
The LKB1 tumor suppressor gene, mutated in Peutz-Jeghers syndrome, encodes a serine/threonine kinase of unknown function. Here we show that mice with a targeted disruption of Lkb1 die at midgestation, with the embryos showing neural tube defects, mesenchymal cell death, and vascular abnormalities. Extraembryonic development was also severely affected; the mutant placentas exhibited defective labyrinth layer development and the fetal vessels failed to invade the placenta. These phenotypes were associated with tissue-specific deregulation of vascular endothelial growth factor (VEGF) expression, including a marked increase in the amount of VEGF messenger RNA. Moreover, VEGF production in cultured Lkb1(-/-) fibroblasts was elevated in both normoxic and hypoxic conditions. These findings place Lkb1 in the VEGF signaling pathway and suggest that the vascular defects accompanying Lkb1 loss are mediated at least in part by VEGF.  相似文献   

15.
Duane's retraction syndrome (DRS) is a complex congenital eye movement disorder caused by aberrant innervation of the extraocular muscles by axons of brainstem motor neurons. Studying families with a variant form of the disorder (DURS2-DRS), we have identified causative heterozygous missense mutations in CHN1, a gene on chromosome 2q31 that encodes alpha2-chimaerin, a Rac guanosine triphosphatase-activating protein (RacGAP) signaling protein previously implicated in the pathfinding of corticospinal axons in mice. We found that these are gain-of-function mutations that increase alpha2-chimaerin RacGAP activity in vitro. Several of the mutations appeared to enhance alpha2-chimaerin translocation to the cell membrane or enhance its ability to self-associate. Expression of mutant alpha2-chimaerin constructs in chick embryos resulted in failure of oculomotor axons to innervate their target extraocular muscles. We conclude that alpha2-chimaerin has a critical developmental function in ocular motor axon pathfinding.  相似文献   

16.
 【目的】克隆内蒙古白绒山羊AKT基因cDNA并分析其基本表达模式。【方法】RT-PCR克隆AKT基因 cDNA。通过在线软件BLAST进行核酸序列分析,用SMART与Psite进行氨基酸序列分析。半定量RT-PCR检测AKT基因在绒山羊组织中的表达特异性。Western blotting检测绒山羊胎儿成纤维细胞中AKT表达。【结果】克隆到的内蒙古白绒山羊AKT基因cDNA片段长 1 443 bp,包含了编码480个氨基酸残基的全长ORF,氨基酸序列与绵羊(NM_001161857.1)同源性为97%。SMART分析表明,ORF编码的蛋白包含了可与3-磷酸肌醇结合的PH结构域及具有丝氨酸/苏氨酸激酶催化活性的S_TKc结构域。Psite分析表明,含有1个cAMP-/cGMP-依赖性蛋白激酶磷酸化位点、6个蛋白激酶C磷酸化位点、10个酪蛋白激酶Ⅱ磷酸化位点、2个蛋白激酶ATP结合区信号和1个丝氨酸/苏氨酸蛋白激酶活性区域。PSORT程序预测其定位于细胞质中。AKT基因mRNA丰度在睾丸、脑和肾中较高,在脾、肝、肺及乳腺组织中相对低。绒山羊胎儿成纤维细胞中抑制mTOR活性,AKT表达量降低。【结论】内蒙古白绒山羊AKT基因cDNA全长ORF的核苷酸序列与绵羊的AKT基因具有很高的同源性,AKT基因在脾、睾丸、脑、肝、肺、乳腺及肾组织中均有表达,其AKT的表达受mTOR信号通路的调控。  相似文献   

17.
18.
19.
A high proportion of purebred Hampshire pigs carries the dominant RN- mutation, which causes high glycogen content in skeletal muscle. The mutation has beneficial effects on meat content but detrimental effects on processing yield. Here, it is shown that the mutation is a nonconservative substitution (R200Q) in the PRKAG3 gene, which encodes a muscle-specific isoform of the regulatory gamma subunit of adenosine monophosphate-activated protein kinase (AMPK). Loss-of-function mutations in the homologous gene in yeast (SNF4) cause defects in glucose metabolism, including glycogen storage. Further analysis of the PRKAG3 signaling pathway may provide insights into muscle physiology as well as the pathogenesis of noninsulin-dependent diabetes mellitus in humans, a metabolic disorder associated with impaired glycogen synthesis.  相似文献   

20.
设计斑马鱼过氧化物酶体增殖物受体γ辅助活化因子-1β(PGC-1β)引物,扩增斑马鱼PGC-1β部分cDNA序列,并进行同源性分析.同时研究饥饿对斑马鱼PGC-1β基因mRNA表达的影响.结果表明:克隆得到斑马鱼PGC-1β部分cDNA序列长度为466bp,获得GenBank序列号为EU433886.同源性分析显示,斑马鱼PGC-1β基因同人、大鼠、小鼠、狗、鸡、金鱼同源性较低,分别为59.4%、57.5%、56.6%、59.0%、53.3%和59.0%.饥饿后,斑马鱼PGC-1βmRNA表达量显著升高.研究表明,PGC-1β在斑马鱼的能量代谢过程中可能发挥重要的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号