首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A radiocarbon chronology shows that piedmont glacier lobes in the Chilean Andes achieved maxima during the last glaciation at 13,900 to 14,890, 21,000, 23,060, 26,940, 29,600, and >/=33,500 carbon-14 years before present ((14)C yr B.P.) in a cold and wet Subantarctic Parkland environment. The last glaciation ended with massive collapse of ice lobes close to 14,000(14)C yr B.P., accompanied by an influx of North Patagonian Rain Forest species. In the Southern Alps of New Zealand, additional glacial maxima are registered at 17,720(14)C yr B.P., and at the beginning of the Younger Dryas at 11,050 (14)C yr B. P. These glacial maxima in mid-latitude mountains rimming the South Pacific were coeval with ice-rafting pulses in the North Atlantic Ocean. Furthermore, the last termination began suddenly and simultaneously in both polar hemispheres before the resumption of the modern mode of deep-water production in the Nordic Seas. Such interhemispheric coupling implies a global atmospheric signal rather than regional climatic changes caused by North Atlantic thermohaline switches or Laurentide ice surges.  相似文献   

2.
During the last glacial period, Earth's climate underwent frequent large and abrupt global changes. This behavior appears to reflect the ability of the ocean's thermohaline circulation to assume more than one mode of operation. The record in ancient sedimentary rocks suggests that similar abrupt changes plagued the Earth at other times. The trigger mechanism for these reorganizations may have been the antiphasing of polar insolation associated with orbital cycles. Were the ongoing increase in atmospheric CO2 levels to trigger another such reorganization, it would be bad news for a world striving to feed 11 to 16 billion people.  相似文献   

3.
Records of atmospheric carbon dioxide concentration (P(CO(2))) and Antarctic temperature have revealed an intriguing change in the magnitude of interglacial warmth and P(CO(2)) at around 430,000 years ago (430 ka), but the global climate repercussions of this change remain elusive. Here, we present a stalagmite-based reconstruction of tropical West Pacific hydroclimate from 570 to 210 ka. The results suggest similar regional precipitation amounts across the four interglacials contained in the record, implying that tropical hydroclimate was insensitive to interglacial differences in P(CO(2)) and high-latitude temperature. In contrast, during glacial terminations, drying in the tropical West Pacific accompanied cooling events in northern high latitudes. Therefore, the tropical convective heat engine can either stabilize or amplify global climate change, depending on the nature of the climate forcing.  相似文献   

4.
Establishing what caused Earth's largest climatic changes in the past requires a precise knowledge of both the forcing and the regional responses. We determined the chronology of high- and low-latitude climate change at the last glacial termination by radiocarbon dating benthic and planktonic foraminiferal stable isotope and magnesium/calcium records from a marine core collected in the western tropical Pacific. Deep-sea temperatures warmed by approximately 2 degrees C between 19 and 17 thousand years before the present (ky B.P.), leading the rise in atmospheric CO2 and tropical-surface-ocean warming by approximately 1000 years. The cause of this deglacial deep-water warming does not lie within the tropics, nor can its early onset between 19 and 17 ky B.P. be attributed to CO2 forcing. Increasing austral-spring insolation combined with sea-ice albedo feedbacks appear to be the key factors responsible for this warming.  相似文献   

5.
Paleoatmospheric records of trace-gas concentrations recovered from ice cores provide important sources of information on many biogeochemical cycles involving carbon, nitrogen, and oxygen. Here, we present a 106,000-year record of atmospheric nitrous oxide (N2O) along with corresponding isotopic records spanning the last 30,000 years, which together suggest minimal changes in the ratio of marine to terrestrial N2O production. During the last glacial termination, both marine and oceanic N2O emissions increased by 40 +/- 8%. We speculate that our records do not support those hypotheses that invoke enhanced export production to explain low carbon dioxide values during glacial periods.  相似文献   

6.
The Clovis complex is considered to be the oldest unequivocal evidence of humans in the Americas, dating between 11,500 and 10,900 radiocarbon years before the present (14C yr B.P.). Adjusted 14C dates and a reevaluation of the existing Clovis date record revise the Clovis time range to 11,050 to 10,800 14C yr B.P. In as few as 200 calendar years, Clovis technology originated and spread throughout North America. The revised age range for Clovis overlaps non-Clovis sites in North and South America. This and other evidence imply that humans already lived in the Americas before Clovis.  相似文献   

7.
Widespread evidence for human occupation of the Atacama Desert, 20 degrees to 25 degrees S in northern Chile, has been found from 13,000 calibrated 14C years before the present (cal yr B.P.) to 9500 cal yr B.P., and again after 4500 cal yr B.P. Initial human occupation coincided with a change from very dry environments to humid environments. More than 39 open early Archaic campsites at elevations above 3600 meters show that hunters lived around late glacial/early Holocene paleolakes on the Altiplano. Cessation of the use of the sites between 9500 and 4500 cal yr B.P. is associated with drying of the lakes. The mid-Holocene collapse of human occupation is also recorded in cave deposits. One cave contained Pleistocene fauna associated with human artifacts. Faunal diversity was highest during the humid early Holocene.  相似文献   

8.
Atmospheric CO2 concentrations over the last glacial termination   总被引:1,自引:0,他引:1  
A record of atmospheric carbon dioxide (CO2) concentration during the transition from the Last Glacial Maximum to the Holocene, obtained from the Dome Concordia, Antarctica, ice core, reveals that an increase of 76 parts per million by volume occurred over a period of 6000 years in four clearly distinguishable intervals. The close correlation between CO2 concentration and Antarctic temperature indicates that the Southern Ocean played an important role in causing the CO2 increase. However, the similarity of changes in CO2 concentration and variations of atmospheric methane concentration suggests that processes in the tropics and in the Northern Hemisphere, where the main sources for methane are located, also had substantial effects on atmospheric CO2 concentrations.  相似文献   

9.
A detailed record of sea surface temperature from sediments of the Cape Basin in the subtropical South Atlantic indicates a previously undocumented progression of marine climate change between 41 and 18 thousand years before the present (ky B.P.), during the last glacial period. Whereas marine records typically indicate a long-term cooling into the Last Glacial Maximum (around 21 ky B.P.) consistent with gradually increasing global ice volume, the Cape Basin record documents an interval of substantial temperate ocean warming from 41 to 25 ky B.P. The pattern is similar to that expected in response to changes in insolation owing to variations in Earth's tilt.  相似文献   

10.
Archaeological research in the Gulf Coast of Tabasco reveals the earliest record of maize cultivation in Mexico. The first farmers settled along beach ridges and lagoons of the Grijalva River delta. Pollen from cultivated Zea appears with evidence of forest clearing about 5100 calendar years B.C. (yr B.C.) [6200 (14)C years before the present (yr B.P.)]. Large Zea sp. pollen, typical of domesticated maize (Zea mays), appears about 5000 calendar yr B.C. (6000 yr B.P.). A Manihot sp. pollen grain dated to 4600 calendar yr B.C. (5800 yr B.P.) may be from domesticated manioc. About 2500 calendar yr B.C. (4000 yr B.P.), domesticated sunflower seeds and cotton pollen appear as farming expanded.  相似文献   

11.
A high-resolution western tropical Atlantic sea surface temperature (SST) record from the Cariaco Basin on the northern Venezuelan shelf, based on Mg/Ca values in surface-dwelling planktonic foraminifera, reveals that changes in SST over the last glacial termination are synchronous, within +/-30 to +/-90 years, with the Greenland Ice Sheet Project 2 air temperature proxy record and atmospheric methane record. The most prominent deglacial event in the Cariaco record occurred during the Younger Dryas time interval, when SSTs dropped by 3 degrees to 4 degrees C. A rapid southward shift in the atmospheric intertropical convergence zone could account for the synchroneity of tropical temperature, atmospheric methane, and high-latitude changes during the Younger Dryas.  相似文献   

12.
Long sediment cores recovered from the deep portions of Lake Titicaca are used to reconstruct the precipitation history of tropical South America for the past 25,000 years. Lake Titicaca was a deep, fresh, and continuously overflowing lake during the last glacial stage, from before 25,000 to 15,000 calibrated years before the present (cal yr B.P.), signifying that during the last glacial maximum (LGM), the Altiplano of Bolivia and Peru and much of the Amazon basin were wetter than today. The LGM in this part of the Andes is dated at 21,000 cal yr B.P., approximately coincident with the global LGM. Maximum aridity and lowest lake level occurred in the early and middle Holocene (8000 to 5500 cal yr B.P.) during a time of low summer insolation. Today, rising levels of Lake Titicaca and wet conditions in Amazonia are correlated with anomalously cold sea-surface temperatures in the northern equatorial Atlantic. Likewise, during the deglacial and Holocene periods, there were several millennial-scale wet phases on the Altiplano and in Amazonia that coincided with anomalously cold periods in the equatorial and high-latitude North Atlantic, such as the Younger Dryas.  相似文献   

13.
500,000-year stable carbon isotopic record from devils hole, nevada   总被引:1,自引:0,他引:1  
The record of carbon-13 (delta(13)C) variations in DH-11 vein calcite core from Devils Hole, Nevada, shows four prominent minima near glacial terminations (glacial-interglacial transitions) V to II. The delta(13)C time series is inversely correlated with the DH-11 oxygen isotope ratio time series and leads it by as much as 7000 years. The delta(13)C variations likely record fluctuations in the delta(13)C of dissolved inorganic carbon of water recharging the aquifer. How such variations are transported 80 kilometers to Devils Hole without obliteration by water-rock reaction remains an enigma. The record may reflect (i) global variations in the delta(13)C of atmospheric CO(2) and, hence, the delta(13)C of continental biomass or (ii) variations in extent and density of vegetation in the southern Great Basin. In the latter case, delta(13)C minima at 414, 334, 246, and 133 thousand years ago mark times of maximum vegetation.  相似文献   

14.
Loss of carbon from the deep sea since the Last Glacial Maximum   总被引:1,自引:0,他引:1  
Deep-ocean carbonate ion concentrations ([CO(3)(2-)]) and carbon isotopic ratios (δ(13)C) place important constraints on past redistributions of carbon in the ocean-land-atmosphere system and hence provide clues to the causes of atmospheric CO(2) concentration changes. However, existing deep-sea [CO(3)(2-)] reconstructions conflict with one another, complicating paleoceanographic interpretations. Here, we present deep-sea [CO(3)(2-)] for five cores from the three major oceans quantified using benthic foraminiferal boron/calcium ratios since the last glacial period. Combined benthic δ(13)C and [CO(3)(2-)] results indicate that deep-sea-released CO(2) during the early deglacial period (17.5 to 14.5 thousand years ago) was preferentially stored in the atmosphere, whereas during the late deglacial period (14 to 10 thousand years ago), besides contributing to the contemporary atmospheric CO(2) rise, a substantial portion of CO(2) released from oceans was absorbed by the terrestrial biosphere.  相似文献   

15.
Measurements of stomatal density and delta(13)C of limber pine (Pinus flexilis) needles (leaves) preserved in pack rat middens from the Great Basin reveal shifts in plant physiology and leaf morphology during the last 30,000 years. Sites were selected so as to offset glacial to Holocene climatic differences and thus to isolate the effects of changing atmospheric CO(2) levels. Stomatal density decreased approximately 17 percent and delta(13)C decreased approximately 1.5 per mil during deglaciation from 15,000 to 12,000 years ago, concomitant with a 30 percent increase in atmospheric CO(2). Water-use efficiency increased approximately 15 percent during deglaciation, if temperature and humidity were held constant and the proxy values for CO(2) and delta(13)C of past atmospheres are accurate. The delta(13)C variations may help constrain hypotheses about the redistribution of carbon between the atmosphere and biosphere during the last glacial-interglacial cycle.  相似文献   

16.
A paleotemperature record based on measurements of atmospheric noble gases dissolved in ground water of the Carrizo aquifer (Texas) shows that the annual mean temperature in the southwestern United States during the last glacial maximum was about 5 degrees C lower than the present-day value. In combination with evidence for fluctuations in mountain snow lines, this cooling indicates that the glacial lapse rate was approximately the same as it is today. In contrast, measurements on deep-sea sediments indicate that surface temperatures in the ocean basins adjacent to our study area decreased by only about 2 degrees C. This difference between continental and oceanic records poses questions concerning our current understanding of paleoclimate and climate-controlling processes.  相似文献   

17.
Oxygen-18 (delta(18)O) variations in a 36-centimeter-long core (DH-11) of vein calcite from Devils Hole, Nevada, yield an uninterrupted 500,000-year paleotemperature record that closely mimics all major features in the Vostok (Antarctica) paleotemperature and marine delta(18)O ice-volume records. The chronology for this continental record is based on 21 replicated mass-spectrometric uranium-series dates. Between the middle and latest Pleistocene, the duration of the last four glacial cycles recorded in the calcite increased from 80,000 to 130,000 years; this variation suggests that major climate changes were aperiodic. The timing of specific climatic events indicates that orbitally controlled variations in solar insolation were not a major factor in triggering deglaciations. Interglacial climates lasted about 20,000 years. Collectively, these observations are inconsistent with the Milankovitch hypothesis for the origin of the Pleistocene glacial cycles but they are consistent with the thesis that these cycles originated from internal nonlinear feedbacks within the atmosphere-ice sheet-ocean system.  相似文献   

18.
Peruvian sea catfish (Galeichthys peruvianus) sagittal otoliths preserve a record of modern and mid-Holocene sea surface temperatures (SSTs). Oxygen isotope profiles in otoliths excavated from Ostra [6010 +/- 90 years before the present (yr B.P.); 8 degrees 55'S] indicate that summer SSTs were approximately 3 degrees C warmer than those of the present. Siches otoliths (6450 +/- 110 yr B.P.; 4 degrees 40'S) recorded mean annual temperatures approximately 3 degrees to 4 degrees C warmer than were measured under modern conditions. Trophic level and population diversity and equitability data from these faunal assemblages and other Peruvian archaeological sites support the isotope interpretations and suggest that upwelling of the Peru-Chile current intensified after approximately 5000 yr B.P.  相似文献   

19.
During the past decade, geochemical paleoceanographers have begun to explore the changes in the circulation of the deep ocean that occurred during the glacial-interglacial cycles of the earth's recent history. The deep ocean was significantly colder during the glacial maximum. The distributions of biologically utilized elements (such as carbon and phosphorus) were significantly different as well; higher concentrations of these elements occurred in the deep (>2500 meters depth) North Atlantic, and lower concentrations occurred in the upper (<2500 meters depth) waters of the North Atlantic and possibly in all of the major ocean basins. In contrast, relatively subtle changes have been observed in the radiocarbon ages of deep waters. Slow deepwater changes are statistically linked to variations in the earth's orbit, but rapid changes in deepwater circulation also have occurred. Deepwater chemistry and circulation changes may control the variability in atmospheric CO(2) levels that have been documented from studies of air bubbles in polar ice cores.  相似文献   

20.
A record of foraminiferal shell weight across glacial-interglacial Termination I shows a response related to seawater carbonate ion concentration and allows reconstruction of a record of carbon dioxide in surface seawater that matches the atmospheric record. The results support suggestions that higher atmospheric carbon dioxide directly affects marine calcification, an effect that may be of global importance to past and future changes in atmospheric CO2. The process provides negative feedback to the influence of marine calcification on atmospheric carbon dioxide and is of practical importance to the application of paleoceanographic proxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号