首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Comprehensive assessments of ecosystem services in environments under the influences of human activities and climate change are critical for sustainable regional ecosystem management. Therefore, integrated interdisciplinary modelling has become a major focus of ecosystem service assessment. In this study, we established a model that integrates land use/cover change (LUCC), climate change, and water retention services to evaluate the spatial and temporal variations of water retention services in the Loess Plateau of China in the historical period (2000-2015) and in the future (2020-2050). An improved Markov-Cellular Automata (Markov-CA) model was used to simulate land use/land cover patterns, and ArcGIS 10.2 software was used to simulate and assess water retention services from 2000 to 2050 under six combined scenarios, including three land use/land cover scenarios (historical scenario (HS), ecological protection scenario (EPS), and urban expansion scenario (UES)) and two climate change scenarios (RCP4.5 and RCP8.5, where RCP is the representative concentration pathway). LUCCs in the historical period (2000-2015) and in the future (2020-2050) are dominated by transformations among agricultural land, urban land and grassland. Urban land under UES increased significantly by 0.63×103 km2/a, which was higher than the increase of urban land under HS and EPS. In the Loess Plateau, water yield decreased by 17.20×106 mm and water retention increased by 0.09×106 mm in the historical period (2000-2015), especially in the Interior drainage zone and its surrounding areas. In the future (2020-2050), the pixel means of water yield is higher under RCP4.5 scenario (96.63 mm) than under RCP8.5 scenario (95.46 mm), and the pixel means of water retention is higher under RCP4.5 scenario (1.95 mm) than under RCP8.5 scenario (1.38 mm). RCP4.5-EPS shows the highest total water retention capacity on the plateau scale among the six combined scenarios, with the value of 1.27×106 mm. Ecological restoration projects in the Loess Plateau have enhanced soil and water retention. However, more attention needs to be paid not only to the simultaneous increase in water retention services and evapotranspiration but also to the type and layout of restored vegetation. Furthermore, urbanization needs to be controlled to prevent uncontrollable LUCCs and climate change. Our findings provide reference data for the regional water and land resources management and the sustainable development of socio-ecological systems in the Loess Plateau under LUCC and climate change scenarios.  相似文献   

2.
Zarrineh River is located in the northwest of Iran, providing more than 40% of the total inflow into the Lake Urmia that is one of the largest saltwater lakes on the earth. Lake Urmia is a highly endangered ecosystem on the brink of desiccation. This paper studied the impacts of climate change on the streamflow of Zarrineh River. The streamflow was simulated and projected for the period 1992-2050 through seven CMIP5 (coupled model intercomparison project phase 5) data series (namely, BCC-CSM1-1, BNU-ESM, CSIRO-Mk3-6-0, GFDL-ESM2G, IPSL-CM5A-LR, MIROC-ESM and MIROC-ESM-CHEM) under RCP2.6 (RCP, representative concentration pathways) and RCP8.5. The model data series were statistically downscaled and bias corrected using an artificial neural network (ANN) technique and a Gamma based quantile mapping bias correction method. The best model (CSIRO-Mk3-6-0) was chosen by the TOPSIS (technique for order of preference by similarity to ideal solution) method from seven CMIP5 models based on statistical indices. For simulation of streamflow, a rainfall-runoff model, the hydrologiska byrans vattenavdelning (HBV-Light) model, was utilized. Results on hydro-climatological changes in Zarrineh River basin showed that the mean daily precipitation is expected to decrease from 0.94 and 0.96 mm in 2015 to 0.65 and 0.68 mm in 2050 under RCP2.6 and RCP8.5, respectively. In the case of temperature, the numbers change from 12.33°C and 12.37°C in 2015 to 14.28°C and 14.32°C in 2050. Corresponding to these climate scenarios, this study projected a decrease of the annual streamflow of Zarrineh River by half from 2015 to 2050 as the results of climatic changes will lead to a decrease in the annual streamflow of Zarrineh River from 59.49 m3/s in 2015 to 22.61 and 23.19 m3/s in 2050. The finding is of important meaning for water resources planning purposes, management programs and strategies of the Lake's endangered ecosystem.  相似文献   

3.
WANG Shanshan 《干旱区科学》2021,13(12):1274-1286
The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin. However, excessive exploitation and over-utilization of natural resources, particularly water resources, have triggered a series of ecological and environmental problems, such as the reduction in the volume of water in the main river, deterioration of water quality, drying up of downstream rivers, degradation of vegetation, and land desertification. In this study, the land use/land cover change (LUCC) responses to ecological water conveyance in the lower reaches of the Tarim River were investigated using ENVI (Environment for Visualizing Images) and GIS (Geographic Information System) data analysis software for the period of 1990-2018. Multi-temporal remote sensing images and ecological water conveyance data from 1990 to 2018 were used. The results indicate that LUCC covered an area of 2644.34 km2 during this period, accounting for 15.79% of the total study area. From 1990 to 2018, wetland, farmland, forestland, and artificial surfaces increased by 533.42 km2 (216.77%), 446.68 km2 (123.66%), 284.55 km2 (5.67%), and 57.51 km2 (217.96%), respectively, whereas areas covered by grassland and other land use/land cover types, such as Gobi, bare soil, and deserts, decreased by 103.34 km2 (14.31%) and 1218.83 km2 (11.75%), respectively. Vegetation area decreased first and then increased, with the order of 2010<2000<1990<2018. LUCC in the overflow and stagnant areas in the lower reaches of the Tarim River was mainly characterized by fragmentation, irregularity, and complexity. By analyzing the LUCC responses to 19 rounds of ecological water conveyance in the lower reaches of the Tarim River from 2000 to the end of 2018, we proposed guidelines for the rational development and utilization of water and soil resources and formulation of strategies for the sustainable development of the lower reaches of the Tarim River. This study provides scientific guidance for optimal scheduling of water resources in the region.  相似文献   

4.
SUN Chen 《干旱区科学》2021,13(10):1026-1040
Land use/cover change (LUCC) is becoming more and more frequent and extensive as a result of human activities, and is expected to have a major impact on human welfare by altering ecosystem service value (ESV). In this study, we utilized remote sensing images and statistical data to explore the spatial-temporal changes of land use/cover types and ESV in the northern slope economic belt of the Tianshan Mountains in Xinjiang Uygur Autonomous Region, China from 1975 to 2018. During the study period, LUCC in the study region varied significantly. Except grassland and unused land, all the other land use/cover types (cultivated land, forestland, waterbody, and construction land) increased in areas. From 1975 to 2018, the spatial-temporal variations in ESV were also pronounced. The total ESV decreased by 4.00×108 CNY, which was primarily due to the reductions in the areas of grassland and unused land. Waterbody had a much higher ESV than the other land use/cover types. Ultimately, understanding the impact of LUCC on ESV and the interactions among ESV of different land use/cover types will help improve existing land use policies and provide scientific basis for developing new conservation strategies for ecologically fragile areas.  相似文献   

5.
结合博斯腾湖1960—2018年水位、出入湖径流以及气象站点实测资料,采用集合经验模态分解(Ensem?ble Empirical Mode Decomposition,EEMD)、水量平衡和气候弹性方法,对近60 a博斯腾湖水位变化及其影响因素进行了详细分析。结果表明:(1)1960—2018年博斯腾湖水位总体呈下降态势,具体表现为“下降-上升-下降-上升”四个阶段。(2)在年际尺度上水位存在准3~4 a、准8~9 a的周期性振荡,而年代际尺度上表现出准29~30 a和准33~34 a的周期性变化。(3)1960—2018年降水、气温和潜在蒸散发对开都河、黄水沟和焉耆径流的累积贡献率分别达85.1%、42.1%和23.8%,而下垫面、其他气象变量和人为等因素累积对径流的贡献率分别约为14.9%、57.9%和76.2%。(4)对不同阶段博斯腾湖水位变化原因分析:1960—1987年水位急剧下降的主要原因同入湖径流减少和湖面蒸发量大有关;气温升高和降水量增加导致入湖水量增加是1988—2002年水位显著升高的主要原因;入湖径流减少和出湖水量增多,导致2003—2014年水位显著下降;博斯腾湖入湖水量的显著增加及对出湖水量的严格控制是2015—2018年水位明显上升的主要原因。  相似文献   

6.
Water shortage is one bottleneck that limits economic and social developments in arid and semi-arid areas.As the impacts of climate change and human disturbance intensify across time,uncertainties in both water resource supplies and demands increase in arid and semi-arid areas.Taking a typical arid region in China,Xinjiang Uygur Autonomous Region,as an example,water yield depth(WYD)and water utilization depth(WUD)from 2002 to 2018 were simulated using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model and socioeconomic data.The supply-demand relationships of water resources were analyzed using the ecosystem service indices including water supply-demand difference(WSDD)and water supply rate(WSR).The internal factors in changes of WYD and WUD were explored using the controlled variable method.The results show that the supplydemand relationships of water resources in Xinjiang were in a slight deficit,but the deficit was alleviated due to increased precipitation and decreased WUD of irrigation.WYD generally experienced an increasing trend,and significant increase mainly occurred in the oasis areas surrounding both the Junggar Basin and Tarim Basin.WUD had a downward trend with a decline of 20.70%,especially in oasis areas.Water resources in most areas of Xinjiang were fully utilized and the utilization efficiency of water resources increased.The water yield module in the InVEST model was calibrated and validated using gauging station data in Xinjiang,and the result shows that the use of satellite-based water storage data helped to decrease the bias error of the InVEST model by 0.69×108m3.This study analyzed water resource supplies and demands from a perspective of ecosystem services,which expanded the scope of the application of ecosystem services and increased the research perspective of water resource evaluation.The results could provide guidance for water resource management such as spatial allocation and structural optimization of water resources in arid and semi-arid areas.  相似文献   

7.
As important freshwater resources in alpine basins, glaciers and snow cover tend to decline due to climate warming, thus affecting the amount of water available downstream and even regional economic development. However, impact assessments of the economic losses caused by reductions in freshwater supply are quite limited. This study aims to project changes in glacier meltwater and snowmelt of the Urumqi River in the Tianshan Mountains under future climate change scenarios (RCP2.6 (RCP, Representative Concentration Pathway), RCP4.5, and RCP8.5) by applying a hydrological model and estimate the economic losses from future meltwater reduction for industrial, agricultural, service, and domestic water uses combined with the present value method for the 2030s, 2050s, 2070s, and 2090s. The results indicate that total annual glacier meltwater and snowmelt will decrease by 65.6% and 74.5% under the RCP4.5 and RCP8.5 scenarios by the 2090s relative to the baseline period (1980-2010), respectively. Compared to the RCP2.6 scenario, the projected economic loss values of total water use from reduced glacier meltwater and snowmelt under the RCP8.5 scenario will increase by 435.10×106 and 537.20×106 CNY in the 2050s and 2090s, respectively, and the cumulative economic loss value for 2099 is approximately 2124.00×106 CNY. We also find that the industrial and agricultural sectors would likely face the largest and smallest economic losses, respectively. The economic loss value of snowmelt in different sectorial sectors is greater than that of glacier meltwater. These findings highlight the need for climate mitigation actions, industrial transformation, and rational water allocation to be considered in decision-making in the Tianshan Mountains in the future.  相似文献   

8.
徐慧  张运超 《干旱区研究》2013,30(4):582-587
根据《塔里木河流域近期综合治理规划》规定的水权分配方案,以保障干流天然植物正常生长所需水分和塔里木河下游不断流为前提,模拟计算了塔里木河干流现状灌溉需水的满足度。首先,采用定额法估算塔里木河干流天然植被需水量,选用90%保障率最枯月平均流量法,估算塔里木河干流最小河道内生态需水量,得出塔里木河干流不同保障率的水资源可利用量;其次,建立了塔里木河干流水资源评价和规划模型(WEAP),估算了各灌区基准年的需水量;最后,模拟计算了不同保障率下各灌区逐月的需水满足度。结果表明:随着来水保障率的提高,除了塔里木河下游灌区需水得到满足外,其他各灌区各月需水满足度出现不同程度的下降,生产用水与生态用水矛盾逐渐突出。在平水年、枯水年和特枯水年,灌溉总缺水量分别为0.43×108 m3、1.29×108 m3和2.44×108 m3,缺水最严重的月份主要集中在3月、11月,其次为4月和5月,缺水量最大的为塔里木河中游灌区。  相似文献   

9.
青海湖流域沙柳河草甸群落结构与数量特征   总被引:1,自引:0,他引:1  
沿青海湖流域沙柳河河岸,选取多个断面进行样方调查,分析沿沙柳河距河流入湖处不同距离、垂直河岸方向上草甸群落结构、地上生物量以及物种多样性的变化特征,并讨论影响群落结构变化的生境因子。结果表明:① 在所调查的样地中,有草本植物52种,隶属39属,13科。平均总盖度为70%,平均地上生物量为131 g•m-2。② 随着离湖距离的增加,Shannon-Wiener指数、物种丰富度、物种均匀度指数、地上生物量呈现先增加后略微减小的趋势,盖度的变化趋势是先增加后不变。土壤含水量和土壤含盐量、海拔等可能是影响植物群落空间分布差异的主要原因。③ Shannon-Wiener指数、物种丰富度与地上生物量呈现不明显的线性关系。  相似文献   

10.
青藏高原全新世风沙活动历史与环境变化   总被引:1,自引:0,他引:1  
风沙活动记录的研究对于人们了解气候环境变迁有着重要意义。风成砂层的稳定出露可以作为风沙活动及沙漠形成的最直接证据,因而通过对风成砂-黄土-古土壤序列地层剖面进行对比分析,即可还原地质历史时期风沙活动历史与环境演化。通过对比青藏高原南部、柴达木盆地、共和盆地、青海湖盆地等地区风成沉积剖面的岩性变化,结合14C测年、热释光和光释光测年结果,建立了青藏高原地区全新世以来风沙活动演化历史。青藏高原全新世在11.0kaBP左右开始进入全新世,环境逐渐转向暖湿;9.0kaBP左右出现了一次强烈的风沙活动事件;7.7~4.6ka BP14C大部分地区为暖湿环境,而藏南地区有较大范围风成砂沉积,风沙活动强烈。全新世晚期区域性差异较大,但整体环境恶化,风沙活动增强。  相似文献   

11.
In the context of global change, it is essential to promote the rational development and utilization of land resources, improve the quality of regional ecological environment, and promote the harmonious development of human and nature for the regional sustainability. We identified land use/land cover types in northern China from 2001 to 2018 with ENVI images and ArcGIS software. Meteorological data were selected from 292 stations in northern China, the potential evapotranspiration was calculated with the Penman-Monteith formula, and reanalysis humidity and observed humidity data were obtained. The reanalysis minus observation (RMO, i.e., the difference between reanalysis humidity and observed humidity) can effectively characterize the impact of different land use/land cover types (forestland, grassland, cultivated land, construction land, water body and unused land) on surface humidity in northern China in the early 21st century. The results showed that from 2001 to 2018, the area of forestland expanded (increasing by approximately 1.80×104 km2), while that of unused land reduced (decreasing by approximately 5.15×104 km2), and the regional ecological environment was improved. Consequently, land surface in most areas of northern China tended to be wetter. The contributions of land use/land cover types to surface humidity changes were related to the quality of the regional ecological environment. The contributions of the six land use/land cover types to surface humidity were the highest in northeastern region of northern China, with a better ecological environment, and the lowest in northwestern region, with a fragile ecological environment. Surface humidity was closely related to the variation in regional vegetation coverage; when the regional vegetation coverage with positive (negative) contributions expanded (reduced), the land surface became wetter. The positive contributions of forestland and water body to surface humidity were the greatest. Unused land and construction land were associated with the most serious negative contributions to surface humidity. Affected by the regional distribution pattern of vegetation, surface humidity in different seasons decreased from east to west in northern China. The seasonal variation in surface humidity was closely related to the growth of vegetation: surface humidity was the highest in summer, followed by autumn and spring, and the lowest in winter. According to the results, surface humidity is expected to increase in northeastern region of northern China, decrease in northern region, and likely increase in northwestern region.  相似文献   

12.
青海湖区生态环境变化及其成因分析   总被引:3,自引:3,他引:3  
青海湖区生态环境问题十分突出,集中表现为,湖水位持续下降,湖面萎缩,水环境趋于恶化;天然草场退化,土地沙化;生物多样性弱化,珍稀濒危野生动物濒临灭绝,渔业资源濒临枯竭等。分析其成因主要受到人类活动和自然气候变化双重作用影响,一是近40年青海湖地区的气温变化,具有明显的升温趋势,平均10年尺度上升温0.36℃,同期,降水量波动且略呈减少态势;二是入湖水量减少,对青海湖鱼类生长繁殖影响较大;三是草地开垦,超载过牧与樵采,构建围栏等人类活动剧烈。为此提出构建社会-经济-自然复合生态系统和谐的发展模式和开展沙漠化防治工程建设与制定青海湖综合整治规划的综合治理措施。  相似文献   

13.
Glaciers are known as natural 'solid reservoirs', and they play a dual role between the composition of water resources and the river runoff regulation in arid and semi-arid areas of China. In this study, we used in situ observation data from Urumqi Glacier No. 1, Xinjiang Uygur Autonomous Region, in combination with meteorological data from stations and a digital elevation model, to develop a distributed degree-day model for glaciers in the Urumqi River Basin to simulate glacier mass balance processes and quantify their effect on streamflow during 1980-2020. The results indicate that the mass loss and the equilibrium line altitude (ELA) of glaciers in the last 41 years had an increasing trend, with the average mass balance and ELA being -0.85 (±0.32) m w.e./a (meter water-equivalent per year) and 4188 m a.s.l., respectively. The glacier mass loss has increased significantly during 1999-2020, mostly due to the increase in temperature and the extension of ablation season. During 1980-2011, the average annual glacier meltwater runoff in the Urumqi River Basin was 0.48×108 m3, accounting for 18.56% of the total streamflow. We found that the annual streamflow in different catchments in the Urumqi River Basin had a strong response to the changes in glacier mass balance, especially from July to August, and the glacier meltwater runoff increased significantly. In summary, it is quite possible that the results of this research can provide a reference for the study of glacier water resources in glacier-recharged basins in arid and semi-arid areas.  相似文献   

14.
西北典型内陆湖泊近40年来的演化特点及机制分析   总被引:13,自引:0,他引:13  
利用40年来的实测数据研究揭示了西北典型内陆湖泊的演化特点及机制。研究表明:赛里木湖气候向暖湿转变,降水逐渐增加,处于湖面稳定扩张阶段;青海湖降水无明显变化,入湖地表径流却逐年减少,湖泊处于持续萎缩阶段;察尔汗盐湖,入湖水量少,湖面蒸发量大,处于干涸、半干涸状态,更容易萎缩。影响湖泊演化的因子主要是气候变化及人类活动。  相似文献   

15.
Groundwater plays a dominant role in the eco-environmental protection of arid and semi-arid regions.Understanding the sources and mechanisms of groundwater recharge,the interactions between groundwater and surface water and the hydrogeochemical evolution and transport processes of groundwater in the Longdong Loess Basin,Northwest China,is of importance for water resources management in this ecologically sensitive area.In this study,71 groundwater samples(mainly distributed at the Dongzhi Tableland and along the Malian River)and 8 surface water samples from the Malian River were collected,and analysis of the aquifer system and hydrological conditions,together with hydrogeochemical and isotopic techniques were used to investigate groundwater sources,residence time and their associated recharge processes.Results show that the middle and lower reaches of the Malian River receive water mainly from groundwater discharge on both sides of valley,while the source of the Malian River mainly comes from local precipitation.Groundwater of the Dongzhi Tableland is of a HCO3-Ca-Na type with low salinity.The reverse hydrogeochemical simulation suggests that the dissolution of carbonate minerals and cation exchange between Ca2+,Mg2+and Na+are the main water-rock interactions in the groundwater system of the Dongzhi Tableland.Theδ18O(from-11.70‰to-8.52‰)andδ2H(from-86.15‰to-65.75‰)values of groundwater are lower than the annual weighted average value of precipitation but closer to summer-autumn precipitation and soil water in the unsaturated zone,suggesting that possible recharge comes from the summer-autumn monsoonal heavy precipitation in the recent past(≤220 a).The corrected 14C ages of groundwater range from 3,000 to 25,000 a old,indicating that groundwater was mainly from precipitation during the humid and cold Late Pleistocene and Holocene periods.Groundwater flows deeper from the groundwater table and from the center to the east,south and west of the Dongzhi Tableland with estimated migration rate of 1.29-1.43 m/a.The oldest groundwater in the Quaternary Loess Aquifer in the Dongzhi Tableland is approximately 32,000 a old with poor renewability.Based on theδ18O temperature indicator of groundwater,we speculate that temperature of the Last Glacial Maximum in the Longdong Loess Basin was 2.4℃-6.0℃ colder than the present.The results could provide us the valuable information on groundwater recharge and evolution under thick loess layer,which would be significative for the scientific water resources management in semi-arid regions.  相似文献   

16.
流域气候变化和人类活动对内陆湖泊影响的分析   总被引:9,自引:1,他引:8  
近几十年来干旱和半干旱地区的内陆湖泊发生了巨大的变化,有的出现了面积萎缩和水位下降,有的水位和面积保持稳定,有的消失;博斯腾湖是我国最大的内陆淡水湖,青海湖是我国最大的内陆咸水湖;因此,研究其流域气候变化和人类活动对湖泊的影响具有代表性,对更好保护内陆湖泊,合理利用湖泊水资源具有重要的意义。利用1958-2000年流域降水和温度的资料和灌溉引水量的资料,采用年代对比、距平百分率、滑动平均曲线方法分析了气候变化和人类活动对博斯腾湖和青海湖的影响。分析结果表明气候变化是湖泊水位变化的主要原因;人类活动对博斯腾湖水位变化有一定的影响,而对青海湖水位变化的影响微弱。  相似文献   

17.
Yinge LIU 《干旱区科学》2019,11(4):537-550
Mountain glaciers are highly sensitive to climate change. In this paper, we systematically analyzed and discussed the responses of glaciers to climate change during 1960-2017 in western China by the methods of least squares and correlation analysis. Results show that the maximum temperature, minimum temperature, average temperature, and precipitation significantly increased in western China at the rates of 0.32°C/10a, 0.48°C/10a, 0.39°C/10a, and 11.20 mm/10a, respectively. However, the wind speed, hours of sunshine, snowfall, and snowy days displayed decreasing trends at the rates of -0.53 m/(s?10a), 3.72 h/10a, -2.90 mm/10a, and -0.10 d/10a, respectively. The annual percentage of glacier area decreased by approximately 0.42%, and the average glacier area decreased by 2.76 km2/a. Meanwhile, glacial shrinkages were greater in the Altay Mountains, Tanggula Mountains, and Qilian Mountains than in the other mountainous regions. Glacier accumulation decreased while melt volume increased at a rate of 2.7×104 m3/a. The area of melt volume was 1.3 times that of the glacier accumulation area. The glacier mass balance (GMB) decreased substantially at a rate of -14.0 mm/a, whereas the equilibrium line altitude (ELA) showed an increasing trend at a rate of 0.5 mm/a. After 1997, the mass was smaller than -500.0 mm, indicating a huge loss in glaciers. Furthermore, relationships between ELA and GMB and various climatic factors were established. Temperature and precipitation demonstrated a significantly negative correlation, whereas wind speed and snowy days had significantly positive correlations with GMB. Snowy days also exhibited a remarkably negative correlation with ELA. The strong warming trend and less snowy days were thought to be the main factors leading to glacial melting, whereas the increase in precipitation, and reductions of sunshine hours and wind speed might slow glacial melting.  相似文献   

18.
黄河源区是气候变化敏感区及生态环境脆弱区,也是黄河的主要产流区,其气候变化问题备受关注。利用黄河源区均一化气温和降水观测数据,系统分析了近60 a黄河源区平均气候与极端气候事件的变化特征。结果表明:1960—2019年黄河源区年平均气温、平均最高及最低气温表现出增温趋势的一致性,且源区东部增温幅度高于西部;黄河源区年均气温在2000年前后发生突变转折,转折后升温速率达0.61℃·(10a)-1,高于1960—2019年的增温率0.37℃·(10a)-1。1960—2019年黄河源区年降水量总体呈微弱增加趋势[7.6 mm·(10a)-1],2003年后进入降水偏多阶段,近10 a(2010—2019年)源区平均年降水量达到610 mm;春、夏、冬季降水增多,秋季降水减少;其中源区东部夏、秋季降水减少明显,阶段性干旱风险加剧。近10 a源区平均气温、降水量均为60 a来最高值,总体处于最暖湿阶段。受持续暖湿化影响,1960—2019年黄河源区平均极端气温阈值呈显著的增大趋势,而霜冻日数减少;年最大3日降水量和强降水日数增多,降水强度增大,其中尤以夏季最为显著,对源区生态保护和水资源利用乃至黄河全流域高质量发展均可能带来风险挑战。  相似文献   

19.
Changing climatic conditions and extensive human activities have influenced the global water cycle. In recent years, significant changes in climate and land use have degraded the watershed ecosystem of the Ebinur Lake Basin in Xinjiang, Northwest China. In this paper, variations of runoff, temperature, precipitation, reference evapotranspiration, lake area, socio-economic water usage, groundwater level and water quality in the Ebinur Lake Basin from 1961 to 2015 were systematically analyzed by the Mann-Kendall test methods(M-K) mutation test, the cumulative levelling method, the climate-sensitive method and land-use change index. In addition, we evaluated the effects of human activities on land use change and water quality. The results reveal that there was a significant increase in temperature and precipitation from 1961 to 2015, despite a decrease in reference evapotranspiration. The Wenquan station was not significantly affected by human activities as it is situated at a higher altitude. Runoff at this station increased significantly with climate warming. In contrast, runoff at the Jinghe station was severely affected by numerous human activities. Runoff decreased without obvious fluctuations. The contributions of climate change to runoff variation at the Jinghe and Wenquan stations were 46.87% and 58.94%, respectively; and the contributions of human activities were 53.13% and 41.06%, respectively. Land-use patterns in the basin have changed significantly between 1990 and 2015: urban and rural constructed lands, saline-alkali land, bare land, cultivated land, and forest land have expanded, while areas under grassland, lake, ice/snow and river/channel have declined. Human activities have dramatically intensified land degradation and desertification. From 1961 to 2015, both the inflow into the Ebinur Lake and the area of the lake have declined year by year; groundwater levels have dropped significantly, and the water quality has deteriorated during the study period. In the oasis irrigation area below the runoff pass, human activities mainly influenced the utilization mode and quantity of water resources. Changes in the hydrology and quantity of water resources were driven primarily by the continuous expansion of cultivated land and oasis, as well as the growth of population and the construction of hydraulic engineering projects. After 2015, the effects of some ecological protection projects were observed. However, there was no obvious sign of ecological improvement in the basin, and some environmental problems continue to persist. On this basis, this study recommends that the expansion of oasis should be limited according to the carrying capacity of the local water bodies. Moreover, in order to ensure the ecological security of the basin, it is necessary to determine the optimal oasis area for sustainable development and improve the efficiency of water resources exploitation and utilization.  相似文献   

20.
亚洲中部干旱区湖泊的地域分异性研究   总被引:2,自引:0,他引:2  
湖泊是干旱区气候与环境变化的敏感指示器,了解干旱区湖泊的空间分布和变化特征,有利于正确分析和评估气候变化和人类活动对干旱区水资源的影响。采用2010年的Landsat 遥感数据资料,对新疆、中亚五国及其毗邻高山地区的湖泊制图,并分析该区域内湖泊的数量、面积的时空分布特征。研究表明:① 2010年研究区域内大于0.01 km2以上的湖泊总数为30 952个,总面积为496 674.35 km2,其中哈萨克斯坦北部、阿尔泰山地区和昆仑山南麓是湖泊富集的地区。② 湖泊数量与湖泊面积呈幂指数关系,湖泊面积每升高一个10的量级,该量级内的湖泊数量下降4~6倍,湖泊面积增加1~2倍,与全球的湖泊分布相比,属于湖泊分布相对稀少的地区。③ 湖泊数量在纬度带的空间分布相对均一,大型湖泊集中分布在41°~44°、46°和48°~50°的纬度带上;低海拔地区的湖泊数量多,面积大,高海拔地区湖泊数量多,面积小;山区、河谷湿地和哈萨克斯坦北部草原湖泊数量多;荒漠区湖泊分布稀少。④近20 a来,高山地区湖泊与平原地区湖泊呈相反的变化模式,高山地区湖泊处于稳定或快速扩张态势,而平原地区的湖泊剧烈萎缩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号