共查询到20条相似文献,搜索用时 15 毫秒
1.
Franceli R. Kulcheski Felipe A. S. Graichen José A. Martinelli Ana B. Locatelli Luiz C. Federizzi Carla A. Delatorre 《Euphytica》2010,175(3):423-432
Crown rust, which is caused by Puccinia
coronata f. sp. avenae, P. Syd. & Syd., is the most destructive disease of cultivated oats (Avena
sativa L.) throughout the world. Resistance to the disease that is based on a single gene is often short-lived because of the extremely
great genetic diversity of P. coronata, which suggests that there is a need to develop oat cultivars with several resistance genes. This study aimed to identify
amplified fragment length polymorphism AFLP markers that are linked to the major resistance gene, Pc68, and to amplify the F6 genetic map from Pc68/5*Starter × UFRGS8. Seventy-eight markers with normal segregation were discovered and distributed in
12 linkage groups. The map covered 409.4 cM of the Avena
sativa genome. Two AFLP markers were linked in repulsion to Pc68: U8PM22 and U8PM25, which flank the gene at 18.60 and 18.83 centiMorgans (cM), respectively. The marker U8PM25 is located
in the linkage group 4_12 in the Kanota × Ogle reference oat population. These markers should be useful for transferring Pc68 to genotypes with good agronomic characteristics and for pyramiding crown rust resistance genes. 相似文献
2.
Honggen Zhang Xiaojun Cheng Lijia Zhang Hua Si Yongshen Ge Minghong Gu Shuzhu Tang 《Euphytica》2018,214(3):49
Wild abortive (WA)-type cytoplasmic male sterility (CMS) has been exclusively used for breeding three-line hybrid indica rice, but it has not been applied for generating japonica hybrids because of the difficulties related to breeding japonica restorer lines. Determining whether the major restorer-of-fertility (Rf) gene used for indica hybrids can efficiently restore the fertility of WA-type japonica CMS lines may be useful for breeding WA-type japonica restorer lines. In this study, japonica restorer lines for Chinsurah Boro II (BT)-type CMS exhibited varying abilities to restore the fertility of ‘WA-LiuqianxinA’, which is a WA-type japonica CMS line. Additionally, Rf genes for WA-type CMS were identified in the BT-type japonica restorers. Meanwhile, ‘C9083’, which is a BT-type japonica restorer, exhibited a limited ability to restore the fertility of WA-type japonica CMS lines, and a genetic analysis revealed that the fertility restoration was controlled by one locus. The Rf gene was mapped to an approximately 370-kb physical region and was identified as Rf4. Furthermore, Rf gene dosage effects and the temperature influenced the fertility restoration of WA-type japonica CMS lines. This study is the first to confirm that Rf4 has only minor effects on the fertility restoration of WA-type japonica CMS lines. These results may be relevant for the development of WA-type japonica hybrids. 相似文献
3.
Summary To demonstrate the applicability of the target region amplification polymorphism (TRAP) marker technique to lettuce genotyping,
we fingerprinted 53 lettuce (Lactuca sativa L.) cultivars and six wild accessions (three from each of the two wild species, L. saligna L. and L. serriola L.). Seven hundred and sixty-nine fragments from 50 to 900 bp in length were amplified in 10 PCR reactions using 10 fixed
primers in combination with four fluorescent labeled arbitrary primers. Three hundred and eighty-eight of these fragments
were polymorphic among the 59 Lactuca entries and 107 fragments were polymorphic among the 53 lettuce cultivars and the six wild accessions; 251 fragments were
present only in the wild species. These markers not only discriminated all cultivars, but also revealed the evolutionary relationship
among the three species: L. sativa, the cultivated species, is more closely related to L. serriola than to L. saligna. Cluster analysis grouped the cultivars by horticultural types with a few exceptions. These results are consistent with previous
findings using RFLP, AFLP, and SAMPL markers. The TRAP markers revealed significant differences in genetic variability among
horticultural types, measured by the average genetic similarity among the cultivars of the same type. Within the sample set,
the leaf type and butterhead types possessed relatively high genetic variability, the iceberg types had moderate variability
and the romaine types had the lowest variability. The genetic behavior of TRAP markers was assessed with a mapping population
of 45 recombinant inbred lines (RILs) derived from an interspecific cross between L. serriola and L. sativa. Almost all the markers segregated in the expected 1:1 Mendelian ratio and are being incorporated into the existing lettuce
linkage maps. Our results indicate that the TRAP markers can provide a powerful technique for fingerprinting lettuce cultivars.
The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged. 相似文献
4.
Dragan Milić Slobodan Katić Đura Karagić Jelica Gvozdanović–Varga Sofija Petrović Jan Boćanski 《Euphytica》2011,182(1):25-33
The objective of this study was to develop diallel population hybrids by crossing selected germplasm and to determine the
gene effects and genetic control of yield and yield components using diallel analysis. A complete diallel including reciprocals
was made during 2003 and 2004 between five alfalfa cultivars of different geographic origin. For each pairwise cross, five
plants were chosen at random from each of the two cultivars (~100 florets per plant) to obtain the F1 generation. A spaced plant field was established in 2006 which included the five alfalfa cultivars (parents) and their 20
diallel hybrids (F1). The results of the diallel analysis suggest that the genetic control of major agronomic traits is determined by both additive
gene action (accumulation of frequency of desirable alleles represented by significant GCA effects) and nonadditive gene action
(complementary gene interactions represented by significant SCA effects). This type of gene action expression in alfalfa also
determines the way in which breeding is carried out and brings about changes in the methods used and has given rise to the
idea of the semi-hybrid breeding of this crop. The concept involves: breeding alfalfas within the population, identification
of heterotic germplasm, and the production of seed of the population hybrid (PH). 相似文献
5.
Josefine Nymark Hegelund Uffe Bjerre Lauridsen Sabá Victoria Wallström Renate Müller Henrik Lütken 《Euphytica》2017,213(2):51
Compact growth is an important quality criterion in horticulture. Many Campanula species and cultivars exhibit elongated growth which is suppressed by chemical retardation and cultural practice during production to accommodate to the consumer’s desire. The production of compact plants via transformation with wild type Agrobacterium rhizogenes is an approach with great potential to produce plants that are non-GMO. Efficient transformation and regeneration procedures vary widely among both plant genera and species. Here we present a transformation protocol for Campanula. Hairy roots were produced on 26–90% of the petioles that were used for transformation of C. portenschlagiana (Cp), a C. takesimana × C. punctata hybrid (Chybr) and C. glomerata (Cg). Isolated hairy roots grew autonomously and vigorously without added hormones. The Cg hairy roots produced chlorophyll and generated plantlets in response to treatments with cytokinin (42 µM 2iP) and auxin (0.67 µM NAA). In contrast, regeneration attempts of transformed Cp and Chybr roots lead neither to the production of chlorophyll nor to the regeneration of shoots. Agropine A. rhizogenes strains integrate split T-DNA in TL- and TR-DNA fragments into the plant genome. In this study, regenerated plants of Cg did not contain TR-DNA, indicating that a selective pressure against this T-DNA fragment may exist in Campanula. 相似文献
6.
The recessive mutation of the XANTHA gene (XNT) transforms seedlings and plants into a yellow color, visually distinguishable from normal (green) rice. Thus, it has been
introduced into male sterile lines as a distinct marker for rapidly testing and efficiently increasing varietal purity in
seed and paddy production of hybrid rice. To identify closely linked markers and eventually isolate the XNT gene, two mapping populations were developed by crossing the xantha mutant line Huangyu B (indica) with two wild type japonica varieties; a total of 1,720 mutant type F2 individuals were analyzed for fine mapping using polymorphic InDel markers and high dense microsatellite markers. The XNT gene was mapped on chromosome 11, within in a fragment of ~100 kb, where 13 genes are annotated. The NP_001067671.1 gene
within the delimited region is likely to be a candidate XNT gene, since it encodes ATP-dependent chloroplast protease ATP-binding subunit clp A. However, no sequence differences were
observed between the mutant and its parent. Bioinformatics analysis demonstrated that four chlorophyll deficient mutations
that were previously mapped on the same chromosome are located outside the XNT region, indicating XNT is a new gene. The results provide useful DNA markers not only for marker assisted selection of the xantha trait but also its eventual cloning. 相似文献
7.
Nineteen accessions of the tuber-bearing species Solanum berthaultii, S. chacoense, S. leptophyes, S. microdontum, S. sparsipilum, S. sucrense, S. venturii, S. vernei and S. verrucosum were tested for their resistance to late blight in two years of field experiments. Plants were artifically inoculated with zoospores of race 1.2.3.4.5.7.10.11 and the development of the disease was followed. Resistance ratings, calculated as the areas under the disease progress curves (ADPC), demonstrated a high resistance in all accessions except in S. sparsipilum, S. leptophyes and their interspecific hybrid. Segregations suggest that major genes for resistance are present in S. sucrense and S. venturii, and may also play a role in S. verrucosum. It is not yet certain wether the resistance of the other accessions is comparable to the partial and durable resistance of S. tuberosum cultivars like Pimpernel, as inheritance and mechanism have yet to be established. However, segregations suggesting the presence of single major genes with complete dominance were not found in these other accessions. Tuber initiation in the field occurred in only one accession, S. tuberosum ssp. andigena, and maturity of the clones was not related to their resistance. In the other accessions maturity types could not be assessed, as the clones require short day conditions for tuber initiation. 相似文献
8.
Noelle Giacomini Lemos Alessandro de Lucca e Braccini Ricardo Vilela Abdelnoor Maria Cristina Neves de Oliveira Kazuhiro Suenaga Naoki Yamanaka 《Euphytica》2011,182(1):53-64
Asian rust, caused by the fungus Phakopsora pachyrhizi, is the most severe disease currently threatening soybean crops in Brazil. The development of resistant cultivars is a top
priority. Genetic characterization of resistance genes is important for estimating the improvement when these genes are introduced
into soybean plants and for planning breeding strategies against this disease. Here, we infected an F2 population of 140 plants derived from a cross between ‘An-76’, a line carrying two resistance genes (Rpp2 and Rpp4), and ‘Kinoshita’, a cultivar carrying Rpp5, with a Brazilian rust population. We scored six characters of rust resistance (lesion color [LC], frequency of lesions having
uredinia [%LU], number of uredinia per lesion [NoU], frequency of open uredinia [%OU], sporulation level [SL], and incubation
period [IP]) to identify the genetic contributions of the three genes to these characters. Furthermore, we selected genotypes
carrying these three loci in homozygosis by marker-assisted selection and evaluated their genetic effect in comparison with
their ancestors, An-76, PI230970, PI459025, Kinoshita and BRS184. All three genes contributed to the phenotypes of these characters
in F2 population and when pyramided, they significantly contributed to increase the resistance in comparison to their ancestors.
Rpp2, previously reported as being defeated by the same rust population, showed a large contribution to resistance, and its resistance
allele seemed to be recessive. Rpp5 had the largest contribution among the three genes, especially to SL and NoU. Only Rpp5 showed a significant contribution to LC. No QTLs for IP were detected in the regions of the three genes. We consider that
these genes could contribute differently to resistance to soybean rust, and that genetic background plays an important role
in Rpp2 activity. All three loci together worked additively to increase resistance when they were pyramided in a single genotype
indicating that the pyramiding strategy is one good breeding strategy to increase soybean rust resistance. 相似文献
9.
J. Mei L. Qian J. O. Disi X. Yang Q. Li J. Li M. Frauen D. Cai W. Qian 《Euphytica》2011,177(3):393-399
Stem rot caused by Sclerotinia sclerotiorum is one of the most devastating diseases of rapeseed (Brassica napus L.) which causes huge loss in rapeseed production. Genetic sources with high level of resistance has not been found in rapeseed.
In this study, 68 accessions in six Brassica species, including 47 accessions of B. oleracea, were evaluated for leaf and stem resistance to S. sclerotiorum. Large variation of resistance was found in Brassica, with maximum differences of 5- and 57-folds in leaf and stem resistance respectively. B. oleracea, especially its wild types such as B. rupestris, B. incana, B. insularis, and B. villosa showed high level of resistance. Our data suggest that wild types of B. oleracea possess tremendous potential for improving S. sclerotiorum resistance of rapeseed. 相似文献
10.
A genetic factor that blocks the cannabinoid biosynthesis in Cannabis
sativa has been investigated. Crosses between cannabinoid-free material and high content, pharmaceutical clones were performed.
F1s were uniform and had cannabinoid contents much lower than the mean parental value. Inbred F2 progenies segregated into discrete groups: a cannabinoid-free chemotype, a chemotype with relatively low cannabinoid content
and one with relatively high content, in a monogenic 1:2:1 ratio. In our model the cannabinoid knockout factor is indicated
as a recessive allele o, situated at locus O, which segregates independently from previously presented chemotype loci. The genotype o/o underlies the cannabinoid-free chemotype, O/o is expressed as an intermediate, low content chemotype, and O/O is the genotype of the high content chemotype. The data suggests that locus O governs a reaction in the pathway towards the phenolic cannabinoid precursors. The composition of terpenoids and various
other compound classes of cannabinoid-free segregants remains unaffected. Backcrossing produced cannabinoid-free homologues
of pharmaceutical production clones with potential applications in pharmacological research. A new variant of the previously
presented allele ‘B
0’, that almost completely obstructs the conversion of CBG into CBD, was also selected from the source population of the cannabinoid
knockout factor. 相似文献
11.
The rice leaffolder (RLF), Cnaphalocrocis medinalis is an important pest of rice that causes severe damage in many areas of the world. The plants were transformed with fully
modified (plant codon optimized) synthetic Cry1C coding sequences as well as with the hpt and gus genes, coding for hygromycin phosphotransferase and β-glucuronidase, respectively. Cry1C sequences placed under the control of doubled 35S promoter plus the AMV leader sequence, and hpt and gus genes driven by cauliflower mosaic virus 35S promoter, were used in this study. Embryogenic calli after cocultivation with
Agrobacterium were selected on the medium containing hygromycin B. A total of 67 hygromycin-resistant plants were regenerated. PCR and
Southern blot analyses of primary transformants revealed the stable integration of Cry1C coding sequences into the rice genome with predominant single copy integration. R1 progeny plants disclosed a monogenic pattern (3:1) of transgene segregation as confirmed by molecular analyses. These transgenic
lines were highly resistant to rice leaffolder (RLF), Cnaphalocrocis medinalis as revealed by insect bioassay. 相似文献
12.
Junghyun Shim Olivier Panaud Clémentine Vitte Merlyn S. Mendioro Darshan S. Brar 《Euphytica》2010,176(2):269-279
Molecular markers have been successfully used in rice breeding however available markers based on Oryza
sativa sequences are not efficient to monitor alien introgression from distant genomes of Oryza. We developed O. minuta (2n = 48, BBCC)-specific clones comprising of 105 clones (266–715 bp) from the initial library composed of 1,920 clones against
O. sativa by representational difference analysis (RDA), a subtractive cloning method and validated through Southern blot hybridization.
Chromosomal location of O. minuta-specific clones was identified by hybridization with the genomic DNA of eight monosomic alien additional lines (MAALs). The
37 clones were located either on chromosomes 6, 7, or 12. Different hybridization patterns between O. minuta-specific clones and wild species such as O. punctata, O. officinalis, O. rhizomatis, O. australiensis, and O. ridleyi were observed indicating conservation of the O. minuta fragments across Oryza spp. A highly repetitive clone, OmSC45 hybridized with O. minuta and O. australiensis (EE), and was found in 6,500 and 9,000 copies, respectively, suggesting an independent and exponential amplification of the
fragment in both species during the evolution of Oryza. Hybridization of 105 O. minuta specific clones with BB- and CC-genome wild Oryza species resulted in the identification of 4 BB-genome-specific and 14 CC-genome-specific clones. OmSC45 was identified as a fragment of RIRE1, an LTR-retrotransposon. Furthermore this clone was introgressed from O. minuta into the advanced breeding lines of O. sativa. 相似文献
13.
Oliver E. Manangkil Hien Thi Thu Vu Shinya Yoshida Naoki Mori Chiharu Nakamura 《Euphytica》2008,163(2):267-274
Submergence is a major stress causing yield losses particularly in the direct-seeded rice cultivation system and necessitates
the development of a simple, rapid and reliable bioassay for a large scale screening of rice germplasms with tolerance against
submergence stress. We developed two new bioassay methods that were based primarily on the seedling vigor evaluated by the
ability of fast shoot elongation under submerged conditions, and compared their effectiveness with two other available methods.
All four bioassay methods using cultivars of 7 indica and 6 japonica types revealed significant and consistent cultivar differences in seedling vigor under submergence and/or submergence tolerance.
Japonica cultivars were more vigorous than indica cultivars, with Nipponbare being the most vigorous. The simplest test tube method showed the highest correlations to all
other methods. Our results suggest that seedling vigor serves as a submergence avoidance mechanism and confers tolerance on
rice seedlings to flooding during early crop establishment. A possible relationship is discussed between seedling vigor based
on fast shoot elongation and submergence tolerance defined by recovery from submergence stress. 相似文献
14.
Thierry Pascal Romain Aberlenc Carole Confolent Mathilde Hoerter Elodie Lecerf Christophe Tuéro Patrick Lambert 《Euphytica》2017,213(6):132
Peach powdery mildew is one of the major diseases of the peach. Various sources of resistance to PPM have thus been identified, including the single dominant locus Vr2 carried by the peach rootstock ‘Pamirskij 5’. To map Vr2, a linkage map based on microsatellite markers was constructed from the F2 progeny (WP2) derived from the cross ‘Weeping Flower Peach’ × ‘Pamirskij 5’. Self-pollinations of the parents were also performed. Under greenhouse conditions, all progenies were scored after artificial inoculations in two classes of reactions to PPM (resistant/susceptible). In addition to Vr2, WP2 segregated for three other traits from ‘Weeping Flower Peach’: Rm1 for green peach aphid resistance, Di2 for double-flower and pl for weeping-growth habit. With their genomic locations unknown or underdocumented, all were phenotyped as Mendelian characters and mapped: Vr2 mapped at the top of LG8, at 3.3 cM, close to the CPSCT018 marker; Rm1 mapped at the bottom of LG1, at a position of 116.5 cM, cosegregating with the UDAp-467 marker and in the same region as Rm2 from ‘Rubira’®; Di2 mapped at 28.8 cM on LG6, close to the MA027a marker; and pl mapped at 44.1 cM on LG3 between the MA039a and SSRLG3_16m46 markers. Furthermore, this study revealed, for the first time, a pseudo-linkage between two traits of the peach: Vr2 and the Gr locus, which controls the red/green color of foliage. The present work therefore constitutes a significant preliminary step for implementing marker-assisted selection for the four major traits targeted in this study. 相似文献
15.
Summary Two RAPD markers linked to gene for resistance (assayed as pustule number cm−2 leaf area) to rust [Uromyces fabae (Pers.) de Bary] in pea (Pisum sativum L.) were identified using a mapping population of 31 BC1F1 [HUVP 1 (HUVP 1 × FC 1] plants, FC 1 being the resistant parent. The analysis of genetics of rust resistance was based on
the parents, F1, F2, BC1F1 and BC1F2 generations. Rust resistance in pea is of non-hypersensitive type; it appeared to be governed by a single partially dominant
gene for which symbol Ruf is proposed. Further, this trait seems to be affected by some polygenes in addition to the proposed oligogene Ruf. A total of 614 decamer primers were used to survey the parental polymorphism with regard to DNA amplification by polymerase
chain reaction. The primers that amplified polymorphic bands present in the resistant parent (FC 1) were used for bulked segregant
analysis. Those markers that amplified consistently and differentially in the resistant and susceptible bulks were separately
tested with the 31 BC1F1 individuals. Two RAPD makers, viz., SC10-82360 (primer, GCCGTGAAGT), and SCRI-711000 (primer, GTGGCGTAGT), flanking the rust resistance gene (Ruf) with a distance of 10.8 cM (0.097 rF and LOD of 5.05) and 24.5 cM (0.194 rF and a LOD of 2.72), respectively, were identified.
These RAPD markers were not close enough to Ruf to allow a dependable maker-assisted selection for rust resistance. However, if the two makers flanking Ruf were used together, the effectiveness of MAS would be improved considerably. 相似文献
16.
Naoyuki Araki Shin-Ichi Masuzaki Hikaru Tsukazaki Shigenori Yaguchi Tadayuki Wako Yosuke Tashiro Naoki Yamauchi Masayoshi Shigyo 《Euphytica》2010,173(3):321-328
The potential of microsatellite markers for use in genetic studies has been evaluated in Allium cultivated species (Allium cepa, A. fistulosum) and its allied species (A. altaicum, A. galanthum, A. roylei, A. vavilovii). A total of 77 polymerase chain reaction (PCR) primer pairs were employed, 76 of which amplified a single product or several
products in either of the species. The 29 AMS primer pairs derived from A. cepa and 46 microsatellites primer pairs from A. fistulosum revealed a lot of polymorphic amplicons between seven Allium species. Some of the microsatellite markers were effective not only for identifying an intraspecific F1 hybrid between shallot and bulb onion but also for applying to segregation analyses in its F2 population. All of the microsatellite markers can be used for interspecific taxonomic analyses among two cultivated and four
wild species of sections Cepa and Phyllodolon in Allium. Generally, our data support the results obtained from recently performed analyses using molecular and morphological markers.
However, the phylogeny of A. roylei, a threatened species with several favorable genes, was still ambiguous due to its different positions in each dendrogram
generated from the two primer sets originated from A. cepa and A. fistulosum. 相似文献
17.
Brent D. McCallum D. Gavin Humphreys Daryl J. Somers Abdulsalam Dakouri Sylvie Cloutier 《Euphytica》2012,183(2):261-274
The wheat (Triticum aestivum L.) gene Lr34/Yr18 conditions resistance to leaf rust, stripe rust, and stem rust, along with other diseases such as powdery mildew. This makes
it one of the most important genes in wheat. In Canada, Lr34 has provided effective leaf rust resistance since it was first incorporated into the cultivar Glenlea, registered in 1972.
Recently, molecular markers were discovered that are either closely linked to this locus, or contained within the gene. Canadian
wheat cultivars released from 1900 to 2007, breeding lines and related parental lines, were tested for sequence based markers
caSNP12, caIND11, caIND10, caSNP4, microsatellite markers wms1220, cam11, csLVMS1, swm10, csLV34, and insertion site based
polymorphism marker caISBP1. Thirty different molecular marker haplotypes were found among the 375 lines tested; 5 haplotypes
had the resistance allele for Lr34, and 25 haplotypes had a susceptibility allele at this locus. The numbers of lines in each haplotype group varied from 1
to 140. The largest group was represented by the leaf rust susceptible cultivar “Thatcher” and many lines derived from “Thatcher”.
The 5 haplotypes that had the resistance allele for Lr34 were identical for the markers tested within the coding region of the gene but differed in the linked markers wms1220, caISBP1,
cam11, and csLV34. The presence of the resistance or susceptibility allele at the Lr34 locus was tracked through the ancestries of the Canadian wheat classes, revealing that the resistance allele was present
in many cultivars released since the 1970s, but not generally in the older cultivars. 相似文献
18.
Gabriela de Oliveira Belo Margarete Magalhães Souza Gonçalo Santos Silva Manuella Palmeira Lavinscky 《Euphytica》2018,214(1):2
Two new varieties of interspecific hybrids of Passiflora have been developed from the cross between P. gardneri versus P. gibertii, both registered under the Passiflora Society International. Twelve putative hybrids were analyzed. Hybridization was confirmed using RAPD and SSR markers. Primer UBC11 (5′-CCGGCCTTAC-3′) generated informative bands. Primer SSR Pe75 has amplified species-specific fragments and a heterozygote status was observed with two parent bands 300 and 350 bp. The molecular markers generated have been analyzed for the presence or absence of specific informative bands. Based on the morphological characterization, we have identified two hybrid varieties: P. ‘Gabriela’ and P. ‘Bella’. P. ‘Gabriela’ produced flowers in bluish tones, bluish petals on the adaxial and abaxial faces, light blue sepals on the adaxial and light green on the abaxial faces, corona with the base of filaments in intense lilac color and white apex. P. ‘Bella’ produced flowers in lilac tones, intense lilac petals on the adaxial and abaxial faces, dark lilac sepals with whitish edges on the adaxial and light green on the abaxial faces, corona with the base of filaments in intense lilac color and white apex. The cytogenetic analysis verified that the hybrids have the same chromosomal number as the parents (2n = 18); the formation of bivalents between the homeologous chromosomes (n = 9) was observad, leading to regular meiosis, which allows the sexual reproduction and use of these hybrids in breeding programs. 相似文献
19.
The genus Kalanchoe is currently divided into section Kalanchoe and section Bryophyllum, and there has been no successful report on the production
of inter-sectional hybrids. Therefore, reciprocal crosses were made between Kalanchoe spathulata (sect. Kalanchoe) and K. laxiflora (sect. Bryophyllum) in order to obtain basic information on the reproductive barriers between these two sections. The seeds
were aseptically germinated in vitro and the plants were grown in greenhouse till flowering. When K. spathulata was used as a maternal donor, 39 out of 80 plants showed intermediate characteristics between K. spathulata and K. laxiflora. In contrast, no plants were obtained in the reverse crosses. Hybridity of these plants was confirmed by flow cytometric
analysis, chromosome numbers and RAPD analysis. Bulbil formation on the leaf margin as one of the conspicuous characteristics
of K. laxiflora was not observed in the hybrids. Some of the hybrid lines showed some pollen fertility, but failed to yield viable seeds
by self-pollination or backcross-pollination. Successful production of the inter-sectional hybrid between the two species
suggests that they are not so distantly related as considered previously. 相似文献
20.
Matías González-Arcos Maria Esther de Noronha Fonseca Ana Arruabarrena Mirtes F. Lima Miguel Michereff-Filho Enrique Moriones Rafael Fernández-Muñoz Leonardo S. Boiteux 《Euphytica》2018,214(10):178
The whitefly-transmitted Tomato chlorosis virus (ToCV) (genus Crinivirus) is associated with yield and quality losses in field and greenhouse-grown tomatoes (Solanum lycopersicum) in South America. Therefore, the search for sources of ToCV resistance/tolerance is a major breeding priority for this region. A germplasm of 33 Solanum (Lycopersicon) accessions (comprising cultivated and wild species) was evaluated for ToCV reaction in multi-year assays conducted under natural and experimental whitefly vector exposure in Uruguay and Brazil. Reaction to ToCV was assessed employing a symptom severity scale and systemic virus infection was evaluated via RT-PCR and/or molecular hybridization assays. A subgroup of accessions was also evaluated for whitefly reaction in two free-choice bioassays carried out in Uruguay (with Trialeurodes vaporariorum) and Brazil (with Bemisia tabaci Middle-East-Asia-Minor1—MEAM1?=?biotype B). The most stable sources of ToCV tolerance were identified in Solanum habrochaites PI 127827 (mild symptoms and low viral titers) and S. lycopersicum ‘LT05’ (mild symptoms but with high viral titers). These two accessions were efficiently colonized by both whitefly species, thus excluding the potential involvement of vector-resistance mechanisms. Other promising breeding sources were Solanum peruvianum (sensu lato) ‘CGO 6711’ (mild symptoms and low virus titers), Solanum chilense LA1967 (mild symptoms, but with high levels of B. tabaci MEAM1 oviposition) and Solanum pennellii LA0716 (intermediate symptoms and low level of B. tabaci MEAM1 oviposition). Additional studies are necessary to elucidate the genetic basis of the tolerance/resistance identified in this set of Solanum (Lycopersicon) accessions. 相似文献