首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three groups of five clinically healthy buffaloes each were injected intravenously with sulphadiazine, sulphadimidine and sulphamerazine in a dose of 100 mg/kg b. wt. (as a singly initial dose of 40 mg/kg b. wt. an subsequently the plasma level kept constant by a continuous intravenous infusion of a maintenance dose of 20 mg/kg per hour over a period of 3 hours). It was found that, 1) sulphadiazine, sulphadimidine and sulphamerazine increase the plasma glucose levels at 1, 2, 2.5 and 3.5 hours from the start of i.v. infusion. 2) The glucose concentration in urine increased in the buffaloes infused i.v. with sulphadiazine. 3) The glucose level in urine of buffaloes infused i.v. with sulphadimidine and sulphamerazine was slightly increased. 4) The concentrations of sulphadiazine, sulphadimidine and sulphamerazine in plasma reached its highest level, 2.5, 2 and 2.5 hours during the i.v. infusion, respectively, then declined rapidly. 5) The concentrations of sulphadiazine, sulphadimidine and sulphamerazine in urine reached their highest concentrations 3.5 hours after i.v. infusion.  相似文献   

2.
Eight experiments were carried out on eight clinically healthy non-pregnant ewes. Each animal was injected intravenously with either sulphadiazine or sulphadimidine at a dose rate of 100 mg/kg body weight. A two-compartment pharmacokinetic model was developed to describe the disposition of these drugs. The elimination half-lives were 7.15 ± 0.58 h and 9.51 ± 0.59 h and the distribution half-lives were 0.56 ± 0.07 h and 0.42 ± 0.05 h for sulphadiazine and sulphadimidine, respectively. The apparent specific volumes of distribution were less than 1 litre/kg (0.410 and 0.501 litres/kg for sulphadiazine and sulphadimidine, respectively) which indicates a relatively lower distribution of these drugs to tissues than in plasma in sheep. The degree of plasma protein binding was similar for both drugs (19.15 ± 0.55% and 23.12 ± 0.32%) for sulphadiazine and sulphadimidine, respectively). Serum concentrations of ketone bodies, total lipids and calcium were significantly reduced, and blood glucose concentration significantly increased following administration of both of these sulphonamides, whilst serum total protein concentration was unaltered. The serum cholesterol concentration was significantly reduced following sulphadiazine administration, but not after sulphadimidine.  相似文献   

3.
Six healthy adult horses were given repeated administrations of trimethoprim/ sulfadiazine (TMP/SDZ) intravenously (i.v.) (2.5 mg/kg TMP and 12.5 mg/kg SDZ) and orally (p.o.) as a paste (5 mg/kg TMP and 25 mg/kg SDZ). Both formulations were given twice daily for 5 days, with a 3-week interval between i.v. and oral administration. The influence of the drug combination on the intestinal microflora was examined and the plasma concentrations, pharmacokinetic parameters and plasma protein binding were determined. There were no major changes in the bacterial intestinal flora and no clinical evidence of gastrointestinal disturbances following the i.v. and oral TMP/SDZ administration. An initial reduction in the number of coliform bacteria during the treatment was notable, though with no evident difference between i.v. and oral treatment. The minimum concentration during a dose interval at steady state (Cminss), the elimination half-life (t1/2beta) and the mean residence time (MRT) were significantly greater after oral administration compared to i.v. for both TMP and SDZ. The plasma protein binding was measured to be 20% for SDZ and 35% for TMP. Oral administration of TMP/SDZ in a dose of 30 mg/kg given twice daily in the form of paste appeared as a satisfactory method for obtaining plasma levels above MIC (minimum inhibitory concentration in vitro) values during the interdosing interval.  相似文献   

4.
Trimethoprim/sulfonamide combinations in the horse: a review   总被引:1,自引:0,他引:1  
Van Duijkeren, E., Vulto, A.G., van Miert, A.S.J.P.A.M. Trimethoprim/sulfonamide combinations in the horse: a review. J. vet. Pharmacol. Therap. 17 , 64–73. The indications for use, side-effects, and pharmacokinetic parameters of trimethoprim, sulfonamides and their combinations in the horse are reviewed. Trimethoprim/sulfonamide (TMPS) combinations are used for the treatment of various diseases caused by gram-positive and gram-negative bacteria, including infections of the respiratory tract, urogenital tract, alimentary tract, skin Joints and wounds- TMPS combinations can be administered orally, since absorption from the gastrointestinal tract is relatively good. However, peak serum concentrations can vary significantly between individual horses. Feed intake affects serum concentrations after oral administration. Concentrations of non-bound trimethoprim (TMP) and sulfadiazine (SDZ) in synovial fluid and peritoneal fluid are equal to serum concentrations after intravenous (i.v.) administration, and high concentrations are found in urine. Concentrations of TMP and sulfamethoxazole (SMX) in cerebrospinal fluid after i.v. administration exceed the minimum inhibitory concentration for common equine pathogens. The volume of distribution is 1.5-2.71/kg for TMP and 0.3-0.7 1/kg for various sulfonamides. The plasma half-life of TMP is 1.9-4.3 h, whereas the plasma half-lives of the different sulfonamides vary between 2.7 and 14.0 h. About 50% of total TMP is bound to plasma proteins. The binding of sulfadox-ine to plasma proteins depends on total plasma concentration and varies between 14% and 72%. The binding of other sulfonamides to plasma proteins may range from 33% for sulfaphenazole (SPZ) to 93% for sulfadimethoxine (SDM). Sulfonamides are metabolized by acetylation of the para-amino (N4) group and by hydroxylation of the methyl group and the pyrimidine ring. The metabolic pathways of TMP in the horse are not fully known. Bacterial resistance to TMPS combinations is still relatively low. The sensitivity of different micro-organisms may vary with the relative activity of the sulfonamide used in the combination. The advised oral and i.v. dose rate is 15–30 mg/kg (in a 1:5 TMP/S ratio) with a dose interval of 12 h. The acute toxicity of TMPS is low, but there have been several reports of death after i.v. administration, probably due to vagal stimulation and subsequent bradycardia and vasodilatation caused by the pharmaceutical formulation (excipients, solvents) used. Future research should concentrate on establishing the optimum pyrimidine/sulfonamide combination and its dosing regimen for antimicrobial therapy in horses.  相似文献   

5.
Twenty-six healthy female pigs weighing 19.5-33 kg were used in three separate experiments. The animals were fed individually twice a day. Trimethoprim/sulphadiazine (TMP/SDZ) formulation was added to feed in the amount of 6 mg/kg bw (TMP) and 30 mg/kg bw (SDZ). TMP and SDZ concentrations in blood plasma, muscles, liver and kidneys were measured. Pharmacokinetic parameters show that the absorption of TMP from the alimentary tract in pigs is faster than the absorption of SDZ, and the elimination of TMP is slower than that of SDZ. The absorption half-lives were 0.96 (TMP) and 2.24 h (SDZ), whereas elimination half-lives were 5.49 (TMP) and 4.19 h (SDZ). The observed TMP:SDZ ratios in blood plasma after multiple dose administration ranged from 1:11.4 to 1:23.2. One day after administration of the last dose of TMP/SDZ the plasma concentration ratio was 1:15.5, but in muscles, liver and kidneys it was much lower: 1:0.79, 1:0.14 and 1:1.53 respectively. The absolute TMP and SDZ tissue concentrations 1 day after the last multiple dose administration were very low (maximum TMP: 0.29 μg/g in liver; maximum SDZ: 0.23 μg/g in kidneys). Neither drug was detected in any tissue 8 days after the last administration of TMP/SDZ. Based on our results, it was concluded that there is no support for the TMP:SDZ pharmaceutical ratio 1:5 in oral formulations of these compounds for pigs. The administration of oral TMP/SDZ formulations once a day may result in the absolute tissue concentrations of these drugs being too low for antibacterial activity. The withdrawal period for such an oral TMP/SDZ formulation for pigs (according to accepted guidelines in Europe for MRL of TMP < 0.05 mg/kg of tissue) should not be less than 5 days.  相似文献   

6.
The biopharmaceutical properties of four fuced trimethoprim/sulfonamide combinations were investigated in the horse. Eight fasted horses were dosed at 1 week intervals in a sequentially designed study with one intravenous (i.v.) and three oral trimethoprim/sulfadiazine (TMP/SDZ) formulations (1, 2 and 3) administered at a dose of 5 mg/kg trimethoprim (TMP) and 25 mg/kg sulfadiazine (SDZ). Plasma concentrations of each compound were monitored for 48 h. Pharmacokinetic parameters (volume of distribution, bioavailability and total body clearance) for TMP and SDZ were calculated and compared. After oral administration plasma concentrations of TMP and SDZ increased rapidly. With all three paste formulations, TMP peak plasma concentrations were attained within 2 h. SDZ mean peak plasma concentrations were reached at 2.59 ± 0.48 h for a commercial paste (l), and at 1.84 ± 0.66 h and 1.95 ± 0.61 h for the two self-made formulations (2 and 3). Mean peak plasma TMP concentrations (± SD) were 1.72 ± 0.36 μg/ml, 1.42 ± 0.37 μg/ml and 1.31 ± 0.36 μ g/d, and mean peak plasma SDZ concentrations 12.11 ± 4.5 5 μg/ml, 12.72 ± 3.47 μg/ml and 15.45 ± 4.74 μg/ml for preparations 1, 2 and 3. The bioavailability of TMP was 67.0 ± 20.3%, 57.7 ±21.6% and 60.9 f 18.9% and of SDZ 57.6 ± 14.8%, 59.3 ± 19.5% and 65.9 ± 5.8% for SDZ for 1, 2 and 3, respectively. Following i.v. administration TMP/SDZ plasma concentration ratios approached the optimal 1:20 ratio (It 10%) for about 5 h, but following the oral administrations this ratio was only achieved for a very short time-span. No adverse effects were seen following i.v. and oral administration. In considering the pharmacokinetic data in combination with in vitro antibacterial sensitivity data, it is concluded that treatment at a dose of 5 mg/kg TMP and 25 mg/kg SDZ with a dosing interval of 12 h can be regarded as therapeutically effective for susceptible bacteria (MIC90 0.25/4.75) for all three oral formulations. It is concluded that neither the formulation nor the addition of different excipients result in significantly different bioavailabilities.  相似文献   

7.
The tarsocrural joints of 11 horses were inoculated with 1.2 to 2.16 x 10(6) viable Staphylococcus aureus organisms susceptible to a trimethoprim-sulfadiazine (TMP-SDZ) combination with minimal inhibitory concentration (MIC) of 0.25 micrograms of TMP/ml and 4.75 micrograms of SDZ/ml. Antimicrobial treatment consisted of oral administration of a TMP-SDZ combination--30 mg/kg of body weight given once daily (group-1 horses) or 60 mg/kg given as 30 mg/kg every 12 hours (group-2 horses). Paired serum and synovial fluid samples were obtained before intra-articular inoculation with the S aureus, after inoculation with S aureus but before antimicrobial treatment, and after inoculation at various hourly intervals after oral administration of the TMP-SDZ combination. The TMP-SDZ combination was administered daily in the 2 dosages for 21 days. Samples were collected after day 3 of repetitive drug administration so that drug steady-state concentration would have been achieved. Serum and synovial fluid samples were analyzed for TMP and SDZ concentrations. Administration of the TMP-SDZ combination at a dosage of 30 mg/kg once daily was not effective in maintaining TMP or SDZ concentrations above the MIC of TMP-SDZ for the S aureus (0.25 and 4.75 micrograms/ml for TMP and SDZ, respectively) in the infected synovial fluid or in maintaining adequate TMP concentration in the serum. The alternative use of the TMP-SDZ combination at a dosage of 60 mg/kg given as 30 mg/kg every 12 hours was effective in maintaining serum and synovial fluid concentrations of TMP and SDZ that were greater than the MIC for the infective organism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of sesame oil (SSO) and sunflower oil (SFO) (the excipients) on the plasma disposition of ivermectin (IVM) following intravenous (i.v.) and subcutaneous (s.c.) administration at a dosage of 200 μg/kg was investigated in goats. Ten clinically healthy crossbred goats were used in the study. The animals were allocated by weight and sex into two groups of five animals each. Group 1 (n = 5) received the drug and excipient by the i.v. route only and group 2 received drug and excipient by the s.c. route only. The study was designed according to a two‐phase crossover design protocol. In the first phase three animals in group 1 were i.v. administered IVM (0.2 mg/kg) + SSO (1 mL) and the other two animals received IVM (0.2 mg/kg) + SFO (1 mL). In the second phase animals were crossed over and received the alternate excipient with IVM at the same dosages. In group 2 during the first phase, three animals were s.c. administered IVM (0.2 mg/kg) + SSO (1 mL) and the other two animals were received IVM (0.2 mg/kg) + SFO (1 mL). In the second phase animals were crossed over and received the alternate excipient with IVM at the same dosages. A 4‐week washout period was allowed between the two phases. In group 2 significantly increased dermal thickness was observed at the s.c. injection site of the all animals which received IVM during phase I regardless of the excipient. There was almost no change observed at the injection site of any animal during the second phase of the study following s.c. administration. In group 2 the plasma concentrations of IVM in the second phase for both excipient combinations were much higher than the plasma concentrations following first administration and appeared to be related with the dermal changes. The mean plasma disposition of IVM in combination with SSO or SFO was similar following i.v. administration. Longer terminal elimination half‐lives and resultant longer mean resident time were observed after s.c. administration of the both combinations compared with i.v. administration.  相似文献   

9.
The pharmacokinetic aspects of sulphadimidine were studied in clinically healthy (control) and Flunixin-medicated horses after a single intravenous and oral administration of 100 mg/kg body weight. Plasma sulphadimidine concentration were determined by high-performance liquid chromatography (HPLC). Following the intravenous injection, all plasma sulphadimidine data were best approximated by a two-compartment open model using sequential, weight non-linear regression. Flunixin induced a 67% increase in the rate of sulphadimidine return to the central compartment from peripheral tissues (K21) and there were a trend to a 30% increase in K12. The sulphadimidine elimination half-life was decreased 21%, the Vdss was reduced by 18% and MRT was decreased by 20%. Following the oral administration, sulphadimidine was rapidly absorbed in control and Flunixin-medicated horses with absorption half-lives (t1/2 ab) of 0.5 and 0.43 hours respectively. The peak plasma concentration (Cmax) were 93.7 and 109 micrograms/ml attained at (tmax) 2.36 and 1.9 hours respectively. The elimination half-life after oral administration (t1/2 ab) was shorter in flunixin pre-medicated horses than in control ones. The systemic bioavalability percentages (F%) of sulphadimidine after oral administration of 100 mg/kg body weight was 79.3 and 71.2% in control and flunixin medicated horses, respectively. Therefore care should be exercised in the use of sulphadimidine in equine patients concurrently treated with flunixin.  相似文献   

10.
The pharmacokinetics of a combination of trimethoprim (TMP) and sulphadiazine (SDZ) after topical application to sucking piglets was compared with the pharmacokinetics after intramuscular injection. A long-lasting and fairly constant SDZ/TMP concentration ratio in plasma was obtained after topical application. The mean plasma concentration of TMP ranged from 0.091 to 0.17 micrograms/ml and that of SDZ from 0.72 to 1.1 micrograms/ml for at least 24 h. TMP and SDZ had different half-lives after intramuscular injection. Transdermal delivery of a combined preparation of TMP/SDZ may be usable for colibacillosis of sucking piglets, although the bioavailability of the drugs is poor.  相似文献   

11.
Pharmacokinetic studies in broilers and layers of different sulphonamides indicate a good absorption and a long elimination half-life (of sulphaquinoxaline, sulphadimidine and to a lesser degree sulphadiazine) resulting in high plasma concentrations during drinking water medication in the recommended therapeutic doses. In contrast drinking water medication with high concentrations of trimethoprim (up to 1,320 mg/liter) resulted in a maximal mean plasma concentration of 1.2 micrograms/ml. Very good therapeutic effects were demonstrated in broilers experimentally infected with a sulphonamide-susceptible E. coli strain when treated with sulphaquinoxaline (200 mg/liter), sulphadimidine sodium (2 gram/liter), sulphachloropyridazine 30 per cent (1 gram/liter) and to a lesser degree sulphadiazine sodium (250 mg/liter). Synergism was demonstrated between trimethoprim and sulphadiazine (1:5). The combination of trimethoprim with sulphaquinoxaline (1:3) did not induce better therapeutic effects than sulphaquinoxaline in proportional doses. However, significant synergism was demonstrated between trimethoprim and both sulphonamides in treatment of experimental infection with sulphonamide-resistant E. coli. No signs resembling sulphonamide intoxication were observed during these studies.  相似文献   

12.
Summary

The pharmacokinetics of a combination of trimethoprim (TMP) and sulphadiazine (SDZ) after topical application to sucking piglets was compared with the pharmacokinetics after intramuscular injection. A long‐lasting and fairly constant SDZ/TMP concentration ratio in plasma was obtained after topical application. The mean plasma concentration of TMP ranged from 0.091 to 0.17 μg/ml and that of SDZ from 0.72 to 1.1 μg/ ml for at least 24 h. TMP and SDZ had different half‐lives after intramuscular injection. Transdermal delivery of a combined preparation of TMP/SDZ may be usable for colibacillosis of sucking piglets, although the bioavailability of the drugs is poor.  相似文献   

13.
Sulfadiazine (SDZ) and trimethoprim (TMP) concentrations were examined in plasma and pulmonary epithelial lining fluid (PELF), following intravenous and oral administration and compared to minimum inhibitory concentrations (MICs) of common bacterial isolates from equine lower airway infections. SDZ/TMP (25/5 mg/kg) was administered intravenously, intragastric or per os to fed horses, and blood samples were collected before and 11 times, over 24 h, after administration. PELF samples were collected via a tampon device four times after drug administration and analysed for drug concentrations. Additionally, MICs of SDZ and TMP alone and in combination were determined in a selection of clinical respiratory isolates. Bioavailability was 74% for SDZ and 46% for TMP after paste administration in fed horses. The degree of penetration of SDZ and TMP into PELF, as described by AUC(PELF) /AUC(plasma) ratios, was 0.68 and 0.72, respectively, after intravenous administration. After oral administration, the degree of penetration for SDZ and TMP was 0.92 and 0.46, respectively. MIC measurements using SDZ/TMP ratios of 5:1 and 10:1 did not affect the interpretation of the results. The results indicate that clinically relevant drug concentrations of mainly TMP are difficult to maintain in PELF, especially after oral administration of SDZ/TMP.  相似文献   

14.
The pharmacokinetics of two sulfonamide/trimethoprim combinations were investigated after intravenous administration to clinically healthy pigs and to the same pigs following a challenge with Actinobacillus pleuropneumoniae toxins. Endobronchial challenge with A.pleuropneumoniae toxins resulted in fever, increased white blood cell counts and decreased water and feed consumption. Healthy, as well as febrile, pigs were given sulfadimethoxine (SDM) or sulfamethoxazole (SMX) intravenously at a dose of 25 mg/kg b.w. in combination with 5 mg trimethoprim (TMP) per kg body weight. The pharmacokinetic parameters of the sulfonamides as well as their main metabolites (acetyl sulfonamides) were not significantly different in healthy and febrile pigs. In healthy and pneumonic pigs, the mean elimination half-lives of SDM were 12.9 h and 13.4 h, respectively, those of SMX 2.5 h and 2.7 h, respectively, and those of TMP 2.8 h and 2.6 h, respectively. Distribution volumes in healthy and febrile pigs of SDM and SMX varied between 0.2 and 0.4 L/kg, and those of TMP between 1.1 and 1.6 L/kg. The mean AUC of TMP was decreased and the volume of distribution and total body clearance of TMP were increased in febrile pigs. Protein binding of the drugs and metabolites studied were not significantly changed after toxin-induced fever. The extent of protein binding of SDM, SMX and TMP was in the range 94–99%, 45–56% and 40–50%, respectively. Based on knowledge of in vitro antimicrobial activity of the drug combinations against A.pleuropneumoniae it was concluded that after intravenous administration of the dose administered (30 mg/kg of the combination preparations) to healthy and pneumonic pigs, plasma concentrations of SMX and TMP were above the concentration required for growth inhibition of 50% of A., pleuropneumoniae strains for approximately 16 h, whereas bacteriostatic plasma concentrations of SDM were still present after TMP had been eliminated from plasma. Because of similar elimination half-lives of SMX and TMP in pigs this combination is preferred to the combination of SDM with TMP.  相似文献   

15.
Aditoprim (AP) is a new dihydrofolate reductase inhibitor, which is structurally related to trimethoprim (TMP). The pharmacokinetics of AP (10 mg/kg) and TMP (20 mg/kg) were assessed in healthy dwarf goats. Therapeutic efficacy against rickettsial infections was tested in tick-borne fever (TBF) infected goats. The animals were given TMP (n = 5) or AP (n = 5) by i.v. injection, and subsequently the drugs were administered orally (same groups, similar doses). Finally, both groups were infected with TBF and the i.v. experiment was repeated. Plasma concentration-time curves for both drugs followed first-order two-compartment decay. For TMP, mean t1/2 beta +/- SEM (h) was 0.84 +/- 0.06 (i.v. control) and 0.90 +/- 0.06 (i.v. infected), respectively, whereas for AP values of 8.00 +/- 0.31 (i.v. control) and 10.28 +/- 0.67 (i.v. infected) were obtained (P less than 0.05). Mean Vd beta +/- SEM values (l/kg) were 3.84 +/- 0.27 (i.v. control) and 4.07 +/- 0.85 (i.v. infected) for TMP (NS) and 7.02 +/- 0.63 vs 9.29 +/- 0.21 (P less than 0.05) for AP. After i.v. injection, rumen fluid concentrations of AP were significantly (P less than 0.05) higher and more persistent than those of TMP. For AP, the plasma and rumen fluid concentrations at 3 h were 1.20 +/- 0.06 micrograms/ml and 0.85 +/- 0.17 microgram/ml, respectively. After oral administration of TMP, Cmax in plasma was 0.12 +/- 0.01 microgram/ml and the maximum was reached after 1.2 +/- 0.16 h; systemic bioavailability (F) was 10.3% (relative to AUC i.v.). Oral treatment with AP resulted in a Cmax value of 0.21 +/- 0.02 microgram/ml with Tmax of 22.5 +/- 1.65 h and a F value of 71%. Based on WBC, serum ALP and rectal temperature responses, it was concluded that both TMP and AP were inactive against Ehrlichia phagocytophila.  相似文献   

16.
The distribution of trimethoprim (TMP) and sulfadiazine (SDZ) into subcutaneously implanted noninfected tissue chambers was studied in healthy adult ponies. Six ponies were given an oral TMP/SDZ paste formulation at a dose of 5 mg/kg TMP and 25 mg/kg SDZ at 12 h intervals for 2 days in order to reach steady-state concentrations. Plasma concentrations and tissue chamber fluid (TCF) concentrations of both drugs were measured at regular intervals during a period commencing 24 h after the last oral administration. The peak concentration of TMP (mean +/- SD) was 2.92 +/- 0.86 microg/mL for plasma and 1.09 +/- 0.25 microg/mL for TCF. For SDZ, the mean peak concentration was 40.20 +/- 14.74 microg/mL for plasma and 23.48 +/- 5.84 microg/mL for TCF. TMP peak concentrations in plasma were reached at 3.17 +/- 03.48 h and those in TCF at 7.33 +/- 03.72 h. SDZ peak concentrations in plasma were reached at 1.83 +/- 02.04 h and those in TCF at 8.00 +/- 03.10 h. Concentrations of TMP and SDZ in TCF remained above the generally accepted breakpoint for susceptibility (0.5/9.5 for the TMP/SDZ combination) for 12 h. Therefore, in ponies oral administration of TMP/SDZ at a dose rate of 30 mg/kg given twice daily in the form of a paste should be appropriate for effective treatment of infections caused by susceptible bacteria.  相似文献   

17.
Summary

The present investigation was undertaken to improve regimens dosage of amoxycillin, chloramphenicol or trimethoprim‐sulphadiazine in Salmonella dublin infected veal calves. The pharmacokinetics of these drugs were studied after i.v., oral, and i. m. administration (bioavailability, local irritation at the injection site, volume of distribution, and elimination half life). The most important conclusion was that amoxycillin, chloramphenicol, and trimethoprim were suitable for oral administration to veal calves, although the bioavailability of chloramphenicol and trimethoprim was significantly less when concurrently administered with a milk replacer. In vitro, the antibacterial activities of these drugs were compared. Addition of trimethoprim to sulphadiazine lowered its MIC for S. dublin, but sulphadiazine reduced the killing rate compared to that of trimethoprim alone. In the efficacy studies the activities of several serum enzymes and the plasma concentrations of Fe, Zn, and Cu were measured, but it appeared, that these biochemical parameters were no better than the clinical parameters body temperature and body weight. Using optimal dosage regimens based on MIC values and blood levels, treatment with either of the three drugs was of equal efficacy.  相似文献   

18.
The combination of sulphadiazine and trimethoprim is extensively used in farm animal species; however, there are no data concerning its pharmacokinetics after intramuscular administration in sheep. Twelve rams of the Chios breed were used to study the disposition of sulphadiazine, its metabolite N4-acetylsulphadiazine and trimethoprim after intravenous (i.v.) and intramuscular (i.m.) administration of a sulphadiazine/trimethoprim (5:1) combination in sheep. Sulphadiazine bioavailability (±SD) was 69.00%±10.51%. The half-life of the terminal phase (4.10±0.58 h afteri. v., and 4.03±0.31 h after i.m. administration) was significantly higher than the respective value for trimethoprim (0.59±0.19 h) afteri.v. administration. The maintenance of a constant plasma concentration ratio after i.v. administration was therefore impossible. The acetylation capacity in sheep, determined by the AUC ratio between N4-acetylsulphadiazine and the parent compound, sulphadiazine, was very low (less than 4%). The most remarkable finding of this study was that trimethoprim was not detected in sheep plasma after i.m. injection. In conclusion, according to the findings of the present study, following i.v. administration of the sulphadiazine/trimethoprim combination, trimethoprim can be considered as the limiting factor for any possible synergistic effect, and the i.m. route cannot be recommended in sheep.  相似文献   

19.
The present investigation was undertaken to improve regimens dosage of amoxycillin, chloramphenicol or trimethoprim-sulphadiazine in Salmonella dublin infected veal calves. The pharmacokinetics of these drugs were studied after i.v., oral, and i.m. administration (bioavailability, local irritation at the injection site, volume of distribution, and elimination half life). The most important conclusion was that amoxycillin, chloramphenicol, and trimethoprim were suitable for oral administration to veal calves, although the bioavailability of chloramphenicol and trimethoprim was significantly less when concurrently administered with a milk replacer. In vitro, the antibacterial activities of these drugs were compared. Addition of trimethoprim to sulphadiazine lowered its MIC for S. dublin, but sulphadiazine reduced the killing rate compared to that of trimethoprim alone. In the efficacy studies the activities of several serum enzymes and the plasma concentrations of Fe, Zn, and Cu were measured, but it appeared, that these biochemical parameters were no better than the clinical parameters body temperature and body weight. Using optimal dosage regimens based on MIC values and blood levels, treatment with either of the three drugs was of equal efficacy.  相似文献   

20.
Five Finnish Ayrshire cows in mid or end-lactation were treated with 40 mg sulphadiazine/kg and 8 mg trimethoprim/kg using intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) routes. Elimination of sulphadiazine was not affected by the route of administration (median t1/2 4.4-5.0 h) while elimination of trimethoprim was strongly limited by slow absorption from the injection site after s.c. and i.m. administration (median for apparent t1/2 21-25 h) compared to that after i.v. administration (median t1/2 1.2 h; p < 0.05). The median bioavailability of trimethoprim was also decreased, being 37% and 55% after s.c. and i.m. administration, respectively. When i.v. administration was used, trimethoprim concentration exceeded 0.1 mg/l in milk between 0.15-8 h while sulphadiazine concentrations above 2 mg/l were maintained from 0.5-2 h to 8 h. After s.c. and i.m. administration sulphadiazine in milk behaved similar to that after i.v. administration, while trimethoprim time-concentration curves were flat and trimethoprim concentrations were around 0.1 mg/l for an extended period of time (8-12 h). Median Cmax values in milk were only 0.07 mg/l and 0.10 mg/l for s.c. and i.m. administrations, respectively. After s.c. administration, 4 out of 5 cows showed signs of pain. After i.m. administration, 2 of the cows showed clear signs of pain and one had some local tenderness at the site of injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号