首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
浙江奉化市池塘的底泥经过反复培养、驯化,从中筛选、分离出反硝化细菌,在模拟实验条件下,研究其对不同浓度的硝酸盐氮和亚硝酸盐氮的去除情况,讨论反硝化菌种的生长情况。结果表明,在初始浓度为1、25、50mg·L^-1的硝酸盐氮和亚硝酸盐氮模拟池塘中,随着实验的进行,对污染物的去除效果逐渐提高。其中在1mg·L^-1的浓度组中,3d内硝酸盐氮和亚硝酸盐氮去除率就分别达到了95.8%和90.2%;在25mg·L^-1的浓度组中,第6d硝酸盐氮和亚硝酸盐的去除率分别为93.8%和87.8%;在50mg·L^-1的浓度组中,第6d硝酸盐氮和亚硝酸盐的去除率分别为89.7%和78.7%。此外,反硝化菌对硝酸盐氮的去除效果略优于亚硝酸盐氮,而且硝酸盐氮和亚硝酸盐氮的浓度越低,对其去除效果越好,达到稳定状态的时间越短。在模拟池塘中,菌种的生长情况与硝酸盐氮和亚硝酸盐氮的浓度呈负相关,即污染物的浓度越高反硝化菌的生长情况越差。对反硝化菌的生态影响因子研究表明,其反硝化最适宜的pH值为6~7,温度为25~35℃;而且在同一pH值和温度条件下,硝酸盐氮和亚硝酸盐氮浓度越低,反硝化菌对其去除效果越好。  相似文献   

2.
养殖废水中异养硝化细菌的分离筛选和鉴定   总被引:1,自引:0,他引:1  
为了获得脱氮功能强的异养硝化菌株用于养殖废水的脱氮处理,通过富集、分离和纯化等步骤,并结合格利斯试剂检验菌株硝化能力的方法,从某养猪场污水处理池污泥中分离筛选了4株具异养硝化功能的菌株,分别标号为79、84、L116、L117,通过16SrDNA序列分析和美国全自动微生物分析仪Biolog鉴定,4株菌均为粪产碱杆菌(Alcaligenesfaecalis),并验证了这4株菌的硝化能力。结果表明,当液体培养基初始氨氮浓度为90mg.L-1左右时,在振荡培养48h内,菌株79、84、L116、L117培养基中氨氮和总氮均快速下降,氨氮去除率分别达到44.4%、47.9%、61.3%和56.4%,总氮(除菌)去除率达到39.9%、38.5%、43.4%和40.7%。  相似文献   

3.
从增氧型复合垂直流人工湿地中采集样品,利用间歇曝气法富集好氧反硝化菌,并进行分离纯化,共得到10株好氧反硝化菌。其中编号为B13的菌株在初始硝态氮含量为277.23mg·L-1、碳氮比为5的条件下,24h的硝态氮去除率达92.80%,亚硝态氮积累只有12.57mg·L-1,脱氮速率达到20.58mg·L-·1h-1。16S rDNA序列分析表明,该菌与Pseudomonas stutzeri同源性达100%。选用四因素三水平L(934)正交试验表设计实验,通过测定对硝态氮去除能力和亚硝态氮的积累量,研究碳源、碳氮比(C/N)、pH以及溶解氧含量(DO)4种不同因素对B13号菌株好氧反硝化性能的影响。结果表明,该菌株对硝态氮的去除率最大可达99.88%,几乎没有亚硝态氮积累。对硝态氮去除率影响最大的因素为碳氮比,其次为pH,溶解氧含量和碳源。对应的最优条件是碳源为葡萄糖,碳氮比为10,pH为9,溶解氧含量为1.84~3.57mg·L-1。  相似文献   

4.
在土壤厌氧条件下发生的生物反硝化作用是影响作物对土壤氮素利用率和影响环境质量的重要氮素转化过程.本研究从土壤中分离到在好氧条件下也能进行反硝化的3株细菌.其中1株为严格好氧的异养菌,编号为AD26.另外2株为兼性菌,分别为AD7和AD60.根据其形态和生理生化特征初步鉴定为假单胞菌属(Pseudomonas sp.).在好氧培养的液体培养基中AD26和AD7在24h内能通过反硝化作用使硝态氮表观损失率分别达到21%和18%.而在好氧的土壤培养中,二个菌株在3 d内能使土壤中硝态氮表观损失率达到56%,同时少有反硝化中间产物的积累.因此,在农业生产中不应忽视在好氧条件下的生物反硝化作用.  相似文献   

5.
华北平原农田由于长期过量施用氮肥,造成了土壤硝酸盐累积,导致地下水硝酸盐污染日趋严重。微生物的反硝化作用可将土壤中累积的硝酸盐或亚硝酸盐还原为气态产物,是消减厚包气带土壤累积的硝酸盐的重要途径。因此筛选高效反硝化微生物资源,对人工强化厚包气带土壤反硝化脱氮,阻控地下水硝酸盐污染具有重要作用。基于此,本研究采集位于华北平原的中国科学院栾城农业生态系统试验站长期施氮[施氮量为600kg(N)·hm~(-2)·a~(-1)]定位试验0~150m农田厚包气带及含水层土壤样品,从中筛选到62株细菌。16SrRNA基因序列分析表明这62株菌株与变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)中的9个属具有较高的同源性。根据系统发育树的结果,挑选7株亲缘关系较远的菌株进行反硝化潜势试验,结果表明,菌株L71、L13和L103具备反硝化产气能力。电镜观察结果表明,这3株菌均为无鞭毛的杆状细菌,其长度分别为1.0μm、1.5μm和1.5μm,只有L103具有运动能力。此外,菌株L103具有完全反硝化能力,且脱氮能力受到pH的影响,在本试验条件下,菌株L103的反硝化速率高达1.62~2.36g(KNO_3)·d~(-1)·L~(-1),具备实际应用潜力。本研究表明华北平原厚包气带土壤中存在完全反硝化微生物,并可为人工强化治理厚包气带土壤硝酸盐污染提供菌种资源和理论依据。  相似文献   

6.
筛选获得具有氧化亚氮(N2O)还原活性及植物促生特性的细菌,为新型微生物肥料的研发与应用提供微生物资源。通过固氮培养基筛选以及含硝酸钠和琥珀酸钠的营养肉汤培养基纯化,从水塘芦苇根际土中分离得到一株细菌YSQ030;通过形态观察、16S rRNA基因序列和生理生化特征分析,对菌株进行鉴定;采用无氮反硝化培养基测定菌株的N2O还原能力;通过纯培养试验测定菌株的促生特征并通过水培试验研究其对水稻的促生效应。结果显示,菌株YSQ030为反硝化无色杆菌(Achromobacter denitrificans),含nosZ基因;在30℃、转速为200r/min、氧气浓度为0%的前提下,还原N2O的效率为66.3%;分泌吲哚乙酸、具有溶磷和产生1-氨基环丙烷-1-羧酸(ACC)脱氨酶的能力;温室水培试验结果表明,与未接菌的对照组相比,接种YSQ030菌液显著提高了水稻幼苗的地上部鲜重和根鲜重,分别增加了48.3%和37.6%。本研究表明,YSQ030具有明显的N2O还原能力,同时对水稻生长具有显著的促进作用,可为...  相似文献   

7.
为了探讨实验室筛选获得的氨氧化细菌CM-NR014和反硝化细菌CM-NRD3联合去除市政废水中氮素的应用价值,采用了两级A/O工艺进行菌株去除废水中氮素的小试实验,最后将菌株用于废水脱氮工程中。结果表明,脱氮功能菌实现了短程硝化-反硝化,氨氮去除率在98%以上,总氮去除率在75%以上,COD(化学需氧量)去除率大于90%,出水各项指标均低于城镇污水处理厂污染物排放一级(A)标准。脱氮功能菌在去除市政废水中氮素方面有很高的应用价值,可用于城镇污水处理厂提标改造等。  相似文献   

8.
一株根际好氧反硝化菌的筛选及其反硝化条件研究   总被引:1,自引:0,他引:1  
周影茹  陆玉芳  施卫明 《土壤》2013,45(4):683-690
为丰富好氧反硝化菌株种类,本文从不同环境样品中富集筛选好氧反硝化细菌,最终得到一株高效根际菌株RWX31,其在初始NO3--N浓度140 mg/L时24 h去除率为82%,并在好氧条件下可进行反硝化作用产生N2O.通过单因素试验研究该菌株进行反硝化作用的条件和特性,结果表明,菌株RWX31最适培养基条件分别为:以柠檬酸钠为碳源,接种量为1%,Mg2+浓度为0.05 g/L,反硝化初始氮源中NO2--N比例为0.最适培养条件为:温度28℃~32℃,pH为7.0~7.5,C/N为8~ 12,DO浓度约6.5 ~ 7.0 mg/L.在这些培养条件下菌株NO3--N去除率可增至90%以上.菌株RWX31的NO3--N去除能力高于以往报道的反硝化菌株,是一株具有实际应用价值和潜力的菌株.  相似文献   

9.
以一株脱氮副球菌(Paracoccus denitrificans)为试验菌株,研究了其在好氧环境下的最适生长条件以及在不同溶氧条件下对NO2--N、NO3--N的转化去除情况。结果表明,脱氮副球菌好氧下的最适生长温度为30℃,最适生长pH值为7.0。在溶解氧比较充足的情况下(6.6~7.3mg.L-1),脱氮副球菌对NO2--N、NO3--N的去除以同化吸收为主,少部分是经由反硝化作用去除,最大去除率可达100%和97.58%。随着溶氧的降低,脱氮副球菌的反硝化能力增强,NO2--N、NO3--N通过反硝化作用去除的比例增加。将活菌数≥109个.mL-1的脱氮副球菌按1.0、2.5mg.L-1的浓度加入养殖水体,在10d内可使养殖水体中的NH4+-N下降41.89%~49.23%,NO2--N下降33.33%~42.86%,NO3--N下降48.28%~67.74%,对养殖水体中的氮素污染具有较好的控制效果。研究显示,脱氮副球菌的好氧反硝化作用可以为养殖水体有氧条件下的脱氮提供一条新的思路。  相似文献   

10.
耐冷菌强化去除农田径流污染水体中氮磷的模拟研究   总被引:1,自引:0,他引:1  
通过室内模拟实验研究1株土著反硝化菌(Acinetobacter johnsonii DBP-3)对农田径流污染水体中氮磷的低温生物强化去除特征。结果表明:10℃下避光好氧培养时菌株对水样中的硝酸盐氮和溶解性正磷酸盐具有较强的去除能力,培养8d后灭菌水样和原水样中硝酸盐氮的浓度分别下降了78.5%和70.2%,溶解性正磷酸盐的浓度分别下降了82.4%和74.6%,与未投加菌的对照组相比差异显著。菌株在低温模拟系统中具有较强的适应能力,实验周期内能够保持数量上的优势。与10℃相比,培养温度为25℃时,菌株的脱氮除磷能力明显增强,5℃时菌株的氮磷代谢能力明显降低,但与对照相比,菌株对氮磷仍然保持一定的代谢活性。菌株在模拟系统中对盐度具有较强的抗性,当盐度为10%时,其氮磷代谢能力才受到明显的抑制。多菌灵和毒死蜱的浓度分别为80.0,60.0mg/L时才对菌株的生长代谢产生明显的抑制作用,表明菌株对这2种农药的耐性较强。研究结果说明,实验用菌株在低温条件下不仅具有明显的脱氮除磷能力,而且对盐度和常见的农药具有较强的抗性,在面源污染的治理方面具有广阔的应用前景。  相似文献   

11.
从4个草鱼池塘中分离和定性筛选获得29株能够产生氨氮和亚硝酸盐氮的菌株。通过对编号为C95的菌株进行菌落形态学观察和16S rDNA序列分析,表明该菌株为革兰氏阴性杆状菌,与寡养单胞菌属(Stenotrophomonas sp.)的同源性达98%。采用单因素多水平试验对菌株的产氨氮和产亚硝酸盐氮特性进行研究发现:(1)氮源、碳源、温度和摇床转速都能显著影响菌株的生长及产生氨氮和亚硝酸盐氮的含量,但pH(5~9)对其无显著影响(P〉0.05);(2)该菌株生长及产生氨氮和亚硝酸盐氮最适宜的培养基以及培养条件为:LB、pH 5~9、25℃、150 r.min-1。由C95作为指示菌株筛选得到SC01、SC07两株(2/33)去除氨氮和亚硝酸盐氮效果较好的菌株。因此,C95可作为筛选具有降氨氮和亚硝酸盐氮功能的有益菌的指示菌株。  相似文献   

12.
To assess the physiology and low temperature adaptability of the key players of nitrification and denitrification, denitrifying bacteria were isolated and characterized from the selected paddy fields. Bacterial strains belonging to Cupriavidus and Ochrobactrum sp. were explored through the selective screening of heterotrophic nitrifying and aerobic denitrifying bacteria. The direct implication of nitrate removal in the natural sample was estimated by taking the nitrate supplemented soil as well as the enriched culture. A more prominent cold-adaptive bacterium was identified as Cupriavidus sp. PDN31. The utilization of ammonium, nitrate, and nitrite and the presence of nitrous oxide reductase (nosZ) gene, catalyses the first step of the denitrification conferred its heterotrophic nitrification and aerobic denitrification ability. The ammonium, nitrate, and nitrite removal efficiency of PDN31 was found to be 92.1%, 93.5%, and 99.8%, respectively. The functional traits, evaluated from metabolizing various nitrogen substrates (Biolog) suggested its ability to utilize some sources as L-arginine, L-asparagine, L-cysteine, L-glutamic Acid, L-glutamine, L-histidine, L-citrulline and N-acetyl-L glutamic acid. The adaptive behaviour of PDN31 with its ability to remove nitrogen and induced biofilm production under low temperature regime makes it a suitable candidate among the plethora of microorganism resided in any agriculture environment.  相似文献   

13.
A study on the factors influencing nitrogen removal in waste water stabilization ponds was undertaken in an eight-pond series in Werribee, Australia. Nitrogen species including Kjeldahl nitrogen, total ammonia nitrogen, nitrite and nitrate were monitored monthly from March 1993 to January 1994. At the same time, pH, temperature, chlorophylla content and dissolved oxygen were also recorded. Highest nitrogen removal occurred during the period with highest levels of chlorophylla content and dissolved oxygen, but the rate of nitrogen removal was not related to temperature and pH. Enhanced photosynthetic activities resulting from an increased phytoplankton abundance due to prolonged detention time caused an increase in dissolved oxygen, and created an optimum condition for nitrification to occur. In this process, ammonia was oxidized to nitrite and nitrate which were subsequently reduced to elemental nitrogen. Apart from nitrification-denitrification which was the major nitrogen removal pathway in the study system, algal uptake of ammonium, nitrate and nitrite as nutrient sources also contributed to the nitrogen removal. The role of phytoplankton and zooplankton in the treatment process in waste stabilization ponds was discussed.  相似文献   

14.
鉴于人工植物浮岛生态塘出水氨氮浓度高、去除率较低这一难题,将实验室筛选的一株具有高效氨化能力的工程菌应用于植物浮岛人工湿地中进行强化分解有机氮试验,以提高植物浮岛生态系统中有机氮、氨氮的去除效果。菌株动力学试验研究表明:有机氮分解反应符合零级反应,降解速率为0.76 mg/(L·h),在48 h时有机氮的分解率为81.80%。采用常绿植物蕙兰构建植物浮岛污水处理模拟生态系统,以未加菌剂做为对照组,以加入氨化细菌菌剂做为试验组,进行对比试验。结果表明,在48 h时未加菌剂的植物浮岛中有机氮的分解率为75.66%,有机氮质量浓度为8.23 mg/L;加入菌剂的植物浮岛中有机氮的分解率为86.50%,有机氮质量浓度为4.40 mg/L,加入菌剂比未加菌剂时有机氮的分解率提高了11.16%,有机氮质量浓度降低3.83 mg/L。在72 h时,加入菌剂的植物浮岛中氨氮质量浓度为6.74 mg/L;而未加菌剂在72 h时氨氮还未开始降解,在144h时氨氮质量浓度为9.86 mg/L-1。加入氨化细菌菌剂后,植物根系能够更多的吸收氨氮,为植物根系周围的微生物群提供了充足的氧气进行硝化作用,提高了植物浮岛对氮素的去除效果。该研究可为人工湿地中提高氮素去除效果提供参考。  相似文献   

15.
粪产碱菌生长在NH_4~+和NO_3~-两种氮源的介质中时,优先利用NH_4~+,在好气条件下,NH_4~+的存在抑制了粪产碱菌对NO_3~-的同化作用。在厌氧条件下,粪产碱菌能以乳酸为碳源,NH_4~+为唯一氮源进行反硝化作用,NO_3~-作为最终电子受体,接受无氧呼吸链传递的末端电子,经NO_2~-等氮氧化物最终还原为N_2。在好气和厌气条件下,低浓度的NO_2~-对粪产碱菌生长有一定抑制作用,但NH_4~-的存在并不抑制细菌对NO_2~-的利用。粪产碱菌在厌氧条件下还具有需硝酸盐的固氮酶活性。当氧存在或以NO_2~-代替NO_3~-时,固氮活性均受抑制,硝酸盐或亚硝酸盐浓度愈高,抑制愈强。反硝化作用产生的N_2能为微好氧条件下生长的粪产碱菌所重新固定。  相似文献   

16.
An estimate is given of nitrogen losses which could occur through chemical decomposition of nitrite formed by nitrification of ammonium in acid tropical soils. Experiments on the rate of disappearance of nitrite were carried out in acid buffers as well as in soil samples. Numerical solutions of a system of differential equations describe the nitrification process and the chemical denitrification reaction. Up to 50 per cent of added ammonium nitrogen may be lost in an acid soil when nitrification occurs at temperatures prevailing in the humid tropics.  相似文献   

17.
Bench scale kinetic experiments were conducted to examine the use of cell immobilization in calcium alginate to remove ammonia in anaerobic sludge digester supernatant. Two systems, immobilized nitrifiers and co-immobilized nitrifiers and denitrifiers, were studied with and without the addition of methanol. Results indicated that partial nitrification (to nitrite) was achieved in both systems. The co-immobilized reactors did not exhibit the extent of nitrite accumulation observed in the solely nitrifying reactors. The nitrifying reactors were unable to buffer the hydrogen ion production, during the nitrification process, to the level the co-immobilized cell reactors achieved. Both of these differences suggested the occurrence of denitrification in the co-immobilized reactors. Scanning electron microscopic images of bacteria immobilized in the alginate spherical beads support the results of the kinetic experiments. Nitrifiers colonized in the 100–200 μm peripheral layer of the beads. Large voids caused by nitrogen gas due to denitrification were found in a number of co-immobilized bead samples.  相似文献   

18.
NaCl浓度对SBBR同步脱氮及N2O释放的影响   总被引:1,自引:0,他引:1  
盐度是影响生物脱氮过程的重要因素。盐度增加会导致生物硝化和反硝化过程中N_2O的产生并释放。该文以添加NaCl的生活污水为研究对象,采用固定填料序批式生物膜反应器(sequencing batch biofilm reactor,SBBR),考察了不同NaCl浓度(0、5、10、15和20g/L)对SBBR脱氮性能及N_2O释放的影响。结果表明,试验NaCl浓度范围内,SBBR出水COD稳定在40~60mg/L。硝化过程NO_2~-/NO_3~-随NaCl浓度增加而增加。NaCl浓度≤10g/L时,NH_4~+-N去除率大于95%,N_2O产率由4.08%(NaCl浓度为0)增至6.72%(NaCl浓度为10 g/L)。NaCl浓度为20 g/L时,驯化后SBBR内平均NH_4~+-N去除率为70%,平均N_2O产率为13.60%。无添加NaCl时,N_2O主要产生于硝化阶段的AOB好氧反硝化过程,SBBR内缺氧区有助于减少N_2O释放;高NaCl浓度条件下,N_2O主要产生于AOB好氧反硝化过程和内源同步反硝化过程,高盐度加剧内源反硝化阶段NO_2~-和N_2O之间电子竞争,抑制N_2O还原,其活性抑制性能与电子受体和初始C/N有关。与硝态氮还原速率和亚硝态氮还原速率相比,氧化亚氮还原速率受NaCl抑制最为明显,是导致高盐度条件下N_2O释放量增加的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号