首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two biological control agents of Serratia plymuthica, strains IC1270 and IC14 applied separately and in combination were evaluated for suppressing Penicillium digitatum (green mould) or Penicillium italicum (blue mould) on orange. These bacteria were effective and controlled both pathogens at 1 × 108 cells/mL. Disease suppression was increased when both bacterial strains were combined. Possible modes of action studied in this work were antibiosis, chitinolytic activity and competition for nutrients. Two mutants of strain IC1270, one deficient in chitinolytic activity and the second deficient in pyrrolnitrin production were obtained by the gene replacement technique. On orange fruit, mutant IC1270-C7 deficient in chitinase production and mutant IC1270-P1 deficient in pyrrolnitrin production showed a similar efficiency against P. digitatum to the parental strain. However, in vitro IC1270-P1 lost its antifungal activity and no inhibition zone was observed when it was tested against P. digitatum or P. italicum. In similar experiments, a chitinase-deficient mutant of strain IC14 was as effective as the parental strain IC14, suggesting no evidence for a possible role of chitinases in controlling green mould caused by P. digitatum. Interactions between strains IC1270 or IC14 and P. digitatum were studied in tissue culture plates with diluted orange peel extract as the nutrient source. Strain IC1270 decreased germination of P. digitatum conidia when it was physically separated from the pathogen by a membrane filter, which permits nutrient and metabolite interchange, while strain IC14 did not affect germination. Significant inhibition of conidial germination of P. digitatum was achieved, however, when the pathogen and IC14 were in physical contact. Competition for nutrients appears to be the main mode of action of strain IC1270, while a direct cell-to-cell interaction between IC14 and the pathogen is needed for antagonism.  相似文献   

2.
Pathogen aggressiveness on the host was studied as one of the influencing factors in the variability of the efficiency of biocontrol by Pantoea agglomerans. The effect of the relative dose of the pathogen and biocontrol agent (BCA) on efficacy of biocontrol was analyzed in six postharvest pathogens (Rhizopus stolonifer, Botrytis cinerea, Penicillium expansum, Monilinia laxa, Penicillium digitatum and Penicillium italicum), five fruit types (apple, pear, nectarine, strawberry, orange) and two strains of P. agglomerans. Median effective dose (ED50) of the pathogens and of the BCAs was estimated by fitting data to a hyperbolic saturation model. The raw data required were either obtained from the literature or generated by the appropriate experiments. The ED50 of the pathogens covered a range from 1 to 475 spores/wound and of the BCA strains ranged from 207 to 30,000 cfu/wound. The efficiency of the P. agglomerans strains was estimated as the ratio between the ED50 for the BCA and the pathogen, and ranged from 7 to 25,000 cfu/spore. Low values indicate high efficiencies. A significant inverse relationship was observed between the efficiency of biocontrol and the ED50 of the pathogen on the corresponding host, indicating that the higher the aggressiveness of the pathogen the lower the efficiency of the BCA. It is expected that this relationship can be extended to other postharvest biocontrol-pathogen systems.  相似文献   

3.
Exposure of mature ‘Fallglo’ tangerine fruit to blue light with a photon fluence rate 40 μmol m−2 s−1 reduced symptom development of blue mold (Penicillium italicum), green mold (Penicillium digitatum), and stem end rot (Phomopsis citri) postharvest decays. Direct exposure to blue light was required to reduce decay caused by Penicillium. Blue light (40 μmol m−2 s−1) reduced in vitro fungal growth of P. italicum and P. citri. The growth of P. digitatum was more tolerant to blue light, however, the activity of fungal polygalacturonase was reduced by blue light at the intensity of 40 μmol m−2 s−1. Gas chromatography–mass spectrometry analysis identified 29 chemical constituents in flavedo oil; blue light induced only octanal accumulation. Application of octanal suppressed growth of P. italicum, P. digitatum, and P. citri in vitro. Treatment of fruit with octanal at 5 mM or 50 mM suppressed symptom development caused by Penicillium and P. citri, but discolored the peel. Inhibition of postharvest decays by blue light may be due to a combination of inhibition of fungal growth and induction of defensive responses in the host.  相似文献   

4.
Exogenous application of salicylic acid (SA) reduces storage rots in a number of postharvest crops. SA's ability to protect sugarbeet (Beta vulgaris L.) taproots from common storage rot pathogens, however, is unknown. To determine the potential of SA to reduce storage losses caused by three common causal organisms of sugarbeet storage rot, freshly harvested roots were treated with 0.01, 0.1, 1.0 or 10 mM SA, inoculated with Botrytis cinerea, Penicillium claviforme, or Phoma betae, and evaluated for the severity of rot symptoms after incubation at 20 °C and 90% relative humidity. Roots were obtained from plants that received sufficient water or were water-stressed prior to harvest. Roots from water-stressed plants were included since water-stress increases sugarbeet root susceptibility to storage rot and SA mitigates drought effects in other plant species. SA at concentrations of 0.01–10 mM had no effect on the severity of storage rot caused by B. cinerea, P. claviforme, or P. betae in roots from plants that received sufficient water prior to harvest. However, SA at these same concentrations reduced the severity of rot symptoms for all three pathogens in roots from plants that were water stressed before harvest. For water-stressed roots, all concentrations of SA produced statistically equivalent reductions in the weight of rotted tissue for each pathogen, and on average, SA reduced rot severity due to B. cinerea, P. claviforme, and P. betae by 54, 45, and 58%, respectively. SA reduced rot from all three pathogens by reducing lesion size, but did not affect the incidence of infection. The ability of SA to reduce rot severity in water-stressed roots, but not in roots that received sufficient water before harvest suggests that SA alleviated the negative impact of water stress but did not directly protect sugarbeet roots against storage rots.  相似文献   

5.
In recent years, safer methods for the control of fruit postharvest pathogens have been investigated and heat treatment could represent an effective and safe approach for managing postharvest decay such as Monilinia rots. In the present study, the effect of hot water treatment (HWT) (60 °C for 30 and 60 s) on brown rot was investigated. More specifically, the influence of HWT was determined in in vitro trials on conidial germination of Monilinia laxa, Monilinia fructicola and Monilinia fructigena and in peach and nectarine fruit, naturally infected. The effect of hot water application on fruit quality was also assessed. M. fructicola showed a greater resistance to heat than M. laxa and M. fructigena, however conidia germination of all three species was completely inhibited by a dipping in hot water for 1 min at 55 °C. The results of a large scale experiment under commercial conditions and several pilot trials showed a good antifungal activity of HWT in naturally infected fruit. After 6 days at 0 °C and 3 days at 20 °C, in both semi-commercial and commercial trials, the inhibition of decay was higher than 78% in four trials out of six. In addition, the treated fruit showed an acceptable commercial quality and no visual damage was observed as a consequence of HWT. The results demonstrated that HWT is a promising method to control Monilinia rots of peach and nectarine, and is safe and readily available for conventional and organic production under commercial conditions.  相似文献   

6.
The germinability of conidia of Alternaria alternata, Aspergillus flavus, Aspergillus niger, Penicillium digitatum, Penicillium expansum, or Penicillium italicum was determined periodically during exposure for approximately 100 d to a humid atmosphere of air alone or with 150 nL/L ozone at 2 °C. Conidia were exposed on glass coverslips that were removed from chambers at intervals of one week and the germination of 100 conidia of each species was assessed after incubation for 24 h on potato dextrose agar. The period in d when 50% or 95% (ET50 and ET95, respectively) could not germinate and 95% confidence intervals for these estimates were made using Finney's probit analysis. ET50 and ET95 estimates were approximately one month and two to three months, respectively. Some natural mortality of the conidia occurred during these periods, so the entire decline in germinability was not solely due to ozone. The age of the culture from which conidia were collected influenced their susceptibility to ozone. Conidia were harvested from 7, 14, 21, and 28 d old potato dextrose agar cultures of P. digitatum and exposed to 13,000 nL/L ozone at 2 °C. After 48 h of exposure to ozone, none of the conidia from the seven-day old culture germinated, while 30–35% of conidia from 14, 21, or 28 d in age cultures germinated.  相似文献   

7.
Broomrapes are weedy root parasitic plants that severely constraint faba bean production. After long and extensive breeding efforts made in several countries only moderately resistant cultivars are available to farmers, being their resistance based on a combination of avoidance and resistance mechanisms. In this work we characterize the resistance mechanism of two faba bean breeding lines selected for resistance to Orobanche crenata. Mini-rhizotron experiments showed that low induction of seed germination is a major component of resistance in these lines against O. crenata, O. foetida and P. aegyptiaca. This is confirmed by in vitro experiments with root exudates. The fact that low induction of germination is similarly operative against O. crenata, O. foetida and P. aegyptiaca reinforce the value of this resistance.  相似文献   

8.
An antagonistic isolate Bacillus amyloliquefaciens HF-01, sodium bicarbonate (SBC) and hot water treatment (HW) were investigated individually and in combination against green and blue mold and sour rot caused by Penicillium digitatum, P. italicum and Geotrichum citri-aurantii respectively, in mandarin fruit. Populations of antagonists were stable in the presence of 1% or 2% SBC treatment, and spore germination of pathogens in potato dextrose broth was greatly controlled by the hot water treatment of 45 °C for 2 min. Individual application of sodium bicarbonate at low rates and hot water treatment, although reducing disease incidence after 8 weeks or 4 weeks of storage at 6 °C or 25 °C respectively, was not as effective as the fungicide treatment. The treatment comprising B. amyloliquefaciens combined with 2% SBC or/and HW (45 °C for 2 min) was as effective as the fungicide treatment and reduced decay to less than 80% compared to the control. B. amyloliquefaciens HF-01 alone or in combination with 2% SBC or/and HW significantly reduced postharvest decay without impairing fruit quality after storage at 25 °C for 4 weeks or at 6 °C for 8 weeks. These results suggest that the combination of B. amyloliquefaciens HF-01, SBC and HW could be a promising method for the control of postharvest decay on citrus while maintaining fruit quality after harvest.  相似文献   

9.
The purpose of this study was to investigate the effect of tee tree oil (TTO) against the main fungal disease in strawberries and a possible mechanism for the effects. TTO vapor exhibited a higher activity against spore germination and mycelial growth of Botrytis cinerea and Rhizopus stolonifer under in vitro conditions. TTO vapors at 0.9 g/L significantly reduced artificially inoculated gray mold and soft rot in vivo, and treated strawberries maintained a fresher quality than untreated strawberries during storage. In addition, this treatment also enhanced the resistance of strawberries against B. cinerea, which caused a higher hydrogen peroxide (H2O2) level and activities of superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), peroxidase (POD) and β-1,3-glucanase during the first period of incubation. These results indicate that TTO can reduce fruit decay, possibly by inhibiting pathogen growth directly and inducing disease resistance indirectly, and TTO vapor may provide an alternative means of controlling disease in strawberries.  相似文献   

10.
The mechanisms of action and efficacy of four isolates (GS37, GS88, GA102, and BIO126) of the yeast Metschnikowia pulcherrima against Botrytis cinerea, Penicillium expansum, Alternaria sp., and Monilia sp., all postharvest pathogens of apple fruit, were studied in vitro and on apples, in controlled and semi-commercial conditions. An application of a cell suspension (108 cells per ml) of the antagonists in artificial wounds of apples reduced growth of B. cinerea and P. expansum after storage at 23 °C. A complete suppression of the pathogen was obtained against Monilia sp., stored at 23 °C, and against B. cinerea and P. expansum, stored at 4 °C. The results against Alternaria sp. were more variable. Applications of culture filtrates and autoclaved cells of the isolates were ineffective in reducing the diameter of the lesions on the fruit, supporting the hypothesis that living cells are necessary for biocontrol. In experiments of antagonism in vitro, on different solid substrates, a reduction in the mycelium growth of the pathogens resulted, so that, at least in vitro, the antagonists could produce some diffusible toxic metabolites. In co-cultivation in vitro on a synthetic medium, B. cinerea spore (105 ml−1) germination was completely inhibited by the presence of 108 cells of the antagonists, while culture filtrates and autoclaved suspensions were not able to reduce germination. Dipping boxes of apples cv. Golden delicious in a suspension of 107 antagonist cells per ml and storing for 8 months in controlled atmosphere at 1 °C, showed levels of control against B. cinerea and P. expansum similar to those from thiabendazole.  相似文献   

11.
Potential antagonists were isolated from the epiphytic flora associated with oranges and pome fruit. A total of 1465 microorganisms were tested in a preliminary screening against blue and green moulds on pome and citrus fruit, respectively. Among them, approximately 3% reduced incidence and severity by more than 50% and 4 microorganisms fulfilled the selection criteria of reduction in severity and incidence by 75%. The most effective was a yeast identified as Metschnikowia andauensis, strain NCYC 3728 (PBC-2), isolated from the surface of ‘Bravo de Esmolfe’ apple fruit cultivated in North Portugal. The biocontrol activity of M. andauensis PBC-2 was dependent on its applied concentration. At 5 × 106 cfu/mL incidence (% of infected wounds) and severity (lesion diameter) were reduced by 62 and 70%, respectively and at 1 × 107 cfu/mL, the greatest reduction was achieved, 90% of incidence and 95% of severity. The broad spectrum of action of M. andauensis PBC-2 was evaluated with effective control being achieved against Rhizopus stolonifer, Penicillium expansum and Botritys cinerea, on ‘Rocha’ pears and on different apple cultivars and against Penicillium digitatum and Penicillium italicum on mandarins and oranges. In semi-commercial trials in cold storage, the reduction of blue mould was 90%. Rapid colonization of fresh apple fruit wounds was observed during the first 24 h of cold storage, followed by a significant population increase during the first 15 days of storage and then the population remained stable until the end of storage.  相似文献   

12.
Brown rot caused by Monilinia spp. is the most important postharvest disease of stone fruit. From preliminary studies, the combination of 0.25% hydrogen peroxide, 0.02% peracetic acid (PAA) and 0.075% acetic acid, corresponding to 300 mg L−1 of PAA, was selected to control Monilinia fructicola. Brown rot control was similarly controlled when the same concentration of PAA was applied with a PAA-based commercial product. In order to reduce PAA concentration, combinations of different concentrations and temperatures were evaluated. A treatment of 200 mg L−1 of PAA at 40 °C for 40 s was selected to control pre-existing and future infections, different inoculum concentrations of M. fructicola and to control brown rot on naturally infected fruit. Brown rot was completely controlled with the selected treatment when peaches and nectarines were inoculated 0 h before the treatment but it was not controlled when infection time was increased to 24, 48 and 72 h. Also, the treatment significantly controlled brown rot at all inoculum concentrations evaluated (103, 104, 105 and 106 conidia mL−1) in both peaches and nectarines, but no protection against future infections was observed. In naturally infected fruit, brown rot incidence was slightly but significantly reduced to 61 and 36% in ‘Roig d’Albesa’ and ‘Placido’ peaches, respectively, but not in nectarines. Immersion for 40 s in 200 mg L−1 of PAA at 40 °C provides an alternative treatment to control only recent infections of Monilinia spp. whatever their concentration without generally affecting fruit quality.  相似文献   

13.
Summary Monilinia laxa causes important pre- and post-harvest losses in stonefruit. In order to initiate a breeding programme for increased resistance toM. laxa, two screening tests were used. In the “uninjured fruit inoculation” test, 30 mature fruits of each variety were inoculated on their surface by depositing 20 μl of conidial suspension. In the “artificially injured fruit inoculation” test, 10 mature fruits were inoculated on both sides by injecting 20 μl of conidial suspension. Genotypic differences were found in both tests, within the three species studied. Marked differences were observed in the uninjured fruit inoculation test. Differences between genotypes were slighter in the artificially injured fruit inoculation test. Within each species, the rankings of the genotypes according to the two tests were not correlated. Both testing procedures would be usefully applied in a breeding programme to obtain genotypes with combined resistance toMonilinia laxa.  相似文献   

14.
During the growing seasons 2007 and 2008, 210 isolates of yeasts or yeast-like fungi were obtained from the carposphere of temperate fruit collected from organic orchards in Northern Italy. Through six rounds of in vivo screening, three isolates showing the highest biocontrol efficacy against Monilinia laxa on peaches were selected. By using molecular and morphological tools, the strain AP6 was identified as Pseudozyma fusiformata, the strain AP47 as Metschnikowia sp., and the strain PL5 as Aureobasidium pullulans. This research represents the first evidence about the potential use of P. fusiformata to control postharvest diseases of fruit. By co-culturing in vitro M. laxa in the presence of the three antagonists, neither the inactivated cells nor the culture filtrate of the three isolates had any significant effect on spore germination or germ tube elongation, allowing exclusion of the production of secreted toxic metabolites. The antagonistic activity of A. pullulans PL5 and P. fusiformata AP6 was dependent on the cell concentration. Metschnikowia sp. AP47 significantly inhibited spore germination at the three concentrations tested (106 cells/mL, 107 cells/mL, and 108 cells/mL). The efficacy of the three strains was tested on peaches stored at three different temperatures, and their effectiveness was higher at 1 °C than at 8 °C or 20 °C. In trials carried out in semi-commercial conditions with peaches inoculated by spraying 105 spores/mL of M. laxa and stored for 21 d at 1 °C and 96% RH, a cell concentration effect on the control of brown rot incidence was observed. AP6 and PL5 showed no significant differences in efficacy when applied at 1 × 108 cells/mL or at 1 × 107 cells/mL, indicating that they could be used at a lower concentration in potential biofungicide formulations. Finally, in an experiment in semi-commercial conditions on fruit not inoculated with the pathogen with 21 d storage at 1 °C and 96% RH, the evaluation of postharvest quality parameters, including firmness, total soluble solids, ascorbic acid content, and titratable acidity, showed that none of the three screened antagonists impaired peach quality, when applied before storage. The present study identified three antagonistic microorganisms with potential exploitation as active ingredients for the development of products for postharvest control of brown rot on peaches.  相似文献   

15.
The effectiveness of alternatives to synthetic fungicides for the control of pathogens causing postharvest diseases of sweet cherry was tested in vitro and in vivo. When amended to potato dextrose-agar, oligosaccharides, benzothiadiazole, chitosan, calcium plus organic acids, and nettle macerate reduced the growth of Monilinia laxa, Botrytis cinerea and Rhizopus stolonifer. Treatment of sweet cherries three days before harvest or soon after harvest with oligosaccharides, benzothiadiazole, chitosan, calcium plus organic acids, nettle extract, fir extract, laminarin, or potassium bicarbonate reduced brown rot, gray mold, Rhizopus rot, Alternaria rot, blue mold and green rot of cherries kept 10 d at 20 ± 1 °C, or 14 d at 0.5 ± 1 °C and then exposed to 7 d of shelf-life at 20 ± 1 °C. Among these resistance inducers, when applied either preharvest or postharvest, chitosan was one of the most effective in reducing storage decay of sweet cherry, and its antimicrobial activity in vitro and in field trials was comparable to that of the fungicide fenhexamid. Benzothiadiazole was more effective when applied postharvest than with preharvest spraying. These resistance inducers could represent good options for organic growers and food companies, or they can complement the use of synthetic fungicides in an integrated disease management strategy.  相似文献   

16.
The most common and serious diseases which affect citrus fruit after harvest in Italy are induced by Penicillium digitatum Sacc. and Penicillium italicum Weh., responsible respectively for green and blue mold rots. This paper deals with the effectiveness of hot water dipping (HWD) treatments as alternative means to control postharvest decay on Tarocco orange fruit [Citrus sinensis (L.) Osbeck], and their effect on fruit quality with special regard to peel essential oils. Selected treatments were HWD at 52 °C for 180 s and at 56 °C for 20 s. These treatments were compared with an effective fungicide standard treatment (Imazalil) and an untreated control. The results showed that HWD at 56 °C for 20 s was more effective in inhibiting P. digitatum spore germination than HWD at 52 °C for longer exposure time. In addition, HWD treatment at 56 °C significantly increased the level of alcohols, esters and aliphatic (fatty) aldehydes. Therefore, the lowest values of decay incidence recorded in HWD fruit treated at 56 °C may be due to the increase in oxygenated monoterpenes, esters and aldehydes. Finally, HWD treatments did not cause surface damage or color change and did not influence internal quality parameters.  相似文献   

17.
The antifungal activities of cinnamon extract (CE), piper extract (PE) and garlic extract (GE) were evaluated on banana crown rot fungi (Colletotrichum musae, Fusarium spp. and Lasiodiplodia theobromae) in vitro. The assay was conducted with extracts of CE, PE and GE with concentrations of 0, 0.1, 0.5, 1.0, 5.0, 10.0 and 0.75 g L−1 of carbendazim (CBZ) on potato dextrose agar at room temperature. CE completely inhibited conidial germination and mycelial growth of all fungi at 5.0 g L−1. PE totally suppressed mycelial growth of all fungi at 5.0 g L−1 and conidial germination at 10.0 g L−1 except for Fusarium spp. GE had no significant effects but low concentrations (0.1 and 0.5 g L−1) enhanced germ tube elongation of the three fungi. The ED50 values were higher for mycelial growth than for conidia except for Fusarium spp. Combined treatments were investigated on crown rot development in banana fruit (Musa AAA group ‘Kluai Hom thong’). Treatments included 5.0 g L−1 CE, 1% (w/v) chitosan solution, hot water treatment (HWT, 45 °C for 20 min), CE plus chitosan, CE plus HWT and 0.75 g L−1 of CBZ, applied before and after inoculation of the fruit. Crown rot development was assessed during storage at 13 °C for 7 weeks. Disease development was least (25%) on CE treated fruit after inoculation compared to CBZ but was higher when CE was applied before inoculation. Chitosan significantly delayed ripening as in terms of peel color, firmness, soluble solids and disease severity. CE showed no negative effects on quality of fruit. CE plus HWT caused unacceptable peel browning.  相似文献   

18.
Anthracnose is the main postharvest disease in papaya fruit. Today, there is considerable interest on alternative methods of control to promote resistance against pathogens and supplement or replace the use of fungicides. The goal of this work was to evaluate the effects of gamma and UV-C irradiation on Colletotrichum gloeosporioides, the causal agent of anthracnose. Mycelial growth, sporulation, and conidial germination were evaluated in vitro after fungal exposition to different irradiation doses. In the in vivo assays, ‘Golden’ papaya fruit were inoculated through subcuticular injections of a conidial suspension or mycelium discs. Next, fruit were submitted to different irradiation doses (0, 0.12, 0.25, 0.5, 0.75, and 1 kGy), using Co60 as source, or UV-C (0, 0.2, 0.4, 0.84, 1.3, and 2.4 kJ m−2). To check the possibility of resistance induction by irradiation, papayas were also inoculated 24, 48, or 72 h after the treatments. The fruit were stored at 25 °C/80% RH for 7 days and evaluated for incidence and rot severity. The results showed that the 0.75 and 1 kGy doses inhibited conidial germination and mycelial growth in vitro. All doses increased fungal sporulation. The 0.75 and 1 kGy doses reduced anthracnose incidence and severity, but did not reduce them when the fruit were inoculated after irradiation. All UV-C doses inhibited conidial germination and those higher than 0.84 kJ m−2 inhibited mycelial growth. The 0.4, 0.84, and 1.3 kJ m−2 UV-C doses reduced fungal sporulation in vitro. There was no effect of UV-C doses and time intervals between treatment and inoculation on anthracnose control and fungal sporulation in fruit lesions. Moreover, all UV-C doses caused scald on the fruit. Thus, gamma irradiation can contribute for the reduction of postharvest losses caused by anthracnose and reduce the use or doses of fungicides on disease control.  相似文献   

19.
Brown rot caused by Monilinia spp. is the most important postharvest disease of stone fruit. Currently, no chemical fungicides are allowed in the European Union to be applied to stone fruit after harvest. In previous work, radio frequency (RF) treatment for 4.5 min applied with fruit immersed in water at 40 °C was very promising for the control brown rot on peaches and nectarines. In the present study, the efficacy of this radio frequency treatment was studied employing different infection times, inoculum concentrations, fruit maturity levels and in naturally infected fruit. Generally, infection time and maturity level of fruit did not have a significant effect on the RF treatment efficacy and brown rot incidence was significantly reduced in fruit inoculated 0, 24 or 48 h before treatment and at all maturity levels evaluated in both peaches and nectarines. RF treatment significantly reduced brown rot incidence at all inoculum concentrations evaluated (103, 104, 105 and 106 conidia mL−1). However, in peaches, the treatment efficacy was slightly less when the inoculum concentration was increased to 105 or 106 conidia mL−1. In naturally infected fruit, brown rot incidence was significantly reduced from 92% among control fruit to less than 26% in peaches and complete brown rot control was achieved in nectarines. RF treatment did not have an effect on fruit firmness in the varieties tested, and even a delay of fruit softening was observed. Moreover, both external and internal fruit appearance was not affected by the treatment.  相似文献   

20.
Brown rot caused by Monilinia spp. is the most important postharvest disease of stone fruit. Currently, no chemical fungicides are allowed in the European Union to be applied to stone fruit after harvest, which has increased the need to develop alternative methods. Radio frequency (RF) treatment at 27.12 MHz with fruit immersed in water was studied to control brown rot in peaches and nectarines artificially inoculated with M. fructicola. Additionally, RF treatment in air was also investigated to evaluate the benefit of water immersion to reduce the effect of fruit size on treatment efficacy. RF treatment with fruit immersed in water at 20 °C applied for 9 min significantly reduced brown rot incidence in both peaches and nectarines and no significant differences in RF efficacy were observed depending on fruit size. However, when RF treatment was applied in air for 18 min, brown rot reduction was significantly higher in large fruit than in small fruit. Finally, the decrease in exposure time of radio frequency treatment with fruit immersed in water with increasing water temperature was also studied. Reduction of treatment time to 6 and 4.5 min was achieved by increasing water temperature at 35 and 40 °C, respectively, to control brown rot without adverse external and internal damage in both ‘Baby Gold 9’ peaches and ‘Autumn Free’ nectarines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号