首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term soil cultivation at the same depth affects soil characteristics and crop productivity. The aim of the study was to investigate the impact of a long-term different intensity soil tillage methods and deep loosening on weed number, weed agrobiological group and soil seed bank changes in till Bathygleyic Dystric Glossic Retisol soil under the climatic conditions of the Western Lithuania (geographical coordinates 55°43′38″N, 21°27′43″E). The study included different soil tillage methods (conventional ploughing, shallow ploughing and shallow ploughless tillage) and deep loosening. During investigational years, the greatest weed number in crops and the greatest weed seed number in the seed bank were determined in the soil reduced tillage (shallow ploughing and shallow ploughless tillage). The weed number in crops of conventional ploughing soil was 35.8% lover compared to reduced tillage soil. The weed seed number in the seed bank of conventional ploughing was 49.6% lover compared to reduced tillage Decreasing soil tillage intensity resulted in weed seeds concentration in the upper topsoil. A one-time deep loosening had a significant effect during the crop rotation: the weed number in crops and weed seed number in the seed bank were determined to have increased by 26.6% and 51.6% in conventional ploughing soil and by 11.9% and 23.2% shallow ploughless soil respectively. However, after deep loosening, the number of Poa annua in crops decreased 2.9 times in plots of conventional ploughing and 1.7 times – in plots of shallow ploughing soil.  相似文献   

2.
Four tillage trials have been performed on moderately well-drained loam soil in southeast Norway for 30–37 years (mean 34), comparing reduced tillage (8–10 cm in spring) with autumn ploughing (25 cm). In some years, additional stubble harrowing in autumn (10–12 cm) was compared with harrowing only in spring. Weeds were controlled with herbicides. Straw residues were retained after around 1990 and no fungicides were used. Grain yields are reported for the last nine years, and compared with earlier years. Results are presented for a number of soil properties measured in recent years. Autumn harrowing gave no consistent yield benefit over harrowing only in spring. There was little difference between ploughed and unploughed treatments in mean grain yields over the whole trial period, and the variability between years was similar in both tillage systems. Relative grain yields, calculated as yields obtained without ploughing in percentage of those obtained with ploughing, appeared to be normally distributed around 100%. Responses were often positive in dry years, and negative in wet years. Reduced tillage gave higher P and K concentrations near the soil surface and slightly lower concentrations in deeper layers. There was little change in their levels, relative to earlier findings. Changes in bulk density and total porosity were mostly attributable to changes in the stratification of organic matter. Reduced tillage increased porosity at 4–8 cm depth and decreased it slightly at 24–28 cm, but there was no change in the intermediate layer. The moisture-holding capacity of the soil was altered little by reduced tillage, and soil aeration properties were satisfactory at all three depths measured. There was no change in the total amount of organic matter stored within the topsoil, despite marked changes in its distribution. Reduced tillage gave significant increases in aggregate stability and an indication of greater earthworm activity.  相似文献   

3.
长期秸秆还田免耕覆盖措施导致沿淮区域砂姜黑土耕层变浅、下表层(10~30 cm)容重增加、土壤养分不均衡等问题凸显,限制了小麦-玉米周年生产力的提高。耕作和秸秆还田措施合理的搭配组合是解决这一问题的有效方法。通过8年的小麦-玉米一年两熟田间试验,设置4个处理:1)玉米季免耕-小麦季免耕秸秆不还田(N);2)玉米季深耕-小麦季深耕秸秆不还田(D);3)玉米季秸秆免耕覆盖还田+小麦秸秆免耕覆盖还田(NS);4)玉米季秸秆免耕覆盖还田+小麦季秸秆深耕还田(DS)。通过分析作物收获后不同土壤深度(0~60 cm)总有机碳(TOC)、颗粒态碳(POC)、微生物生物量碳(MBC)、易氧化态碳(KMnO4-C)、可溶性有机碳(DOC)和土壤碳库管理指数(CPMI),并结合小麦-玉米的周年产量变化,以期获得培肥砂姜黑土的最佳模式。研究结果表明:1)相对于长期免耕措施(N),DS处理能够提高0~30 cm土层TOC、POC、MBC、KMnO4-C等组分含量和CPMI;而NS措施仅提高土壤表层(0~10 cm)TOC、活性有机碳组分含量和CPMI;2)DS处理显著提升了小麦-玉米的周年生产力,其麦玉的周年产量均值分别比N、D和NS处理高出14.7%、12.9%和8.5%;3)MBC和KMnO4-C对于耕作和秸秆还田措施都是较为敏感指示因子。总的来说,玉米季小麦秸秆覆盖还田+小麦季玉米秸秆深耕还田(DS)是改善沿淮地区砂姜黑土土壤碳库、提高小麦-玉米周年产量的一种有效农田管理模式。  相似文献   

4.
A four-year tillage experiment on maize was conducted in the high latitude region of Northeast of China. The main objective of this study was to investigate the effects of different field tillage practices on maize grain yield, soil physical properties, and soil water and temperature dynamics in Northeast of China. The tillage practices included moldboard plow tillage (MOT), rotary tillage (ROT), reduced tillage (RET), combined tillage (COT), and no tillage (NOT). The surface soil water content at depths of 0–20 cm was higher under NOT compared with other tillage practices, but not different at the deeper soil depths in 2011. The soil temperatures under NOT and RET were lower than those under moldboard plow tillage and ROT at depths of 5 and 15 cm, respectively, measured at 9:00 am in 2005. From the hourly dynamics of soil temperature, the differences among the tillage practices mainly appeared during the daytime (from 8:00 am to 7:00 pm). Among all the practices, the average daily soil temperature under ROT was the highest, while that under NOT was the lowest. MOT, ROT, and RET had higher soil accumulative infiltration compared with NOT and COT. The surface soil bulk density under NOT was higher than or equal to that under the other four tillage practices. The maize yields under NOT were the lowest among all the tillage practices for three years straight. Meanwhile, the yields under MOT were the highest, which were about 47%, 61%, and 38% higher than those under NOT. NOT practice is not recommended for use in spring-planted maize under the high latitude humid cool climate Mollisol region in Northeast of China.  相似文献   

5.
土壤耕作及秸秆还田对冬小麦生长状况及产量的影响   总被引:46,自引:6,他引:46  
该文研究了土壤耕作、秸秆还田两项技术措施及其交互效应对冬小麦群体发育动态、冬小麦产量形成及其构成要素的影响。常规耕作、免耕、耙耕、深松4种土壤耕作技术与无秸秆还田、秸秆全量粉碎还田两种秸秆还田量构成8个处理,并对不同处理中冬小麦生长发育动态及产量形成进行调查、分析。结果表明不同耕作处理对冬小麦出苗率、群体动态、产量构成有显著影响,免耕小麦出苗率仅60.2%,群体过小,产量显著低于常规耕作;耙耕、深松在与常规耕作相同播量下能形成适宜的群体,且穗粒数、千粒重均高于常规耕作,分别比常规耕作增产8.15%和6.91%;经作用力分析,耕作措施是影响冬小麦群体结构与产量构成的最重要因素,作用力大于秸秆及秸秆×耕作交互效应。  相似文献   

6.
Interrill soil erosion as affected by tillage and residue cover   总被引:3,自引:0,他引:3  
No-till cropping systems are effective in reducing soil erosion. The objective of this study was to determine whether high infiltration rates and low runoff and soil loss under long-term, no-till conditions in loessial regions of the Midwest US result from both the well-structured, porous condition of the soil and the protective cover of crop residue or primarily from residue cover. Soil loss, runoff, and infiltration were measured using a rainfall simulator on interrill erosion plots with and without residue cover on a conventional and two no-till systems in central Illinois. For both conventional till and no-till conditions, removing surface residue significantly decreased infiltration rates and increased soil loss. Tilling the no-till surface while maintaining an equal surface cover as with the no-till system slightly increased interrill erosion. Removing residue on a no-till system, however, increased soil loss significantly. A no-till soil condition without adequate residue cover will seal, crust, and erode with extremely high soil losses following surface drying.  相似文献   

7.
多年固定道保护性耕作对土壤结构的影响   总被引:4,自引:4,他引:4  
为了解决拖拉机作业机组作业时造成的土壤普遍压实,在10a连续固定道保护性耕作试验基础上,研究了固定道保护性耕作对土壤容重、孔隙度、紧实度、水分以及冬小麦产量的影响。试验结果表明,对于作物生长带,固定道保护性耕作可以降低0~20cm土层的容重6.8%,提高0~40cm土层土壤总孔隙度4.6%,降低0~30cm土层土壤紧实度31.5%,提高0~1m土层蓄水能力,在固定道占地20%的情况下,仍能提高冬小麦产量10.8%。因此,固定道保护性耕作是减少土壤压实、改善土壤结构、提高小麦产量的有效耕作方式。  相似文献   

8.
耕作方式转变和秸秆还田对土壤活性有机碳的影响   总被引:1,自引:3,他引:1  
深松是解决长期旋免耕后耕层浅薄化、亚表层(15~30 cm)容重增加等问题的有效方法之一,长期旋免耕后进行深松显著影响土壤有机碳及其组分的周转。为对比转变耕作方式对土壤活性有机碳(LOC)及碳库管理指数的影响,该研究基于连续6 a的旋耕转变为深松和免耕转变为深松定位试验,对比了2012-2014年长期旋免耕农田进行深松对农田土壤活性有机碳及碳库管理指数的影响。研究结果表明,耕作方式转变和秸秆还田均对土壤LOC含量、活性有机碳与有机碳的比例(LOC/SOC)和碳库管理指数产生显著影响。相对于原旋耕秸秆还田处理(RTS),虽然旋耕-深松秸秆还田处理(RTS-STS)提高了0~30 cm土层的LOC含量,但其土壤中LOC/SOC比例和碳库管理指数显著下降。而免耕-深松秸秆还田(NTS-STS)处理和耕作方式未转变的免耕秸秆还田处理(NTS)在0~10 cm土层其LOC含量无显著性差异,但NTS-STS处理显著提高LOC/SOC比例。耕作方式转变导致RTS-STS处理碳库管理指数随着土层的加深而逐渐降低,而NTS-STS处理则呈逐渐升高趋势。耕作、秸秆、年份、耕作与秸秆、耕作与年份及3者交互作用是导致耕作方式转变后各处理0~30 cm的LOC含量变化的主要作用力(P0.05)。秸秆还田条件下,将长期旋耕处理转变为深松可显著降低土壤SOC中的LOC比例,降低碳库管理指数,促进土壤碳库的稳定性;而长期免耕处理转变为深松能够显著提高土壤下层(10~30 cm)的土壤碳库活性。  相似文献   

9.
Tillage trials were established on a poorly drained silty loam overlying silty clay loam and on a freely drained sandy loam overlying medium sand, in 1988 and 1989, respectively. Autumn and spring ploughing and two ploughless systems were compared for 12–13 years, with three replications at each site. The ploughless treatments comprised deep versus shallow spring harrowing until 1999, and thereafter autumn plus spring harrowing versus spring harrowing only. In 6 years, treatments with and without fungal spraying of the cereal crops were included. In other years, fungicides were not used. Perennial weeds were controlled by herbicides as necessary, on nine occasions up until 2001. Average spring barley (Hordeum vulgare L.) and spring oat (Avena sativa L.) yields were similar with spring ploughing as with autumn ploughing at both sites. In treatments without ploughing, average yields on the silty loam over clay were 93% of those obtained with ploughing, and on the sandy loam over sand they were 81%. Smaller and non-significant yield differences were found between spring harrowing versus deep spring harrowing, and between autumn plus spring harrowing versus spring harrowing only. Fungal spraying increased yields markedly at both sites (25%), but there was no significant interaction between this treatment and tillage system. Oat was compared with barley in 2 years, with oat performing better under ploughless tillage. At both sites increases in penetrometer resistance occurred in the topsoil of unploughed treatments. These were considered particularly limiting on the sandy loam. On the silty loam there was an increase in surface horizon porosity in the absence of ploughing, which was associated with an increase in topsoil organic matter content. On this soil there was also a tendency toward lower penetrometer resistance at >30 cm depth on autumn plus spring harrowed soil than on ploughed soil, indicating that the plough pan may have diminished. This was supported by observations of greater earthworm activity on unploughed soil. Soil chemical analyses revealed that mineral N and plant-available P and K accumulated in the upper horizon under ploughless tillage. The percentage yields obtained in individual years with autumn as opposed to spring ploughing, were positively correlated with air temperature during 0–4 weeks after planting on the silty loam, and with precipitation during 0–12 weeks after planting on the sandy loam. In the case of yields obtained with spring harrowing only, relative to spring ploughing, positive correlations were found with 0–4 week temperature on both soil types, suggesting that low early season temperatures may limit yields under ploughless tillage.  相似文献   

10.
稻麦两熟条件下不同土壤耕作方式与秸秆还田效用分析   总被引:36,自引:8,他引:36  
该文通过大田小区和网室水泥池微区的3年定位试验,比较研究了稻麦两熟条件下免耕秸秆覆盖、免耕高茬、翻耕秸秆还田(秸秆稻季翻埋麦季覆盖)、翻耕(对照,CK)4个处理对土壤理化性质和稻麦产量的影响,从土壤管理技术方面探讨了不同耕作方法与秸秆直接还田在稻麦两熟地区的应用效果。结果表明:免耕使土壤容重和穿透阻力增加,而秸秆还田可改善土壤结构,提高土壤养分含量,翻耕还田3年后土壤有机质、全氮、速效磷、速效钾含量比对照分别增加4.7%~13.0%、0%~10.6%、0.2%~10.6%、8.4%~15.5%。麦季秸秆还田的产量有增有减,实际产量免耕覆盖还田略低,对照的产量较高,秸秆还田平均减产1%左右;而水稻翻耕秸秆还田的产量最高,比对照平均增产3%左右。因此,在稻麦两熟条件下,从省工节本和提高地力角度可采用稻麦免耕秸秆覆盖与留高茬还田,从提高产量和地力角度宜采用稻季翻耕秸秆还田。  相似文献   

11.
Quantifying trends in soil microbial biomass carbon (SMBC) under contrasting management conditions is important in understanding the dynamics of soil organic matter (SOM) in soils and in ensuring their sustainable use. Against such a background, a 60-day greenhouse simulation experiment was carried out to study the effects of straw placement, mineral N source, and tillage on SMBC dynamics in two contrasting soils, red soil (Ferrasol) and black soil (Acrisol). The treatments included straw addition + buried (T1); straw addition + mineral N (T2); and straw addition + tillage (T3). Straw was either buried in the soil or placed on the surface. Sampling was done every 15 days. Straw placement, addition of external mineral N sources (Urea, 46% N) and soil type affected SMBC. SMBC levels decreased with exposure durations (15 days, 30 days, 45 days, and 60 days). Rate of SMBC fixation was more in buried straw than in surface placed straw at all sampling dates in both soils. Addition of an external N source significantly increased SMBC level. Soil pH increased in both soil types, with a greater increase in black soil than in red soil. The study could not, however, statistically account for the effect of tillage on SMBC levels because of the limited effect of our tillage method due to the artificial barrier to mechanical interference supplied by the mesh bags, although differences in absolute values were quite evident between treatments T1 and T3.  相似文献   

12.
为探究耕作方式、秸秆还田和生物炭添加结合对土壤团聚体粒径分布、团聚体养分特征、养分库储量及小麦-玉米周年产量的影响,本研究采用3因素2水平试验设计,分别为耕作方式:常规旋耕(CT),深翻耕作(DT);秸秆处理:秸秆还田(S)、秸秆不还田(NS);生物炭:生物炭添加(B)、无生物炭添加(NB),共8个处理。结果表明:无生物炭添加时,旋耕秸秆还田显著提高了0~15 cm土层团聚体稳定性及土壤养分库储量,而深耕秸秆还田显著改善了>15~30 cm土层土壤团粒组成,提升土壤肥力,促进作物增产。相关性分析表明,砂姜黑土中作物产量的提升更依赖于深层(>15~30 cm)土壤物理结构的改善和土壤肥力的提升。配施生物炭后如DT-S-B(深耕秸秆还田配施生物炭)较CT-NS-NB(旋耕秸秆不还田无生物炭)处理尤其使>15~30 cm土层团聚体稳定性显著增强,>2 mm粒级团聚体比例、重量平均直径和几何平均直径值分别增加165.88%、62.37%和119.81%,显著提高>2 mm粒级团聚体有机碳、全氮和全磷含量,提高了>2 mm粒级团聚体有机碳和养分固持能力,降低了<2 mm粒级团聚体有机碳和养分固持能力,使>15~30 cm土层土壤有机碳库储量、全氮、全磷和全钾库储量分别显著提升37.41%、38.99%、41.26%和9.84%,促使2年作物周年产量平均增加22.96%,但在深耕秸秆还田的基础上配施生物炭在短期内增产效果不显著。综上,深耕秸秆还田配施生物炭能够显著改善黄淮海南部砂姜黑土深层土壤团聚体粒径分布和稳定性,提升了土壤肥力和作物周年产量,保障了农田高效绿色可持续生产。  相似文献   

13.
14.
覆盖混埋耕作主要通过联合整地机对秸秆进行切碎并均匀混入土壤,对降低风蚀水蚀、提高耕层土壤蓄水能力及构建优质种床具有重要作用。为探究覆混耕作中玉米秸秆对土壤水分入渗性能的影响,该研究利用Design Expert软件,根据Box-Behnken试验原理通过室内土柱模拟试验,以覆混耕作中秸秆混埋深度、秸秆混埋量、秸秆长度为影响因素,以渗水量为指标进行三因素三水平二次回归正交试验。通过建立响应面数学模型,分析了各因素对土壤水分入渗性能的影响,并对影响因素进行了综合优化。试验结果表明:对渗水量影响主次顺序为秸秆混埋深度、秸秆长度、秸秆混埋量;当秸秆混埋深度为20 cm、秸秆混埋量为80%、秸秆长度为9 cm时,渗水量达到最优值0.249 L。利用优化后的参数进行试验验证,土壤渗水量为0.247 L。研究结果可为覆混耕作中联合整地机的作业参数调整提供参考和土壤水分入渗性能研究提供参考。  相似文献   

15.
稻麦两熟制不同耕作方式与秸秆还田土壤肥力的综合评价   总被引:12,自引:6,他引:12  
该文通过大田小区和网室水泥池微区3年的定位试验,比较研究了稻麦两熟条件下免耕套播秸秆覆盖NTS、免耕套播高茬NT、翻耕秸秆还田CTS、翻耕秸秆不还田CK共4个处理对土壤肥力的影响,并运用数值化方法综合评价土壤肥力。结果表明:免耕和秸秆还田可提高土壤有机质、速效磷、速效钾等土壤养分含量,且主要是0~7 cm增加造成的。土壤肥力数值化综合评价表明,土壤肥力免耕秸秆覆盖好于免耕高茬,翻耕秸秆还田好于翻耕不还田,不同处理养分肥力指标以免耕秸秆覆盖处理最高,翻耕不还田最低;但综合肥力指标却以翻耕秸秆还田最高,免耕高茬最低,主要受土壤容重影响。从不同层次看,综合肥力指标和养分肥力指标均以上层0~7 cm较高,下层14~21 cm较低,尤其免耕秸秆覆盖和免耕高茬处理。  相似文献   

16.
秸秆还田方式对农田土壤结构及冬小麦产量的影响   总被引:1,自引:0,他引:1  
为探索一种能够充分发挥秸秆改良土壤结构和提高作物产量作用的秸秆还田措施, 通过2 a小区试验, 以传统的秸秆还田方式[长秸秆(50 mm)覆盖或翻压还田, CK1、CK2]作为对照, 对比研究了粉碎、氨化秸秆以及与无机土壤改良剂(硫酸钙)混合翻压施用措施对农田土壤结构及冬小麦产量的影响。结果表明, 粉碎并氨化秸秆施入土壤后, 能显著(P<0.05)降低耕层(0~15 cm)土壤的容重, 增加土壤孔隙度, 但对耕层以下土壤容重及孔隙度改善效果不明显; 氨化秸秆施入土壤后较未氨化秸秆能显著(P<0.05)增加0~15 cm土壤中>0.25 mm土壤团聚体含量, 粉碎并氨化秸秆能显著(P<0.05)降低土壤团聚体分形维数, 提高0~15 cm土壤平均重量直径和几何平均直径各项评价指标。此外, 冬小麦穗粒数、1 m2有效穗数、千粒重和地上部总干物质量与籽粒产量的相关系数分别为0.30(P>0.05)、0.76(P<0.01)、 0.89(P<0.01)和0.88(P<0.01), 提高冬小麦有效穗数或地上部总干物质量可能是增加作物产量的主要途径。粉碎并氨化秸秆还田较秸秆覆盖能显著(P<0.05)提高冬小麦有效穗数; 粉碎并氨化秸秆与无机土壤改良剂(硫酸钙)混合施用措施提高冬小麦产量效果最为显著, 在冬小麦2个生长季比长秸秆覆盖还田(CK1)分别增产11.12%和17.84%, 比长秸秆翻压还田(CK2)分别增产7.39%和16.58%, 是本试验最佳秸秆还田方式。该研究成果可为干旱、半干旱地区改良秸秆还田措施、提高作物产量提供理论依据。  相似文献   

17.
Soil core samples were taken from May 1996 to October 1996 at four week intervals to assess the longterm effects of compaction due to soil tillage on Collembola in arable land. Two different tillage systems were studied: conservation tillage (CS) with rotary harrowing to 120 mm depth and conventional tillage (CT) with a mould board plough to 300 mm depth. Soil compaction was achieved by wheeling with graded loads: 0t, 2 × 2.5t and 6 × 5.0t (wheeling frequency × wheel load) in early spring 1995. Litter decomposition rate was investigated by the minicontainer-method, using two different mesh-sizes: 20 μm (excluding mesofauna) and 500 μ (including mesofauna). The substrate used was winter wheat straw, corresponding to the crop cultivated on the field.We recorded 25 species of Collembola. The abundance of Collembola during the growing season was at a minimum in June in both tillage systems. Thereafter, numbers of individuals increased, probably due to better nutrition. Mesaphorura krausbaueri s.l. was eudominant in CS. In CT Folsomia fimetaria and M. krausbaueri s.l. reached high abundances at the end of August. Harvesting and tilling supported population growth in CS, while numbers in CT decreased. The collembolan species showed different preferences in regard to the tillage system and the grade of compaction. During the first 4 weeks of exposure the decomposition rate of straw was highest. The decomposition rate in the minicontainers with 20 μm mesh-size was higher due to better moisture conditions for the microorganisms. After harvest and tilling the decomposition rate increased, especially in the CS-plots, because of aeration and incorporation of residues. Population fluctuation in the minicontainers was caused by migration of Collembola in response to changing moisture conditions. The main species in the minicontainers were large and mobile. Compared to the surrounding soil, species diversity was reduced.  相似文献   

18.
Tillage practices can potentially afect soil organic carbon (SOC) accumulation in agricultural soils. A 4-year experiment was conducted to identify the influence of tillage practices on SOC sequestration in a double-cropped rice (Oryza sativa L.) field in Hunan Province of China. Three tillage treatments, no-till (NT), conventional plow tillage(PT), and rotary tillage(RT), were laid in a randomized complete block design. Concentrations of SOC and bulk density(BD) of the 0-80 cm soil layer were measured, and SOC stocks of the 0-20 and 0-80 cm soil layers were calculated on an equivalent soil mass(ESM) basis and fixed depth (FD) basis.Soil carbon budget(SCB) under diferent tillage systems were assessed on the basis of emissions of methane(CH4) and CO2 and the amount of carbon (C) removed by the rice harvest. After four years of experiment, the NT treatment sequestrated more SOC than the other treatments. The SOC stocks in the 0-80 cm layer under NT (on an ESM basis) was as high as 129.32 Mg C ha 1,significantly higher than those under PT and RT (P < 0.05). The order of SOC stocks in the 0-80 cm soil layer was NT > PT > RT,and the same order was observed for SCB; however, in the 0-20 cm soil layer, the RT treatment had a higher SOC stock than the PT treatment. Therefore, when comparing SOC stocks, only considering the top 20 cm of soil would lead to an incomplete evaluation for the tillage-induced efects on SOC stocks and SOC sequestrated in the subsoil layers should also be taken into consideration. The estimation of SOC stocks using the ESM instead of FD method would better reflect the actual changes in SOC stocks in the paddy filed, as the FD method amplified the tillage efects on SOC stocks. This study also indicated that NT plus straw retention on the soil surface was a viable option to increase SOC stocks in paddy soils.  相似文献   

19.
西北旱作农田不同耕作模式对土壤性状及小麦产量的影响   总被引:3,自引:2,他引:3  
【目的】在雨养农业区,旱作区因连年翻耕而引起严重的土壤质量退化,使作物生产力下降,需定期改变其耕作方式。免耕深松隔年轮耕可以降低土壤容重,增加耕层土壤团聚体和有机碳氮的含量,增强土壤蓄水保墒能力,对改善土壤性状和提高作物产量具有重要意义。【方法】本研究于2007~2010年在宁夏南部半旱区进行了两年免耕一年深松 (NT/ST/NT)、两年深松一年免耕 (ST/NT/ST)、连年翻耕 (CT) 3种耕作模式试验,研究了其对耕层土壤容重、团聚体、土壤有机碳氮含量、土壤水分及作物产量的影响。【结果】3年耕作处理后,与连年翻耕相比,NT/ST/NT、ST/NT/ST处理0—20 cm层土壤容重分别降低了4.4%和7.3%,20—40 cm土层分别降低2.1%和5.7%,40—60 cm土层分别降低4.1%和5.5%;土壤孔隙度0—20 cm土层分别提高了4.1%和6.8%,20—40 cm土层提高了2.1%和4.3%,40—60 cm土层提高了5.5%和5.7%。0—20 cm土层,NT/ST/NT处理0.25~2 mm机械稳定性团聚体含量平均较CT处理提高了12.4%,ST/NT/ST处理 > 2 mm机械稳定性团聚体含量较CT处理平均提高了42.0%;20—40 cm土层,NT/ST/NT、ST/NT/ST处理 > 2 mm团聚体含量较CT处理平均分别提高了44.3%和50.4%。两种轮耕模式使0—40 cm土层土壤团聚体平均重量直径分别显著高于CT处理21.8%和22.5%,几何平均直径分别高于CT处理9.6%和9.5%。三个处理耕层土壤有机碳氮含量均比试验前有不同程度的增加,轮耕处理0—30 cm土层0.25~2 mm粒级有机碳含量和 < 0.25 mm粒级全氮含量显著高于CT,以ST/NT/ST处理效果最佳。NT/ST/NT和ST/NT/ST处理0—10 cm土层0.25~2 mm团聚体有机碳含量较CT处理分别显著提高7.9%和10.2%,10—20 cm土层分别提高19.0%和15.7%,20—30 cm土层分别提高10.6%和13.3%;0—10 cm土层 < 0.25 mm粒级全氮含量显著提高9.4%和10.9%,10—20 cm土层分别提高6.8%和10.2%,20—30 cm土层分别提高7.4%和9.3%。研究期间,NT/ST/NT和ST/NT/ST处理较CT处理可显著提高0—200 cm土壤贮水量,其中以ST/NT/ST处理保蓄土壤水分效果最佳。在小麦生长前期,轮耕处理土壤贮水量均高于连年翻耕,生长后期ST/NT/ST处理土壤水分含量最高,NT/ST/NT处理次之。轮耕处理的小麦生物量和籽粒产量显著高于连年翻耕,其中小麦籽粒产量分别增加9.6%和10.7%。【结论】免耕/深松轮耕可显著改善土壤的物理性状和水分环境,显著增加耕层土壤有机碳氮含量,提高作物的生产力,在宁南旱区有重要的应用前景。  相似文献   

20.
在山西石灰性褐土一年一作条件下,通过16年的田间定位试验,研究了长期施钾和秸秆还田对小麦产量和土壤钾素平衡的影响。结果表明,只施用氮、磷肥,冬小麦年平均产量5.5 t/hm2,土壤钾素养分严重亏缺,年平均亏缺104.3 kg/hm2,与试验前的初始值比较,土壤速效钾和缓效钾含量分别下降23.6%和14.3%。在施用氮、磷肥的基础上每年施用钾肥(K2O 150 kg/hm2),平均增产10.2%以上;小麦秸秆还田平均增产6.6%以上,二者配合平均增产17.6%,年平均吸钾量提高32.0 kg/hm2。与试验初始值比较,土壤速效钾、缓效钾分别提高38.6%和11.0%。在施用氮、磷肥的基础上,长期施用钾肥和秸秆还田在显著增加冬小麦的经济产量、生物产量和吸钾量的同时,也减少年度间因气候因素等影响引起的产量变异,提高年度间产量和植物吸钾量的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号