首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

Soils collected from 15 locations from SE Nigeria at the 0‐ to 20‐cm depth were studied for the nutrient elements of fine fractions and their role in the stability of the soils. The objective was to understand the role of these elements in the stability of the aggregates. The fine fractions were clay and silt, and elements measured in the fine fractions were exchangeable sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), exchangeable acidity (EA), cation exchange capacity (CEC), and available phosphorus (P). The aggregate stability was measured at the microlevel with clay dispersible indices and water‐stable aggregate (WSA) <0.25 mm, and at macrolevel with other WSA indices and mean‐weight diameter (MWD). Soils varied from loamy sand to sandy clay. There were more exchangeable cations, CEC, EA, and available P in clay than in the silt fraction. Whereas EA values ranged from 2.8 to 10.4 cmol kg?1, they were between 1.6 and 9.2 cmol kg?1 in silt. The CEC in the clay fraction was from 7.4 to 70 cmol kg?1 and between 4.0 and 32.8 cmol kg?1 in the silt fraction. The WDC were from 50 to 310 g kg?1 while the average dispersion ratio (DR) was generally higher than the corresponding clay‐dispersion ratio (CDR), and the MWD ranged from 0.45 to 2.68 mm. Soils with WSA skewed mostly to higher WSA (>2–1.00 mm) had a higher MWD. Exchangeable Ca2+ in clay correlated significantly with CDR and WSA sizes 1.0–0.5 mm and 0.5–0.25 mm (r=0.45,* 0.51,* and 0.60*), respectively, but negatively correlated with clay flocculation index (CFI) (r=?0.45*). Also, available P in clay correlated respectively with CDR and CFI (r=0.45*, ?0.45*), whereas K+ in silt correlated significantly with WDSi (r=0.64*), CFI (r=0.62*), and CDR (r=?0.65*). Principal component analysis revealed that elemental contents in the silt fraction can play very significant roles in the microaggregate stability.  相似文献   

2.
Water dispersible clay (WDC) can influence soil erosion by water. Therefore, in highly erodible soils such as the ones in eastern Nigeria, there is a need to monitor the clay dispersion characteristics to direct and modify soil conservation strategies. Twenty‐five soil samples (0–20 cm in depth) varying in texture, chemical properties and mineralogy were collected from various locations in central eastern Nigeria. The objective was to determine the WDC of the soils and relate this to selected soil physical and chemical attributes. The soils were analysed for their total clay (TC), water‐dispersible clay (WDC), clay dispersion ratio (CDR), dispersion ratio (DR), dithionite extractable iron (Fed), soil organic matter (SOM), exchangeable cations, exhangeable sodium percentage (ESP) and sodium adsorption ratio (SAR). Total clay contents of the soil varied from 80–560 g kg−1. The USLE erodibility K ranges from 0·02 to 0·1 Mg h MJ−1 mm and WEPP K fall between 1·2 × 10−6–1·7 × 10−6 kg s m−4. The RUSLE erodibility K correlated significantly with CDR and DR (r = 0·44; 0·39). Also, a positive significant correlation (r = 0·71) existed between WEPP K and RUSLE K. Soils with high clay dispersion ratio (CDR) are highly erodibile and positively correlates (p < 0·51) with Fed, CEC and SOM. Also, DR positively correlates with Mg2+ and SOM and negatively correlate with ESP and SAR. Principal component analysis showed that SAR, Na+ and percent base saturation play significant role in the clay dispersion of these soils. The implication of this result is that these elements may pose potential problem to these soils if not properly managed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The susceptibility of some soils in the high rainfall zone of Nigeria to soil erosion must be measured regularly for better soil management. A number of techniques have been adopted for the determination of this soil loss parameter. The aim of this study is to determine the soil characteristics that relate significantly to erodibility. Soil samples collected from 0–20 cm depth from 10 different locations in the upper rainforest area were analysed for particle size distribution, water‐stable aggregates, exchangeable cations, organic carbon, soil dispersion and aggregating indices. The soils are mainly Acrisols, Nitosols, Gleysols and Ferralsol in the FAO classification while their textures are sands to sandy‐clay‐loam. They are very unstable in water as reflected in the higher values of WSA >0·50 mm and the mean‐weight diameter that ranged from 0·50 to 2·03 mm. The dispersion ratio for the soils are between 0·26 and 0·69 while clay dispersion ratio also ranged from 0·24 to 0·80. Revised universal soil loss equation (RUSLE) erodibility model values (K) were from 0·03 to 0·06 Mg h MJ−1 mm−1. These parameters can be effectively used in predicting soil erodibility, though their predictability varied in ranking of soil erodibility. In spite of this variability these indices can be used for potential erosion hazard determination by agricultural extension staff to avoid crop failures and other negative influence of soil erosion. The soil parameters are easy to determine and will be a valuable instrument when faster approaches to erosion control measures are required. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
The impacts of a wildfire and subsequent rainfall event in 2013 in the Warrumbungle National Park in New South Wales, Australia were examined in a project designed to provide information on post‐fire recovery expectations and options to land managers. A coherent suite of sub‐projects was implemented, including soil mapping, and studies on soil organic carbon (SOC) and nitrogen (N), erosion rates, groundcover recovery and stream responses. It was found that the loss of SOC and N increased with fire severity, with the greatest losses from severely burnt sandstone ridges. Approximately 2.4 million t of SOC and ~74,000 t of N were lost from soil to a depth of 10 cm across the 56,290 ha affected. Soil loss from slopes during the subsequent rainfall event was modelled up to 25 t ha?1, compared to a long‐term mean annual soil loss of 1.06 t ha?1 year?1. Groundcover averages generally increased after the fire until spring 2015, by which time rates of soil loss returned to near pre‐fire levels. Streams were filled with sand to bank full levels after the fire and rainfall. Rainfall events in 2015–2016 shifted creek systems into a major erosive phase, with incision through the post‐fire sandy bedload deposits, an erosive phase likely related to loss of topsoils over much of the catchment. The effectiveness of the research was secured by a close engagement with park managers in issue identification and a communications programme. Management outcomes flowing from the research included installation of erosion control works, redesign of access and monitoring of key mass movement hazard areas.  相似文献   

5.
Purpose

Characterizations of soil aggregates and soil organic carbon (SOC) losses affected by different water erosion patterns at the hillslope scale are poorly understood. Therefore, the objective of this study was to quantify how sheet and rill erosion affect soil aggregates and soil organic carbon losses for a Mollisol hillslope in Northeast China under indoor simulated rainfall.

Materials and methods

The soil used in this study was a Mollisol (USDA Taxonomy), collected from a maize field (0–20 cm depth) in Northeast China. A soil pan with dimensions 8 m long, 1.5 m wide and 0.6 m deep was subjected to rainfall intensities of 50 and 100 mm h?1. The experimental treatments included sheet erosion dominated (SED) and rill erosion dominated (RED) treatments. Runoff with sediment samples was collected during each experimental run, and then the samples were separated into six aggregate fractions (0–0.25, 0.25–0.5, 0.5–1, 1–2, 2–5, >?5 mm) to determine the soil aggregate and SOC losses.

Results and discussion

At rainfall intensities of 50 and 100 mm h?1, soil losses from the RED treatment were 1.4 and 3.5 times higher than those from the SED treatment, and SOC losses were 1.7 and 3.8 times greater than those from the SED treatment, respectively. However, the SOC enrichment ratio in sediment from the SED treatment was 1.15 on average and higher than that from the RED treatment. Furthermore, the loss of <?0.25 mm aggregates occupied 41.1 to 73.1% of the total sediment aggregates for the SED treatment, whereas the loss of >?0.25 mm aggregates occupied 53.2 to 67.3% of the total sediment aggregates for the RED treatment. For the organic carbon loss among the six aggregate fractions, the loss of 0–0.25 mm aggregate organic carbon dominated for both treatments. When rainfall intensity increased from 50 to 100 mm h?1, aggregate organic carbon loss increased from 1.04 to 5.87 times for six aggregate fractions under the SED treatment, whereas the loss increased from 3.82 to 27.84 times for six aggregate fractions under the RED treatment.

Conclusions

This study highlights the effects of sheet and rill erosion on soil and carbon losses at the hillslope scale, and further study should quantify the effects of erosion patterns on SOC loss at a larger scale to accurately estimate agricultural ecosystem carbon flux.

  相似文献   

6.
V.O. Polyakov  R. Lal 《Geoderma》2008,143(1-2):216-222
Soil organic carbon (SOC) is an important component of the global carbon cycle. Its dynamics depends upon various natural and anthropogenic factors including soil erosion. A study on Miamian silty clay loam soil in central Ohio was conducted to investigate the effect of soil erosion on SOC transport and mineralization. Runoff plots 10, 20 and 30 m long on a 7% slope under natural rainfall were used. Total soil loss, evolution of CO2 from the displaced aggregates of various fractions, and total SOC concentrations were determined. It was shown that the primary ways of SOC loss resulted from two processes: 1) mechanical preferential removal of SOC by overland flow and 2) erosion-induced mineralization. Significant amounts of SOC mobilized by erosion at the upper part of the slope during the season (358 kg ha? 1) could be lost to the atmosphere within 100 days (15%) and transported off site (44%). Breakup of initial soil aggregates by erosive forces was responsible for increased CO2 emission. During the initial 20 days of incubation the amount of CO2 released from coarse size sediment fractions (0.282 g C kg? 1 soil d? 1) was 9 times greater than that in fine fractions (0.032 g C kg? 1 soil d? 1) due to the greater initial amount of SOC and its exposure to the environment. Sediment size distribution as well as its residence time on the site was the primary controllers of CO2 loss from eroded soil.  相似文献   

7.
Soil erodibility, commonly expressed as the K‐factor in USLE‐type erosion models, is a crucial parameter for determining soil loss rates. However, a national soil erodibility map based on measured soil properties did so far not exist for Switzerland. As an EU non‐member state, Switzerland was not included in previous soil mapping programs such as the Land Use/Cover Area frame Survey (LUCAS). However, in 2015 Switzerland joined the LUCAS soil sampling program and extended the topsoil sampling to mountainous regions higher 1500 m asl for the first time in Europe. Based on this soil property dataset we developed a K‐factor map for Switzerland to close the gap in soil erodibility mapping in Central Europe. The K‐factor calculation is based on a nomograph that relates soil erodibility to data of soil texture, organic matter content, soil structure, and permeability. We used 160 Swiss LUCAS topsoil samples below 1500 m asl and added in an additional campaign 39 samples above 1500 m asl. In order to allow for a smooth interpolation in context of the neighboring regions, additional 1638 LUCAS samples of adjacent countries were considered. Point calculations of K‐factors were spatially interpolated by Cubist Regression and Multilevel B‐Splines. Environmental features (vegetation index, reflectance data, terrain, and location features) that explain the spatial distribution of soil erodibility were included as covariates. The Cubist Regression approach performed well with an RMSE of 0.0048 t ha h ha?1 MJ?1 mm?1. Mean soil erodibility for Switzerland was calculated as 0.0327 t ha h ha?1 MJ?1 mm?1 with a standard deviation of 0.0044 t ha h ha?1 MJ?1 mm?1. The incorporation of stone cover reduces soil erodibility by 8.2%. The proposed Swiss erodibility map based on measured soil data including mountain soils was compared to an extrapolated map without measured soil data, the latter overestimating erodibility in mountain regions (by 6.3%) and underestimating in valleys (by 2.5%). The K‐factor map is of high relevance not only for the soil erosion risk of Switzerland with a particular emphasis on the mountainous regions but also has an intrinsic value of its own for specific land use decisions, soil and land suitability and soil protection.  相似文献   

8.
One of the main environmental impacts of concentrated animal feeding operations is soil degradation in the vicinity of the livestock breeding facilities due to substances such as ammonia emitted from the various stages of the process. In this research, the soil degradation effects of an intensive hog farming operation (IHFO) located at a Mediterranean limestone soil coastal area have been investigated. Soil samples of the upper mineral soil were taken in various distances and directions from the IHFO boundaries. Thirteen experimental cycles were carried out in the duration of 1.5?years starting in March 2009 until October 2010. The soil samples were analysed on total, exchangeable and water-soluble Ca, Mg and K as well as water-soluble ammonium concentrations. Significantly lower concentrations of the exchangeable and water-soluble base cations were observed on soil samples at increasing proximity downwind from the farm (south). Southern soil average concentrations of exchangeable base cations ranged between 78.6 and 128.52?mmol Ca2+?kg?1 soil, 8.42?C21.39?mmol?Mg2+?kg?1 soil and 4.25?C8.1?mmol?K+?kg?1 soil, respectively. Southern soil average concentrations of water-soluble base cations ranged between 0.57 and 2.17?mmol Ca2+?kg?1 soil, 0.16?C0.89?mmol?Mg2+?kg?1 soil and 0.48?C0.95?mmol?K+?kg?1 soil, respectively.  相似文献   

9.
Abstract

Potassium is an essential element for plant growth and its importance in agriculture has been well recognized. With continuous cropping of a soil, exchangeable ? levels decrease to a minimum, steady‐state level if no ? is added. This minimum level is important to both modeling soil ? cycling and fertilizer ? recommendations, and it has been determined by field studies lasting from 2 to 10 years. Consequently, there is a need for estimation of minimum exchangeable ? levels for a wide range of soil types from soil physical and chemical properties. A literature survey provided 19 studies where minimum exchangeable ? had been measured and regression analysis was conducted on this data to determine predictive relationships. Minimum exchangeable ? is closely related to soil clay content (r2 from 0.66 to 0.99), however, regression constants varied from study to study. Improved correlations were obtained between minimum exchangeable ? and clay content when all the soils (22A, r2=0.69) were divided into 3 groups according to the Fertility Capability Soil Classification (FCC) System and Soil Taxonomy (r2 of 0.86, 0.82, and 0.68). Differences in regression constants between groups were consistent with changes in soil properties associated with ? levels and exchangeability. This analysis provided relationships to estimate minimium exchangeable ? level from soil clay content for a wide range of soil types, which should aid soil ? modeling and fertilizer ? recommendations.  相似文献   

10.

Purpose

The validity of soil erosion data is often questioned because of the variation between replicates. This paper aims to evaluate the relevance of interreplicate variability to soil and soil organic carbon (SOC) erosion over prolonged rainfall.

Materials and methods

Two silty loams were subjected to simulated rainfall of 30 mm h?1 for 360 min. The entire rainfall event was repeated ten times to enable statistical analysis of the variability of the runoff and soil erosion rates.

Results and discussion

The results show that, as selective removal of depositional particles and crust formation progressively stabilized the soil surface, the interreplicate variability of runoff and soil erosion rates declined considerably over rainfall time. Yet, even after the maximum runoff and erosion rates were reached, the interreplicate variability still remained between 15 and 39 %, indicating the existence of significant inherent variability in soil erosion experiments.

Conclusions

Great caution must be paid when applying soil and SOC erosion data after averaging from a small number of replicates. While not readily applicable to other soil types or rainfall conditions, the great interreplicate variability observed in this study suggests that a large number of replicates is highly recommended to ensure the validity of average values, especially when extrapolating them to assess soil and SOC erosion risk in the field.
  相似文献   

11.
Soil erosion is a serious environmental problem arising from agricultural intensification and landscape changes. Improper land management coupled with intense rainfall has intricated the problem in most parts of the Ethiopian highlands. Soil loss costs a profound amount of the national GDP. Thus, quantifying soil loss and prioritizing areas for conservation is imperative for proper planning and resource conservation. Therefore, this study has modeled the mean soil loss and annual sediment yield of the Gumara watershed. Landsat 5 TM, Landsat 7ETM+, and Landsat 8 OLI were used for land use land cover (LULC) change analysis. Besides these, other datasets related to rainfall, digital soil map, Digital Elevation Model, reference land use, and cover (LULC) ground truth points were used to generate parameters for modeling soil loss. The watershed was classified into five major land-use classes (water body, cultivated land, grazing land, built-up and forest and plantation) using a maximum likelihood algorithm covering a period of the last 30 years (1988–2019). The mean annual soil loss and sediment yield were quantified using RUSLE, Sediment delivery ratio (SDR), and Sediment Yields models (SY). The analysis result unveils that within the past 30 years, the watershed has undergone significant LULC changes from forest & plantation (46.33%) and grazing land to cultivated land (31.59%) with the rate of ?1.42km2yr-1 and -2.80km2yr-1 respectively. In the same vein, the built-up area has expanded to cultivated and grazing land. Subsequently, nearly 15% (207 km2) of the watershed suffered from moderate to very severe soil loss. On average, the watershed losses 24.2 t ha?1 yr?1 of soil and yields 2807.02 t ha?1 yr?1 sediment. Annually, the watershed losses 385,157 t ha?1 yr?1 soil from the whole study area. Among the admirative districts, Farta (Askuma, Giribi, Mahidere Mariam and Arigo kebeles), Fogera (Gazen Aridafofota and Gura Amba kebeles), East Este (Witimera kebele), and Dera (Gedame Eyesus and Deriana Wechit kebeles) districts which cover 50% of the watershed were found severely affected by soil erosion. Thus, to curve back this scenario, soil and water conservation practices should prioritize in the aforementioned districts of the watersheds.  相似文献   

12.
Purpose

Frequent cultivation and overhead irrigation have led to severe surface crusting, erosion and poor irrigation performance on sandy clay loam soils in the Coal River Valley, Tasmania, Australia. This study was established to identify the key soil properties related to aggregate breakdown determined by different methods, and explore options for reducing soil crusting.

Materials and methods

Soil aggregates were collected from 0 to 5 cm depth from 20 sites managed for packet salad and lettuce production. The stability of air-dried 2.00–4.75 mm aggregates was determined by rainfall simulation, wet sieving and clay dispersion. Soil aggregates were analysed for particle size, mineralogy, soluble and exchangeable cations, pH, EC, labile carbon and total carbon. The association between aggregate stability and the measured soil properties was explored using Spearman correlation, linear regression and regression tree analysis.

Result and discussion

Aggregate stability determined by rainfall simulation was closely associated with soil properties that promote aggregation, including effective cation exchangeable capacity (ECEC) and the proportion of polyvalent cations (Ca2+, Al3+). In contrast, aggregate stability determined by wet sieving was associated with soil properties that promote disaggregation, including quartz and sand content, and to lesser extent, the proportion of monovalent cations (especially K+). Clay dispersion was closely associated with pH, quartz content, soil texture and the sodium adsorption ratio. Soil carbon appeared to have only moderate influence on aggregate stability, but not clay dispersion, while labile carbon was not significantly related to any measure of aggregate stability or clay dispersion. Similarly, the proportion of Na+ ions was not related to either measure of aggregate stability and was only moderately related to clay dispersion.

Conclusions

Options for improving aggregate stability appear limited as aggregate stability was strongly related to the content of inherent soil properties such as sand/quartz and smectite contents. However, high correlation between exchangeable Ca2+ and aggregate stability determined by rainfall simulation indicates that soil crusting may be reduced through application of products that rich in Ca2+ such as gypsum.

  相似文献   

13.
Physical-based fractions of SOM were examined. Soil carbon (C) and nitrogen (N) across ecotopes were 17.22 g kg?1 and 3.73 g kg?1, respectively. Soil C and N were higher in conventional tillage (CT) than no-till (NT) by 2.94% and 0.94%, respectively. Soil C ranged from 11.09 g kg?1 in silt to 18.02 g kg?1 in coarse sand; from 12.89 g kg?1 in fine sand to 18.88 g kg?1 in clay under NT and CT, respectively. Soil N ranged from 4.54 g kg?1 in silt to 5.55 g kg?1 in clay; from 5.06 g kg?1 in coarse sand to 5.56 g kg?1 in silt under NT and CT, respectively. Soil N in bulk soil changed by ?3.24% while soil C in bulk soil changed by ?11.87%. The silt + clay was saturated; hence, studies on soil C and N dynamics in these ecotopes are advocated.  相似文献   

14.
《CATENA》2001,45(2):103-121
Equations used to calculate erodibility in the Water Erosion Prediction Project soil erosion model (WEPP) are based on erodibility studies in the USA and may not function well in another region. This study was conducted to: (i) analyze erodibility and infiltration characteristics of some predominant soils of southern Spain, and (ii) test equations used to calculate interrill erodibility in the WEPP model on these soils. The five soils chosen for this study in Andalusia, southwest Spain, were: two terrace soils (referred to as ‘Red and Yellow Alfisols’), an alluvial soil (‘Fluvent’), a shallow hillside soil (‘Inceptisol’), and a cracking clay soil (‘Vertisol’). A static, solenoid operated rainfall simulator was operated at an intensity of approximately 60 mm h−1 during a 60-min dry run followed by a 30-min wet run the next day on 0.75 m2 plots with 30% ridge slopes. Infiltration rates were high (always exceeding 50% except for the wet run of the Fluvent). The Fluvent had the lowest infiltration rate (0.00 mm min−1 at the end of the wet run) and highest soil loss (985 g m−2 h−1 in the dry run and 1557 g m−2 h−1 in the wet run). The Vertisol, Inceptisol and Red Alfisol had low soil loss (415, 605, and 527 g m−2 h−1 in the dry run and 824, 762 and 629 g m−2 h−1 in the wet run, respectively). Soil loss of the Vertisol doubled between dry and wet run and infiltration rate did not stabilize, suggesting that erodibility of Vertisols increases when they are wet. The Yellow Alfisol had lower final infiltration rate in the dry run (0.33 mm min−1) than in the wet run (0.58 mm min−1) and higher soil loss in dry run (1203 g m−2 h−1) than in wet run (961 g m−2 h−1), the reason still being unclear. Soil loss was significantly correlated to silt+very fine sand content (r=0.96), indicating that erodibility of these soils is determined by similar properties as soils in these soil orders in the USA. However, the equation for WEPP-interrill erodibility overestimated erodibility significantly (two to four times), indicating the need to develop new erodibility equations for the Mediterranean region. Infiltration rates were generally high and soil loss rates low compared to reports from the USA, suggesting that limited runoff generation is a primary reason for low erodibility of these soils.  相似文献   

15.
Li  Jianming  Wang  Wenlong  Guo  Mingming  Kang  Hongliang  Wang  Zhigang  Huang  Jinquan  Sun  Baoyang  Wang  Ke  Zhang  Guanhua  Bai  Yun 《Journal of Soils and Sediments》2020,20(11):3896-3908
Purpose

Large spoil heaps formed during construction projects have caused serious soil erosion and threatened ecological security. The recent researches on soil erosion of spoil heaps are based on one or several soil types, which can only represent the soil texture category within the limited area, but cannot be used in other larger scale areas. Soil texture and gravel are the main factors affecting infiltration and erosion processes of spoil heaps.

Materials and methods

The runoff plot dimensions were 5.0 m?×?1.0 m?×?0.5 m (length × width × depth). A series of rainfall experiments with a constant rainfall intensity of 1.0 mm min?1 and a slope gradient of 25° were conducted to investigate the effects of soil texture (sandy, loam, and clay) and gravel mass content (GC, 0%, 10%, 20%, and 30%) on the infiltration and erosion processes. The gravels are divided into 3 classes according to particle size 2–14 mm (small), 14–25 mm (medium), 25–50 mm (large), and the mass ratios were 30%, 50%, and 20%. The duration of each rainfall event was 45 min after runoff out of the plot.

Results and discussion

Results showed that there was a critical GC (10%) improving or controlling infiltration and soil loss. Infiltration rate of sandy spoil heap (SSH) decreased within 45 min, but it decreased first and then stabilized for loam spoil heap (LSH) and clay spoil heap (CSH). Soil loss rate (SLR) of SSH stabilized first and then increased, while it decreased and then stabilized for LSH and CSH. SLR at early stage (0–18 min) was 0.08–0.23 times than it was at later stage (18–45 min) for SSH, but it was 2.06–5.06 times and 1.46–1.95 times for LSH and CSH, respectively. The soil texture had a more significant effect on SLR (P?< 0.05) than GC did. The effects of gravel on SLRs were dependent on soil texture.

Conclusions

The greater the GC was, the lower the SLR was for the spoil heaps. Special attention should be paid to the later stage during rainfall events for SSHs and the early stage for LSHs and CSHs when considering erosion protection measures.

  相似文献   

16.
Stones on the surface of the soil enhance infiltration and protect the soil against erosion. They are often removed in modern mechanized agriculture, with unfortunate side‐effects. We evaluated experimentally the influence of surface stones on infiltration, runoff and erosion under field conditions using a portable rainfall simulator on bare natural soil in semi‐arid tropical India, because modernization and mechanization often lead to removal of these stones in this region. Four fields with varied cover of stones from 3 to 65% were exposed to three rainfall intensities (48.5, 89.2 and 136.8 mm hour?1). Surface stones retarded surface runoff, increased final infiltration rates, and diminished sediment concentration and soil loss. The final infiltration ranged from 26 to 83% of rainfall when the rainfall intensity was 136.8 mm hour?1. The reduction in runoff and soil erosion and increase in infiltration were more pronounced where stones rested on the soil surface than where they were buried in the surface layer. The sediment yield increased from 2 g l?1 for 64.7% stone cover with rainfall of 48.5 mm hour?1 to 70 g l?1 for 3.5% stone cover with rain falling at 136.8 mm hour?1. The soil loss rate was less than 2 t ha?1 hour?1 for the field with stone cover of 64.7% even when the rainfall intensity was increased to 136.8 mm hour?1. The effects of stones on soil loss under the varied rainfall intensities were expressed mathematically. The particles in the sediment that ran off were mostly of silt size.  相似文献   

17.
Soil cover and rainfall intensity (RI) are recognized to have severe impacts on soil erosion and an interaction exists between them. This study investigates the effect of rainfall intensity (RI) and soil surface cover on losses of sediment and the selective enrichment of soil organic carbon (SOC) in the sediment by surface runoff. A field rainfall simulator was used in the laboratory to produce 90 min rainfall events of three rainfall intensities (65, 85 and 105 mm h− 1) and four cover percentages (0%, 25%, 50% and 75%) on soil material at 9% slope. A strong negative exponential relation was observed between cover percentage and RI on sediment loss under 85 and 105 mm h− 1 of rain, while under RI of 65 mm h− 1, the highest sediment loss was observed under 25% cover. Overall, higher RI and lower cover produced higher sediment and consequently higher nutrient loss, but resulted in a lower SOC enrichment ratio (ERSOC) in the sediment. The amount of runoff sediment rather than the ERSOC in the sediment was the determinant factor for the amount of nutrients lost. The values of ERSOC were high and positively correlated with the ER values of particles smaller than 20 µm (p < 0.01). Although the sediment contained substantially more fine fractions (fine silt and clay, < 20 µm), the original soil and runoff sediment were still of the same texture class, i.e. silt clay loam.  相似文献   

18.
The susceptibility of loess soils in the lower Mississippi to runoff and erosion losses varies as a function of landscape position and mapping units. This study was conducted to determine the effects of soil drainage on physical and chemical properties that influence erodibility through their control of aggregate stability. Soil samples were collected from the A- and B-horizons of the five representative pedons in the Memphis catena whose drainage class varied from well-drained to poorly-drained. The fine earth fraction (< 2 mm) of each soil was characterized for a range of basic soil physical and chemical properties. Additional sub-samples (< 8 mm) were placed in a rainfall simulator pan (0.6 m × 0.6 m test area) and subjected to simulated rainfall at an intensity of 64 mm h− 1. Soil erodibility was assessed by the use of an aggregation index (AI) computed from water dispersible clay (WDC) relative to total clay contents. The data show that as soil drainage classes became wetter, the percentage of sediment < 53 µm increased with a decrease in soil AI resulting from a loss of Fe, Al, and Si oxide cementing agents. These results suggest that cementing agents responsible for soil aggregate stabilization are mobilized under conditions of relatively low redox potentials which increase soil erodibility.  相似文献   

19.
Erodibility of agricultural soils on the Loess Plateau of China   总被引:6,自引:0,他引:6  
K. Zhang  S. Li  W. Peng  B. Yu   《Soil & Tillage Research》2004,76(2):157-165
Soil erodibility is thought of as the ease with which soil is detached by splash during rainfall or by surface flow. Soil erodibility is an important factor in determining the rate of soil loss. In the universal soil loss equation (USLE) and the revised universal soil loss equation (RUSLE), soil erodibility is represented by an erodibility factor (K). The K factor was defined as the mean rate of soil loss per unit rainfall erosivity index from unit runoff plots. Although high rate of soil loss from the Loess Plateau in China is well known and widely documented, it is remarkable that there is little systematic attempt to develop and validate an erodibility index for soils on the Loess Plateu for erosion prediction. Field experimental data from four sites on the Loess Plateau were analyzed to determine the K factor for USLE/RUSLE and to compare with another erodibility index based on soil loss and runoff commonly used for the region. The data set consists of event erosivity index, runoff, and soil loss for 17 runoff plots with slope ranging from 8.7 to 60.1%. Results indicate that the K factor for USLE/RULSE is more appropriate for agricultural soils on the Loess Plateau than the erodibility index developed locally. Values of the K factor for loessial soils range from 0.0096 to 0.0269 t h/(MJ mm). The spatial distribution of the K value in the study area follows a simple pattern showing high values in areas with low clay content. For the four sites investigated, the K factor was significantly related to the clay content, (K=0.031−0.0013 Cl, r2=0.75), where Cl is the clay content in percent. The measured values of the K factor are systematically lower than the nomograph-based estimates by a factor of 3.3–8.4. This implies that use of the nomograph method to estimate soil erodibility would considerably over-predict the rate of soil loss, and local relationship between soil property and the K factor is required for soil erosion prediction for the region.  相似文献   

20.
Field investigations on loamy sands in east Shropshire show that compaction by agricultural machinery increases soil bulk density and soil erodibility, and decreases infiltration rates. Structural and hydrological changes, in combination with runoff concentration in cultivation lines, can contribute to serious erosion of arable soils. Compacted soils are also more responsive to rainfall and evidence is presented that intensities as low as approximately 1 mm h?1 can be erosive. Evidence suggests that compacted subsoils impede infiltration and so contribute to surface runoff and serious topsoil erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号