首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
弯道后的水流调整不好,可导致进/出口存在严重偏流和水头损失增大.为了保证竖井式进/出水口的配水均匀性和水力稳定,采用三维RNG k-ε紊流模型,对某抽水蓄能电站上水库盖板竖井式进/出水口进行了数值模拟,并进行了模型试验验证.重点对比研究了竖井扩散段采用椭圆曲线与渐扩锥管两种形式在抽水工况出流时的流动特性.计算结果显示,渐扩锥管的配水均匀性和稳定性均好于椭圆曲线扩散管的.对比分析了弯道后渐扩锥管扩散角分别为4.3°,5°和7°时的配水均匀性,计算结果显示竖井式进/出水口应尽可能控制扩散段的扩散角,防止出现偏流;在弯管段后的扩散段的扩散角宜小于4.5°.采用物理模型对推荐体型进行了验证,模型试验显示按照推荐体型设计的进/出水口配水均匀,双机抽水工况下总水头损失系数为0.48;双机发电工况下,总水头损失系数为0.33.  相似文献   

2.
抽水蓄能电站有发电和抽水两种工况,因此进出水口的水流有双向流动的特点,进出水口的体型设计对水电站高效、经济运行有较大的影响。针对句容抽水蓄能电站,通过物理模型试验分析了该电站原方案中侧式进出水口各孔道流量分配、断面流速分布、水头损失系数等水力特性,试验结果表明原方案达不到设计规范要求,经过分析,采用了对进水出口高度及顶板扩散角进行优化调整的方案。试验结果表明,优化体型的水流特性好于原体型,满足规范要求。  相似文献   

3.
阳江抽水蓄能电站是继广州抽水蓄能电站、惠州抽水蓄能电站和深圳抽水蓄能电站后广东规划的第四座抽水蓄能电站.本文通过物理模型试验对上、下库进(出)水口水力特性进行了研究,并根据在发电和抽水两种工况下实测流速指标、水流特性、进(出)水口水头损失及入流漩涡等实测的水力参数,分析了原设计的运行效果和进出水口的流速分布情况,提出满足原设计要求的运行方案.  相似文献   

4.
东河排涝泵站运行过程中出现进水流道吸气漩涡,导致机组震动,抽水效率降低,严重影响了机组的正常抽水。为此,进行了断面模型试验,模拟单机抽水时各种工况下产生漩涡的条件及原设计进水流道的流态,通过方案比较,提出了防涡消涡的措施。依据进水流道试验推荐方案,进行相应的工程设计和施工。从已进行的泵站实际运行来看,试验研究推荐的防涡消涡工程措施起到了较好的效果。  相似文献   

5.
在混流泵进水流道内通常会存在一些漩涡,如果不设置任何防涡消涡装置,会导致喇叭管内流态混乱,叶轮室内发生脱流、漩涡等现象,从而增加泵内的水力损失、降低泵装置的效率,甚至会引发机组的振动。为此,以国内某混流式泵站为研究对象,运用数值模拟的方法对混流泵的全流道进行三维定常湍流计算。结果表明,M型防涡装置可以防止混流泵进水流道后壁附近出现漩涡,改善进水流道和喇叭管内水流流态;在进水流量大于最优工况流量时,M型防涡装置能够提高混流泵装置的效率,增幅最大可达2.18%。  相似文献   

6.
抽水蓄能电站引水岔管水力特性数值模拟   总被引:1,自引:0,他引:1  
通过对某抽水蓄能电站在不同工况(抽水或发电)、不同分流比(单台机或多台机运行)情况下引水岔管的水力特性进行三维数值模拟计算,采用非结构化网格离散计算区域,使用有限体积法将方程的积分形式转化为代数方程组,为保证计算精度,采用二阶迎风格式,隐式求解,速度和压力方程用SIMPLE算法耦合.分析了各工况下岔管处水头损失变化和水流流态情况.结果表明,计算结果与试验较吻合,由于夹带不同能量水流汇合后“能量相互传递”,抽水工况水头损失出现了负值,发电工况流态好于抽水工况流态;分流(发电)水头损失较大,合流(抽水)水头损失较小,为机组运行方式的选择提供了依据,可使岔管能量损失降低到最小程度.  相似文献   

7.
付强  朱荣生 《农机化研究》2012,34(9):187-189,194
根据泵站要求设计了一种新型结构的肘型进水流道,按欧拉相似准则进行模型试验,试验装置采用开敞式进水前池,流道进口不带泵,采用在试验管道上增设循环泵提供所需流量。分别进行了水力损失、流动轨迹和水面漩涡试验,最大流量工况点模型试验的水力损失为0.059mm。经相似换算,得到实型流道的水力损失为0.059 m,损失较小。流动轨迹的模型试验显示流态曲线光滑,没有突变、脱流、涡带等局部损失等现象发生。最低运行水位、最大流量工况下对进水池水面漩涡试验,显示出现了2型水面漩涡,不会对循环水泵产生不良影响。试验结果表明,该肘型进水流道综合性能优良。  相似文献   

8.
叠梁门分层取水式电站进水口流场数值模拟研究   总被引:1,自引:0,他引:1  
以某水电站进水口为例,采用三维RNG k—ε紊流模型及VOF自由液面处理技术对其进水口流场进行数值模拟.从计算得出的水流流态、流速和压力分布以及水头损失等参数分析了该电站进水口水力特性.计算结果表明:叠梁门前断面水流在门顶以上10 m高程范围为大流速集中区;随着叠梁门顶高程的增加,水流更易在门后形成立轴漩涡,相应水头损失也随之增大;水库水位及门顶高程的改变对流道内压力分布影响范围不大.计算结果可为类似工程提供参考.  相似文献   

9.
涡漩对迷宫流道灌水器水流流态的数值影响分析   总被引:1,自引:0,他引:1  
为分析涡漩对迷宫流道灌水器内部水流流态的影响.借助Fluent软件对矩形、齿形、三角形、梯形4种形式灌水器流道内部水流流场进行模拟,并最大限度地保留流道内主流区的流线边界,确定出4种圆弧形抗堵性能良好的无涡流道结构模型.对上述无涡流道及相应的有涡流道模型进行速度场以及压力场的研究分析.结果表明,无涡迷宫流道内水流流态介于层流与湍流之间的过渡区,水头损失与流速的线性斜率为1.49~1.60;有涡迷宫流道内水流流态为湍流,水头损失与流速的线性斜率为1.75~2.00;4组有涡流道模型的流态指数均靠近0.5,水力性能较优越;对于同一种形式的流道模型,去掉漩涡后,其流量系数变小,流态指数变大,灌水器的水力性能变差.模拟结果证明涡漩的存在可以增强流道内水流的湍动强度,提高迷宫灌水器的水力性能.  相似文献   

10.
为了改善泵站出水池内的不良水流流态,基于CFD软件,采用RNG模型和VOF方法对原设计方案及4种修改方案的出水池水流进行全流场数值模拟,得到泵站出水池内部的水流流态、流速、水位、水头损失及水头损失系数.计算结果表明,原方案出水池内流态紊乱,隧洞进水条件差,水流偏斜较为明显;纵向水面差为0.33~0.48 m,水头损失和水头损失系数相对较大.通过多个方案比较,推荐采用圆弧边墙+下移隧洞进口方案,对原方案的4处折角边墙分别调整为半径为45和36 m的圆弧,同时隧洞进口向下游移动10 m.该方案能明显改善出水池的流态,水流能较均匀地进入隧洞,纵向水面差减小明显,最大减幅为0.12 m;隧洞进口流速分布均匀度提高了10.3%,水头损失减小了14.7%.根据推荐方案进行物理模型试验,试验结果与数值模拟接近.  相似文献   

11.
[目的]探究地埋式内镶贴片滴灌灌水器的水力性能。[方法]对具有M型双肩过滤出口的地埋式内镶贴片滴灌灌水器进行了不同工作压力条件下的流量测试试验,并采用RNGk-ε湍流模型分别对平面简化流道、实际微弯流道、实际微弯流道+进口、实际微弯流道+M型双肩过滤出口以及实际微弯流道+上述进出口的5种情况进行了相应工作压力下的三维数值模拟。[结果]三维全流道数值模拟流量与实测流量相近,其最大误差为8.87%。无控制的出口结构,水流在出水孔中心处形成旋涡,采用M型双肩过滤机构的出口会在主流两侧产生2个旋流,出水孔中心处无旋涡。[结论]地埋式内镶贴片滴灌灌水器流道模型的微弯对贴片灌水器水力性能有一定的影响。滴灌灌水器采用M型双肩过滤机构的出口有利出流且提高了抗堵塞性能。  相似文献   

12.
为研究蒸汽发生器出口管参数对核主泵入口流场的影响,将蒸汽发生器下封头与核主泵统一建模,采用CFD方法对其耦合模型进行全三维流场仿真计算.结果表明:蒸汽发生器出口管长对核主泵入口流场有较大的影响,且该影响在入口管较短时尤为明显,随着蒸汽发生器管长的增加,这种影响逐渐减小,核主泵入口流场趋于稳定;蒸汽发生器出口管的位置对核主泵入口流场紊乱度的影响相对较小,且不同位置管内流场发展趋势相近,但是会对流场的高速区以及低速区产生的位置造成影响;蒸汽发生器出口管中的流场极为紊乱,并在开始部分存在较大的回流区;随着流场的发展,在离蒸汽发生器出口350 mm附近回流区消失,之后流场逐渐趋于稳定,但是流场的偏心现象不会消失.  相似文献   

13.
基于DEM-CFD的旋流泵大颗粒内流特性模拟与试验   总被引:2,自引:0,他引:2  
鉴于抗堵塞性能较优的旋流泵在输送污水时,其过流部件仍存在磨损、半堵塞等问题,将DEM-CFD方法引入旋流泵数值模拟中,研究旋流泵在输送不同粒径、体积分数颗粒时的颗粒运动物理特性,以及颗粒与液相、固壁多向耦合的运动特征,并进行了试验验证。结果表明,由旋流泵输送油菜籽试验可知,外特性计算结果与试验结果基本一致;在该旋流泵模型特征下,进口管与无叶腔区域由循环流引起的颗粒旋转流动现象较为严重,从无叶腔沿着进口壁面螺旋式逆向回流,与进口顺向来流相混达到平衡,试验拍摄结果与数值模拟结果较为相符,说明DEM-CFD耦合方法具有一定可靠性;旋流泵内部存在3种不同的颗粒运输方式,第1种为颗粒随贯通流经由叶轮进入蜗壳,第2种为受循环流影响经由无叶腔直接甩入蜗壳,第3种为颗粒从叶轮前端面区域进入叶轮,再经叶轮进入蜗壳;对蜗壳内流特性进行分析,发现颗粒主要分布在蜗壳后侧,在扩散段到蜗壳出口区域,颗粒随液体以螺旋的方式流出,蜗壳断面叶轮侧形成大小不等的螺旋涡。  相似文献   

14.
采用五孔探针对轴流泵圆形出水室和出水管内流场进行详细测试,研究了后导叶出流环量、泵轴旋转诱导和出水弯管二次流对流态的影响,分析流场形成机理,揭示流动规律.结果表明:后导叶出流环量较大,旋转方向与叶轮相同,泵轴对附近水体有明显的诱导作用,泵轴附近环量明显增大,出水室和出水管内的环量沿流程逐渐衰减,但衰减速度渐慢,整个出水管内水流都具有一定的环量.出水管内为复杂的螺旋流,断面轴向流速和周向流速分布不均匀、不对称,轴向均匀流和对称流的常规假定与实际不符.研究成果对轴流泵装置的优化水力设计,提高泵装置效率有重大意义.  相似文献   

15.
为了研究立式轴流泵装置出水流道的流动特性,以一立式轴流泵装置为研究对象,基于全流场非定常计算,结合湍动能和流线分布以及压力分布,分析出水流道内非定常流动特性;基于Q准则,在小流量工况下对流道内涡旋结构进行可视化分析;基于特征值法和涡量法,对不同工况下1个非定常旋转周期内的出水流道里的涡核进行提取.结果表明:小流量工况下,出水流道的入口处产生的涡旋结构数量最多,流道内提取到的涡核数量也最多;出水流道内的涡核强度从流道入口处往后逐渐减弱;2种方法均在额定工况下提取到的涡核数量最少,并且额定工况下流道中后部均未出现涡核.掌握出水流道内流特性及涡核分布,有助于今后优化设计出低水力损失的出水流道.  相似文献   

16.
为研究长短叶片混流式水轮机的内部流动特性,基于CFX软件平台,运用N-S方程和SST湍流模型,对HLA542-LJ-130长短叶片水轮机全流道典型小流量工况进行三维湍流计算,得到了水轮机各过流部件内流场的流动信息.计算结果表明,从固定导叶到活动导叶出口,速度矢量随压力降低而均匀增大,而且压力和速度分布在圆周方向的周向性较好,从叶片进水边到出水边,长短叶片压力变化为均匀减小,压力分布比较合理,叶片工作面表面没有明显的回流和二次流,流线分布较为流畅,尾水管进口压力、速度分布基本对称,压力沿径向分布比较均匀,尾水管肘管之前有与转轮旋转方向相同的涡带,涡带在尾水管中发展至尾端,但没有明显的偏心,在扩散段内逐渐减弱.研究结果对高水头水电站的水轮机选择和设计具有重要的指导意义.  相似文献   

17.
低扬程双向流道泵装置研究   总被引:18,自引:4,他引:18  
针对沿江滨湖地区双向抽水的广泛需要,在分析水力计算的基础上,提出一种新的立式轴流泵出水结构,并辅以适当措施,使立式双向轴流泵装置性能大幅度提高,模型试验高装置效率达到71%以上;所提出的消涡防栅从根本上解决了进水流道内的涡带问题。这两项技术已在工程中成功地推广应用。  相似文献   

18.
为探索旋流泵内盐析颗粒的流动规律,利用PIV粒子图像速度场仪对泵内颗粒流场进行了测量,获得了颗粒准三维速度场分布,初步掌握了泵内不同工况下颗粒的流动特征.结果表明,叶轮各轴截面上速度分布差异显著,无叶腔中速度分布呈现强迫涡旋和自由涡旋的特征;流量增加,颗粒流在叶轮进口处相对速度增大,出口处相对液流角也增大,无叶腔小半径处颗粒径向速度分量随之增大;颗粒流存在纵向涡旋,涡旋中心位于叶轮流道中部,且随流量变化并不明显.  相似文献   

19.
为了研究环形引流喷射对立式自吸泵性能的影响,以350WFB-1200-50型立式自吸泵为研究对象,采用RNG k-ε湍流模型和Zwart空化模型对不同环形喷射孔比面积下的立式自吸泵进行全流场数值计算.结果表明:环形引流喷射可明显提升叶轮进口压力,能有效改善泵的空化性能;引流流量会使叶轮进口处速度增大,导致泵的必需空化余量NPSHR增大,使泵的空化性能有所恶化;两者的共同作用下,泵的空化性能呈先变好后变差的趋势;随着环形喷射孔比面积k的增大,压水室出口处的泄漏量增大,导致泵的容积损失增大;泄漏流使压水室出口处产生较多旋涡,且射流对叶轮进口流线产生排挤,对主流造成较大影响,使泵的扬程和效率呈下降趋势;当环形喷射孔比面积k=0.25时,泵的汽蚀余量最小,相比于原模型,泵汽蚀余量减小了23%,扬程下降了2.1%,效率下降了2.5%.研究结果可为立式自吸泵优化设计提供一定参考.  相似文献   

20.
进水流道设计是大型立式循环泵装置设计中的重要环节,为了解不同工况下叶轮对流道出口流场的影响,分别对考虑叶轮影响和不考虑叶轮影响下的进水流道内部流场进行计算和分析.研究发现不考虑叶轮影响下的进水流道内部流场特征几乎不受流量变化的影响,而考虑叶轮影响的进水流道情况则比较复杂.在小流量情况下,叶轮流场的进口回流效应会对进水流道出口流场产生显著影响.随着流量的降低,进水流道出口分析截面内的流速分布均匀度和流速加权吸人角两个指标逐渐降低,在0.4Q0流量时,截面外缘出现明显的圆周速度分量,其变化接近于涡核内的圆周速度曲线,并不断向叶轮上游流道扩展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号