首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of frozen and unfrozen water in two different wheat flours (hard and soft), and in their main components (gluten, starch, damaged starch, water‐soluble and water‐insoluble pentosans), were described using modulated differential scanning calorimetry (DSC). As a reference, enthalpy values of crystallization (298 J/g) and melting (335 J/g) of pure water were determined from the total heat flow curves. The separation of thermal events between the reversing and nonreversing heat flows with modulated DSC was not effective due to disturbances in the modulated temperature scan. For wheat flours and their components, linear regressions described well the changes in frozen water content calculated from enthalpies of freezing (R2 = 0.970–0.982) or melting (R2 = 0.783–0.996). The unfrozen water content (UFWC) calculated for the hard wheat flour (29–31%, db) was close to that calculated for the soft wheat flour (30–32%). The UFWC of wheat gluten (38–47%), starch (38–42%), damaged starch (37–40%), water‐soluble pentosans (51%), and water‐insoluble pentosans (40–44%) were higher than the corresponding values for the flours. The simple summation of the contributions of each component cannot be used to estimate the overall behavior of flours.  相似文献   

2.
The dynamic water vapor adsorption properties were determined for two wheat flours (hard wheat flour and soft wheat flour) and compared with those of flour components (starch, damaged starch, gluten, water‐soluble pentosans, and water‐insoluble pentosans). Water vapor adsorption rates were determined from the changes in sample mass as a function of time during hydration after a step increase in relative humidity (rh). It was not possible to significantly discriminate the selected products by initial rates of adsorption (5.1 × 10‐2 to 6.4 × 10‐2 g/100 g of dry matter/min), except the water‐insoluble pentosans that were characterized by high values of adsorption rates (14 × 10‐2 g/100 g of dry matter/min). Changes in initial relative humidity conditions and %rh step sizes induced significant changes in adsorption rates. Calculations of apparent water diffusion coefficients were done using a derived form of Fick's law for polydisperse spherical particles. Apparent water diffusion coefficients (at 25°C and 60% rh) were estimated between 2.19 × 10‐15 and 3.72 × 10‐15 m2/sec for the selected wheat flours. Water‐insoluble pentosans are characterized by the highest values of diffusion coefficients (1.53 × 10‐13 m2/sec) when compared with the other wheat components. The calculated values of apparent water diffusion coefficient were discussed in regard to experimental conditions.  相似文献   

3.
《Cereal Chemistry》2017,94(5):866-872
Pulses are good sources of vitamins and minerals as well as antioxidants. Current literature supports a role for antioxidants in reducing oxidative damage associated with many health disorders, including cardiovascular disease and cancer. The effects of substitution of 10% (w/w) yellow whole or split pea flour (various particle sizes) in white wheat flour (Canadian Wheat Red Spring) on the phenolic and antioxidant activity of the leavened bread were examined. Antioxidant activity was evaluated with four assays, which included 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical scavenging, ferric reducing antioxidant power (FRAP), metal chelation (MC), and superoxide (SO) radical scavenging assays. The bread samples had reduced DPPH (5–11% scavenging activity) and MC (5–10% scavenging activity) values compared with their respective raw flours. Decreased activity in both the DPPH and MC assays can be attributed to a reduction in the antioxidant capacity in the bread samples owing to dilution with white wheat flour. The MC values for bread samples showed little variability between the yellow whole and split pea flours (8–10% scavenging activity for yellow whole and 9% for split pea flours), which suggests that the antioxidant activity of bread samples is not dramatically affected by the seed coats. Most pea fractions increased the FRAP scavenging activity and decreased the SO scavenging activity values for the bread samples compared with their respective raw flours. We conclude that thermal processing enhanced the antioxidant activity of the bread samples, limiting the dilution effect associated with flour addition during dough make‐up.  相似文献   

4.
Asian noodles were prepared by an objective laboratory method that included adding optimum water to the dry ingredients, mixing the ingredients to homogeneous salt distribution, and sheeting of the dough under low shear stress. The lightness (L*) values of alkaline‐ and salt‐noodle doughs made from 65% extraction hard white wheat flours (except KS96HW115 flour at ≈70% extraction) were higher than those from 60% extraction hard red wheat flours (except Karl 92 flour at ≈70% extraction). A hard white spring wheat, ID377s, and a Kansas line of hard white winter wheat, KS96HW115, to be released in 2000, gave the highest L* values for dough sheets stored for 2 and 24 hr at 25°C. Cooking losses were 5–9 percentage points higher for alkaline noodles than salt noodles, but the cooking yields of the two types of Asian noodles were almost the same. Cooked alkaline noodles made from a high‐swelling flour (SP93≈21 g/g) gave higher tensile strength than those made from several low‐swelling flours (SP93 ≈15 g/g) with the same protein contents (≈12.5%). However, the cooked salt noodles gave the same tensile strength.  相似文献   

5.
This study describes the activity‐guided isolation of antioxidant agents from tartary buckwheat bran (TBB). The ethanol crude extract of oil‐free TBB was partitioned sequentially into ethyl acetate, n‐butanol, and residual aqueous fractions. The ethyl acetate fraction (EAF) had the highest phenolic and flavonoid contents and showed the strongest antioxidant activity. EAF was superior to rutin and inferior to vitamin C (Vc) in DPPH radical scavenging ability, had an advantage over rutin and Vc in ABTS radical scavenging ability, and again surpassed rutin and quercetin in reducing power. Then EAF was subjected to column chromatography, and isolated compounds were identified using nuclear magnetic resonance data by comparing with those reported in the literature. Finally, the bioassay‐guided fractionation of the crude ethanol extract of TBB afforded three known compounds (quercetin, p‐hydroxybenzoic acid, and daucosterol) responsible for antioxidant activity. p‐Hydroxybenzoic acid and daucosterol were isolated from buckwheat grain for the first time. Taken together, establishing of the three pure compounds is of paramount importance to the understanding of antioxidant activity of TBB, and there is an immense potential to process TBB or its EAF into value‐added functional foods and beverages.  相似文献   

6.
为了能够更好地将发芽荞麦用作制备功能食品的原料,本研究采用理化指标不同的电解水制备荞麦芽,考察荞麦的发芽率及芽长、总酚含量、DPPH和ABTS自由基清除能力,以及铁离子还原力在发芽期间的动态变化,并分析各处理组发芽第7天荞麦芽中游离酚和结合酚种类和含量。结果表明,在7 d观测期内,电解水有利于荞麦发芽及生长。不同评价方法测定荞麦芽抗氧化能力的结果显示,pH值11.13电解水处理组发芽1~3 d荞麦芽总酚含量及抗氧化水平均显著高于对照组(P<0.05),而pH值3.21、pH值5.02和pH值9.02电解水处理组发芽5~7 d荞麦芽总酚含量及抗氧化水平均显著高于对照组(P<0.05)。各处理组荞麦芽中主要的游离酚均为绿原酸,且电解水处理组荞麦芽游离绿原酸含量均显著高于对照组(P<0.05)。自来水处理组荞麦芽主要结合酚为香豆酸,而电解水处理组荞麦芽主要结合酚为咖啡酸。本研究结果为电解水应用于功能性荞麦芽的制备提供了理论依据。  相似文献   

7.
Phytochemical profile (phenolic acids, carotenoids, and tocopherols) and antiproliferative properties of bread processing fractions, including the dough, crumb, and upper crust made from refined wheat and whole wheat flours were analyzed for two wheat cultivars. Ferulic acid, lutein, and α‐tocopherol were the predominant phenolic acid, carotenoid, and tocopherol, respectively, extracted from all fractions. The levels of all phytochemicals in whole wheat samples were over eightfold higher than their corresponding refined wheat samples. The concentrations of total phenolic acids (soluble and insoluble bound) were higher in the upper crust of refined (∼60–90%) and whole wheat (∼15–40%) breads than their corresponding dough fractions. However, the dough of whole wheat had higher levels of tocopherols and carotenoids compared with the crumb and upper crust, suggesting that phenolic acids were relatively stable during baking, whereas tocopherols (∼25–80%) and carotenoids (∼20–80%), were partially degraded. The antiproliferative activity of whole wheat bread extracts against HT‐29 cancer cells was weakly correlated with total phenolic acids but showed no correlations with total carotenoid and total tocopherol contents.  相似文献   

8.
During wheat dough processing, a large part of the interactions with water are governed by wettability properties of flour. The wettability properties of wheat materials (flat slices of wheat endosperm, flour‐based pellets, and gluten‐based pellets) were assessed by the measurement of contact angles of a sessile drop of three reference liquids (water, diiodomethane, and formamide) and estimated by equilibrium properties (contact angles and surface tension properties) and drop penetration rates. The surface tension (γs) of wheat materials was measured between 49.6 and 55.3 mJ/m‐2. The present work permitted the evaluation of specific wheat types (hard wheat vs. soft wheat) and evaluation of the influence of material structure (flat slices of endosperm vs. flour‐based pellets), and material nature (flour‐based pellets vs. gluten‐based pellets) on the wettability properties. The surface tension properties were considered with regard to the nonideal structure of sample surfaces by considering surface roughness and material porosity.  相似文献   

9.
Waxy wheat (Triticum aestivum L.) contains endosperm starch lacking in amylose. To realize the full potential of waxy wheat, the pasting properties of hard waxy wheat flours as well as factors governing the pasting properties were investigated and compared with normal and partial waxy wheat flours. Starches isolated from six hard waxy wheat flours had similar pasting properties, yet their corresponding flours had very different pasting properties. The differences in pasting properties were narrowed after endogenous α‐amylase activity in waxy wheat flours was inhibited by silver nitrate. Upon treatment with protease, the extent of protein digestibility influenced the viscosity profile in waxy wheat flours. Waxy wheat starch granules swelled extensively when heated in water and exhibited a high peak viscosity, but they fragmented at high temperatures, resulting in more rapid breakdown in viscosity. The extensively swelled and fragmented waxy wheat starch granules were more susceptible to α‐amylase degradation than normal wheat starch. A combination of endogenous α‐amylase activity and protein matrix contributed to a large variation in pasting properties of waxy wheat flours.  相似文献   

10.
Flour qualities of polished wheat flours of three fractions, C‐1 (100–90%), C‐5 (60–50%), and C‐8 (30–0%), obtained from hard‐type wheat grain were used for the evaluation of four kinds of baking methods: optimized straight (OSM), long fermentation (LFM), sponge‐dough (SDM) and no‐time (NTM) methods. The dough stability of C‐5 in farinograph mixing was excellent and the maturity of polished flour doughs during storage in extensigraph was more improved than those of the commercial wheat flour (CW). There were no significant differences in the viscoelastic properties of CW dough after mixing, regardless of the baking method, while those of polished flour doughs were changed by the baking method; this tendency became clear after fermentation. The polished flours could make a better gluten structure in the dough samples after mixing or fermentation using LFM and SDM, as compared with other baking methods. Baking qualities such as specific volume and storage properties of breads from all polished flours made with SDM increased more than with other methods. In addition, viscoelastic properties of C‐5 and C‐8 doughs fermented by SDM were similar to those of CW, and the C‐5 breadcrumb showed softness similar to that of the CW. Also, SDM could make C‐5 bread with significantly higher elasticity and cohesiveness after storage for five days when compared with CW bread. Therefore, SDM with long fermentation, as compared with other baking methods, was considered suitable for use with polished flours to give better effects on dough properties during fermentation, resulting in more favorable bread qualities.  相似文献   

11.
Wheat contains phenolic compounds concentrated mainly in bran tissues. This study examined the distribution of phenolics and antioxidant activities in wheat fractions derived from pearling and roller milling. Debranning (pearling) of wheat before milling is becoming increasingly accepted by the milling industry as a means of improving wheat rollermilling performance, making it of interest to determine the concentration of ferulic acid at various degrees of pearling. Eight cultivar samples were used, including five genotypes representing four commercial Canadian wheat classes with different intrinsic qualities. Wheat was pearled incrementally to obtain five fractions, each representing an amount of product equivalent to 5% of initial sample weight. Wheat was also roller milled without debranning. Total phenolic content of fractions was determined using the modified Folin‐Ciocalteau method for all pearling fractions, and for bran, shorts, bran flour, and first middlings flour from roller milling. Antioxidant activity was determined on phenolic extracts by a method involving the use of the free radical 2,2‐diphenyl‐l‐picrylhydrazyl (DPPH). Total phenolics were concentrated in fractions from the first and second pearlings (>4,000 mg/kg). Wheat fractions from the third and fourth pearlings still contained high phenolic content (>3,000 mg/kg). A similar trend was observed in antioxidant activity of the milled fractions with ≈4,000 mg/kg in bran and shorts, ≈3,000 mg/kg in bran flour, and <1,000 mg/kg in first middlings flour. Total phenolic content and antioxidant activity were highly correlated (R2 = 0.94). There were no significant differences between red and white wheat samples. A strong influence of environment (growing location) was indicated. Pearling represents an effective technique to obtain wheat bran fractions enriched in phenolics and antioxidants, thereby maximizing health benefits associated with wheat‐based products.  相似文献   

12.
Water-extractable arabinogalactan-peptides (WE-AGP) were isolated from flour of eight different wheat cultivars (harvest year 1996). Little structural variation in WE-AGP of flour of the different wheat cultivars was observed. The arabinose-to-galactose (A/G) ratio of WE-AGP varied between 0.66 and 0.73. Methylation analysis showed that the proportion of β-1,3-galactopyranosyl residues is almost equal for the different WE-AGP samples (10.2–11.1%). More variation was observed for the proportion of the β-1,6-galactopyranosyl residues (9.4–13.0%) and β-1,3,6-galactopyranosyl residues (76.0–80.1%). The 1H-nuclear magnetic resonance spectra (D2O, 85°C, 300 MHz) were comparable, and gel permeation analysis consistently yielded a narrow peak with an apparent molecular weight between 5.0 × 104 and 10.0 × 104. Interpretation of the results was facilitated by α-L-arabinofuranosidase debranching of WE-AGP. For flour samples of 18 wheat cultivars (10 from 1994 harvest, eight from 1996 harvest), the variation in percentage of water-extractable arabinoxylan (WE-AX) (0.31–0.78% of dry matter) was much larger than the variation in percentage of water-extractable arabinogalactan (WE-AG) (0.24–0.33%). The ratio of WE-AX to WE-AG for flour samples of different wheat cultivars varied between 1.00 and 2.44.  相似文献   

13.
14.
The purpose of this study was to evaluate the differences among four retail whole wheat flours with respect to particle size distribution and composition of fractions separated by sieving. Interestingly, not only were significant differences discovered among the brands for particle size distribution, but lots within two of the brands were significantly different (P < 0.05), suggesting that flour particle size produced by the same company is not always consistent. Starch damage ranged from 4.67 to 7.69%. As expected, darker colors were associated with the larger particle size fractions, and the colors lightened as particle size decreased. This observation suggested that the differences in particle size resulted from differences in the degree to which the bran fraction of the kernel was milled, an observation substantiated by the distribution of ash in each fraction, which ranged from 0.37 to 38.0% of total ash. Distribution of protein ranged from 0.19 to 61.8% of total protein. These data are relevant because differences in particle size distribution and composition affect functionality, sensory acceptability, nutritional properties, and shelf life of whole wheat flour.  相似文献   

15.
In the present study, bioprocessing with eight microbial strains including Bacillus species, yeasts, and filamentous fungi was evaluated for its potential to improve the phenolic acid composition and antioxidant activity of wheat bran. The soluble free and soluble conjugated fractions of ethanolic extracts of the treated bran samples were compared for their total phenolic contents, phenolic acid composition, and in vitro antioxidant activities. In general, total phenolic content in the soluble free fraction increased significantly, accounting for 241.11 ± 1.25 μg of gallic acid equivalents (GE)/g (Rhizopus oryzae), 230.50 ± 1.05 μg of GE/g (Mucor circinelloides), and 230.19 ± 1.02 μg of GE/g (Saccharomycopsis fibuligera). The phenolic acid composition, especially of the soluble free fraction, was improved most by S. fibuligera (hydroxybenzoic, vanillic, syringic, and trans‐ferulic acids), M. circinelloides (chlorogenic acid), and R. oryzae (protocatechuic, trans‐coumaric, and benzoic acids). Comparatively, bioprocessing exhibited less effectiveness on conjugated phenolic acid composition. Fermented wheat bran displayed enhanced reducing capacity, superoxide anion radical scavenging activity, and 1,1‐diphenyl‐2‐picrylhydrazyl radical scavenging activity in comparison with the nonfermented sample. The antioxidant activity was significantly correlated to the total phenolic content.  相似文献   

16.
The baking performance of a set of flours from 13 wheat cultivars was determined by means of two different microscale baking tests (10 g of flour each). In the micro‐rapid‐mix test the dough was mixed for a fixed time at a high speed, whereas the microbaking test used mixing to optimum dough consistency in a microfarinograph. Quality parameters such as sedimentation value, crude protein content, dough and gluten extension data, and microfarinograph data were also determined. Finally, quality‐related protein fractions (gliadins, glutenins, SDS‐soluble proteins, and glutenin macropolymer) were quantitated by extraction/HPLC methods with reversed‐phase and gel‐permeation columns. All quality parameters were correlated with the bread volumes of both baking tests. The results demonstrated that the microbaking test (adapted mixing time) was much more closely related to the quality parameters than the micro‐rapid‐mix test (fixed mixing time), which hardly showed any correlation. Among the standard quality parameters, only the crude protein content showed a medium correlation with the bread volume of the microbaking test (r = 0.71), whereas the contents of gliadins (r = 0.80), glutenins (r = 0.76), and glutenin macropolymer (r = 0.80) appeared to be suitable parameters to predict the baking performance of wheat flour. All other quality parameters were not or were only weakly correlated and unsuitable for predicting baking performance.  相似文献   

17.
Simple phenolic acid levels were determined on pooled millstreams of five different classes of Canadian wheat milled to ~75, 80, and 85% extraction. Pooled flours and whole grain were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) to establish endogenous levels of insoluble bound, soluble esterified, and free phenolic acids. Only ferulic acid was detected in the insoluble bound category, which accounted for >80% of the total phenolic acids present in every flour. The soluble esterified phenolic acids accounted for up to 17% of the overall total phenolic acid content within a flour. The major constituents were sinapic, ferulic, and vanillic acids, with minor amounts of coumaric, caffeic, and syringic acids. Free phenolic acids accounted for a maximum of 6% of the total phenolic content of any prepared flour. Ferulic acid was the major free phenolic acid, while sinapic acid was not detected in any flour. Significant correlations (r = 0.64–0.97, P < 0.05) were observed between insoluble bound ferulic acid, individual soluble esterified acids, and most free acids with polyphenol oxidase activity, as well as color and ash content for each class.  相似文献   

18.
The effects of wheat protein and starch on yellow‐alkaline noodles have not been fully clarified. Twenty‐four hard winter wheats with varying protein, hot‐water swelling power (SP95), and polyphenol oxidase (PPO) activity were milled into long‐patent and short‐patent flours. Protein, SP95, and PPO activity in the 48 flours were 8.2–12.9%, 16.2–24.1 g/g, and 80–157 ΔA480/mg of protein/min, respectively. Lightness of raw noodles declined with increasing protein and PPO levels but yellowness decreased and then increased. Tensile force to break the cooked noodles was positively correlated with SP95 and protein. Compression (50%) force of noodles made from flour with high SP95 ≈21 g/g, averaged ≈20% below those made from low SP95 ≈17 g/g of flour. Compression force was measured in the long dimension of a single noodle strand using a rectangular probe. The instrumental measurements suggest that alkaline noodles made from a single‐null partial‐waxy wheat with medium SP95 ≈19.9 g/g will have a tender bite and a cohesive texture compared with those from a low SP95 wheat with a hard bite and fracturable texture. Furthermore, alkaline noodles from a double‐null partial‐waxy wheat with high SP95 will have an extra soft bite unless flour protein is above ≈12.5%. Hard‐white, dual‐purpose wheat should have a low level of PPO and, depending on the preferred noodle‐eating texture, a low to medium SP95 level. Such wheats with medium protein levels (11–12%) are well suited for alkaline noodles because of improved color and surface smoothness, whereas the same wheats with 12–13% protein are well suited for bread. Wheats with medium SP95 also reduce cooking loss and increase cooked yield.  相似文献   

19.
The dough properties and baking qualities of a novel high‐amylose wheat flour (HAWF) and a waxy wheat flour (WWF) (both Triticum aestivum L.) were investigated by comparing them with common wheat flours. HAWF and WWF had more dietary fiber than Chinese Spring flour (CSF), a nonwaxy wheat flour. Also, HAWF contained larger amounts of lipids and proteins than WWF and CSF. There were significant differences in the amylose and amylopectin contents among all samples tested. Farinograph data showed water absorptions of HAWF and WWF were significantly higher than that of CSF, and both flours showed poorer flour qualities than CSF. The dough of WWF was weaker and less stable than that of CSF, whereas HAWF produced a harder and more viscous dough than CSF. Differential scanning calorimetry data showed that starch in HAWF dough gelatinized at a lower temperature in the baking process than the starches in doughs of WWF and CSF. The starch in a WWF suspension had a larger enthalpy of gelatinization than those in HAWF and CSF suspensions. Amylograph data showed that the WWF starch gelatinized faster and had a higher viscosity than that in CSF. The loaves made from WWF and CSF were significantly larger than the loaves made from HAWF. However, the appearance of bread baked with WWF and HAWF was inferior to the appearance of bread baked with CSF. Bread made with WWF became softer than the bread made with CSF after storage, and reheating was more effective in refreshing WWF bread than CSF bread. Moreover, clear differences in dough and bread samples were revealed by scanning electron microscopy. These differences might have some effect on dough and baking qualities.  相似文献   

20.
In control dough, endogenous wheat lipase was inactive, because the triacylglycerol (TAG), 1,2-diacylglycerol (DAG1,2), and 1,3-diacylglycerol (DAG1,3) fractions of nonpolar lipids were not affected by mixing. Conversely, the free fatty acid (FFA) and monoacylglycerol (MAG) fractions decreased, mainly due to the oxidation of polyunsaturated fatty acids (PUFA) catalyzed by wheat lipoxygenase. Addition of exogenous lipase to flour (15 lipase units [LU] per gram of dry matter) resulted in substantial modification of nonpolar lipids during dough mixing. Due to the 1,3 specificity of the lipase used in this experiment, the TAG and DAG1,3 fractions decreased, whereas the MAG and FFA fractions increased. The DAG1,2 fraction increased at the beginning of mixing and decreased after 40 min of mixing. Moreover, part of the PUFA released by lipase activity was oxidized by wheat lipoxygenase, resulting in major losses of PUFA. Conversely, the net content of the saturated and monounsaturated fatty acids (SMUFA) remained constant, because the free SMUFA content increased primarily at the expense of the esterified forms. For a constant mixing time of 20 min, increasing the amount of lipase added to dough (from 2.5 to 25 LU/g of dry matter) resulted in a linear decrease in the TAG fraction and a linear increase in the SMUFA content in the FFA fraction. At the same time, the PUFA content of the FFA fraction increased only for additions of lipase to flour of >5 LU/g of dry matter, due to partial oxidation by wheat lipoxygenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号