首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preharvest sprouted wheat is often characterized by the falling number (FN) test. FN decreases in preharvest sprouted wheat as enzymatic degradation of the starchy endosperm increases. Wheat with FN values <250–275 is often discounted at the time of sale. The intent of this investigation was to evaluate the effects of debranning or pearling on the flour quality traits of five samples of wheat rated as low, med‐low, medium, med‐high, and sound that exhibited a range in FN values of 62–425 sec. Replicates of each sample were pearled for 30, 60, and 120 sec to remove portions of the outer bran layers before milling. FN was highly correlated with α‐amylase activity (r > ‐0.97) in the med‐low, medium, and med‐high FN sample sets as pearling time increased. FN increased in the medlow, medium, and med‐high FN samples by 128, 123, and 80%, respectively, after 120 sec of pearling. Pearling had no effect on flour FN of the low FN sample but α‐amylase activity was significantly decreased. Pearling had little or no effect on FN and α‐amylase activity of the sound sample. FN was moderately to strongly correlated with Rapid Visco Analyser (RVA), alveograph, and farinograph properties, and poorly correlated with protein content, flour yield, and bread loaf volume. In subsequent breadmaking studies, bread loaf volume, and crumb characteristics of flour from pearled wheat were not significantly different from loaf volume and crumb characteristics of flour from the corresponding nonpearled wheat.  相似文献   

2.
Fruits of Capsicum species such as paprika (Capsicum annuum cv.), Tomapi (Capsicum annuum subsup. annuum var pomiferum), pimento (Capsicum annuum var. angulosum), and cayenne (Capsicum annuum L.) were blended with wheat flour for breadmaking. Breadmaking properties such as the bread height (mm) and specific volume (cm3/g) are improved by the addition (8%) of any mature fruit of Capsicum species. Among these species, paprika at different growth and maturity stages was used for breadmaking. Breadmaking was enhanced with increasing fruit maturity. Bread height and specific volume on baking with green paprika‐wheat flour were lower than those of controls. When green paprika was heated in an autoclave, the breadmaking properties matched those of controls, which suggested that the impaired breadmaking properties caused by green paprika were due to protease. Size‐exclusion high‐performance liquid chromatography (SE‐HPLC) of flour proteins extracted from wheat flour mixed with heated and unheated paprika also suggested the presence of protease in green paprika. When red paprika was heated under the same conditions, the color changed to brown, and the breadmaking properties did not decrease but increased only slightly. This suggested that carotenoids were not related to the breadmaking properties. A suspension of the heated red paprika was dialyzed against water; after dialysis, the water was concentrated to syrup. The concentrated syrup and dialyzed suspension in the dialysis tube were blended with wheat flour and breadmaking was performed. The results indicated that the improvement of breadmaking properties was due to the dialyzed outer solution, which was heat‐stable and contained LMW materials derived from red paprika.  相似文献   

3.
Breadmaking properties such as bread height and specific volume were improved in bread from wheat flour with added disulfides such as dimethy disulfide (M2S2), diethyl disulfide (E2S2), dipropyl disulfide (Pro2S2), and dibutyl disulfide (B2S2). However, the amount of disulfides for maximum breadmaking properties was various and strongly related to the number of carbons (C) in the disulfide. Brabender farinographs of disulfide‐wheat flour showed an interesting profile, and the properties of the modification of the width of the tail. Size‐exclusion high performance liquid chromatography (SE‐HPLC) of the wheat proteins in the control and the disulfide‐added flours showed profiles of low, medium, and high molecular weight peaks. The area of the high molecular weight peak was larger in the disulfide‐added flours than in the control, indicating that this protein was important for the improvement of breadmaking properties.  相似文献   

4.
Five registered cultivars of hull-less barley (HB) with regular or waxy starch were milled in a Quadrumat Jr. mill to obtain whole grain flour; pearled in a Satake mill (cultivar Condor only), and the pearled fractions examined by microscopy to determine true HB bran. The samples were milled after tempering and drying in a Buhler mill to obtain bran and flour yields. Flour color and composition of HB were unaltered on milling in the Quadrumat Jr. mill. Microscopic evidence showed that a 70% pearl yield was devoid of the grain's outer coverings, including the aleurone and subaleurone layers. Therefore, the balance of 30% constitutes true bran in HB. Dry milling (as-is grain moisture) of regular starch HB in the Buhler mill gave 59% total flour and 41% bran (bran + shorts) yields, the comparative values for the waxy starch HB were 42 and 58%. On tempering HB from 9 to 16% grain moisture, the total flour yield decreased in both types of HB but to a lesser extent in the waxy starch HB due to decreases in reduction flour. On drying HB to 5 or 7% moisture, total flour yields increased due to contamination with bran and shorts. The milling study led to the conclusion that HB, at best, be dry-milled and a bran finisher be used to obtain commercial flour extraction rates. Lower total flour yields in the waxy starch HB than in the regular starch HB milled at the same grain moisture levels seemed due to higher β-glucan rather than grain hardness. Waxy starch HB flour had higher mixograph water absorption and water-holding capacity than regular starch HB or soft white wheat flour milled under identical conditions. Roller-milled HB products offer the best potential for entry into the food market.  相似文献   

5.
The current wheat milling process separates bran from endosperm by passing tempered wheat kernels through successive break rolls and sifters. Using hydrolytic enzymes during tempering degrades bran and aleurone layers and can improve milling efficiency and yield. This study was conducted to evaluate the effects of chemical and enzymatic treatments of wheat kernels before milling on physical and milling characteristics of the resulting wheat and flour quality. Hard wheat kernels were soaked in dilute acid or water and dried back to original moisture before being tempered with enzymes in water. Kernel physical and milling characteristics (600 g) were evaluated. Dilute acid soaking did not affect the 1,000‐kernel weight and diameter but softened treated kernels. When treated kernels were pearled, bran removal was mostly from ends; and the reducing sugar content in enzyme‐treated bran was significantly higher than the control. Compared with the control, acid‐soaked enzyme‐tempered kernels showed small but significant improvement in straight flour yield, with virtually no difference in protein content, and flour color. Chemical and enzyme treatment resulted in higher ash in flour. These differences were not seen in milling of larger batches (1,500 g) of kernels.  相似文献   

6.
During whole grain flour (WGF) storage, lipase activity causes partial loss of its functionality and the sensory acceptability of products produced from it. The objective of this research was to evaluate the effect of steaming and washing on lipase activity in (fractions of) wheat. Steam treatment conditions were optimized for wheat grains and their bran, shorts, and flour fractions. Lipase activities were determined colorimetrically, as were peroxidase, endoxylanase, and α‐amylase activities. Steaming grains for 180 s effectively inactivated lipase, peroxidase, endoxylanase, and part of the α‐amylase without gelatinizing starch. The work further demonstrated that lipase is mainly, if not only, located in the bran fraction. Separate bran treatment holds promise for obtaining WGF with reduced lipase activity but without altered functional properties. Washing grains did not reduce WGF lipase activity.  相似文献   

7.
This research optimized the extraction of different protein fractions from barley grains and assessed the physicochemical properties of the fractions obtained. Pearling was first used to remove the grain's outer layers (mainly bran and germ) so that the barley cytoplasmic proteins (albumin and globulin) would be enriched in the pearling flour (PF), while endosperm proteins (hordein and glutelin) would be enriched in the pearled grain flour (PGF). Salt, alcohol, and alkaline solutions were then used to extract different barley protein fractions from PF and PGF. The effects of extraction solvent type, pH, temperature, and extraction time on protein content and extraction efficiency were studied. Aqueous ethanol (55%, v/v) efficiently extracted barley hordein from PGF at 60°C, whereas pH 11.5 alkaline solution was the most efficient for extracting both cytoplasmic and endosperm proteins from barley PF and PGF at 23°C. Subunit molecular weight, amino acid composition, and the functional properties of each isolated barley protein fraction were investigated. Barley glutelin demonstrated superior oil‐binding property and emulsifying stability, whereas barley hordein exhibited good foaming capacity.  相似文献   

8.
Mineral content, as determined and expressed by ash content, serves as an index of wheat flour quality for flour millers and food manufacturers who prefer flour of low mineral content, even though the significance of mineral content on the functional properties of wheat flour is not well understood. We explored whether minerals have any influence on the functional properties of wheat flour and product quality of white salted noodles. Ash, obtained by incinerating wheat bran, was incorporated into two hard white spring wheat flours and their starches to raise the total ash content to 1, 1.5, or 2%. Pasting properties were determined using a rapid visco analyzer (RVA). Addition of ash increased the peak viscosity of the flours in both water and buffer solution but did not affect the peak viscosity of starch. Wheat flours with added ash showed lower pasting temperature by approximately 10°C in buffer solution. Mineral extracts (15.3% ash) isolated from wheat bran, when added to increase the ash content of wheat flour and starch to 2%, increased the peak viscosity and lowered the pasting temperature of flour by 13.2–16.3% but did not affect the pasting properties of the isolated starch. The mineral premix also increased peak viscosity of wheat flour but not in starch. Added ash increased noodle thickness and lowered water retention of cooked noodles while it exhibited no significant effect on cooked noodle texture as determined using a texture analyzer.  相似文献   

9.
Two cultivars of wheat (Triticum aestivum L.), Sunco and Sunsoft, were used to study the influence of storage time and temperature on the formation of starch-lipid complexes in flour pastes. Untreated and fat-reduced whole meal flours were stored separately for up to 12 months at 4, 20, and 30°C. The stored samples were analyzed for fat acidity, pasting properties, and iodine binding values. Fat acidity increased significantly in the untreated flour samples stored at 30 and 20°C compared with 4°C. Starch pasting properties, as measured using a Rapid Visco Analyser (RVA) indicated that the final viscosity of untreated flour samples of both cultivars increased significantly with storage time and elevated temperature, and correlated positively with increased fat acidity. Iodine binding values of the RVA pastes decreased with storage time and elevated temperature, and correlated negatively with fat acidity and final viscosity. The fat-reduced Sunco and Sunsoft flours showed less pronounced changes compared with untreated flours, whereas small changes in the RVA parameters were noted in grains stored over 12 months. The results indicate that free fatty acids are released during storage and that they increase the potential for starch-lipid complex formation when stored whole meal wheat flours are pasted in the RVA. These changes were evident after two to three months of storage at 20 and 30°C.  相似文献   

10.
Flour mill streams obtained by milling grain of 10 bread wheat cultivars grown in the Skopje region of Macedonia were analyzed for rheological and breadmaking quality characteristics and for composition of gliadins and HMW‐GS. The objective of this study was to examine the relationships between the composition of gluten proteins and breadmaking quality, as well as to determine the importance of gluten proteins for technological quality of flour mill streams. The grain was milled in an experimental mill according to a standardized milling procedure, with three break and three reduction passages. The addition of two vibratory finishers in the milling scheme enabled better separation of bran. A small‐scale baking method for evaluation of the breadmaking properties was developed, and electrophoretic methods including acid‐PAGE and SDS‐PAGE were used to determine the composition of the gluten proteins. There were significant differences in the degree of dough softening of individual and total flour fractions of the flour mill streams for cultivars with different alleles from six loci, for farinograph water absorption from seven loci, and for bread loaf volume and crumb quality score from six loci. The Glu‐1 quality scores for the wheat cultivars investigated were 3–9 and proved to be a useful indicator of breadmaking quality. The novel feature of the investigation related to the breadmaking potential of the flour mill streams compared with straight‐run flours.  相似文献   

11.
Protein changes for four hard red spring wheat genotypes (Len, Marshall, 215, and Butte 86) were assessed at various stages of breadmaking using a size-exclusion HPLC technique. Breadmaking stages considered were flour, after mixing, before punching, after punching, after fermentation, and after proofing. Quality and functional characteristics of the four wheat genotypes were determined. The three main protein groups isolated by SE-HPLC were further characterized by SDS-PAGE. A direct relationship between polymeric glutenin (peak I of SE-HPLC fractions) in flours and loaf volume was found for the three wheat genotypes with identical high molecular weight glutenin subunit (HMW-GS) composition (2*, 7+9, 5+10) and one line with similar HMW-GS composition (2*, 7+9, 2+12), differing in the Glu-D1 locus. Quantitative changes in the distribution of SDS-soluble proteins fractionated by SE-HPLC were also examined. Peak I proteins (polymeric proteins) from SDS-extractable proteins tend to decrease during breadmaking, while peak III proteins (low molecular weight) tend to increase. Peak II (monomeric proteins, medium molecular weight) did not show a change in quantity during breadmaking. These results seem to indicate that some type of rearrangement took place during the breadmaking process to release proteins of smaller molecular weight.  相似文献   

12.
The content of tocopherols and tocotrienols, collectively known as vitamin E (tocols), was determined in fractions of roller‐milled wheat grains. The results showed that vitamin E components are present in all major flour fractions of wheat, but that the vitamin E content and composition differed significantly between fractions. The total content of vitamin E, calculated as alpha‐tocopherol equivalents, changed from 16.1 mg α‐TE/g in wheat grain to 12.2 mg α‐TE/g in roller‐milled wheat flour. The germ fraction had the highest content of tocopherols, and the content of α‐tocopherol (195.2 μg/g) was 16 times higher (on average) than in any other fraction. The content of tocotrienols was distributed more uniform in the wheat grain with the highest content in the bran fractions, and the content of β‐tocotrienol was higher than the content of α‐tocopherol in all milling fractions except the wheat germ. The content of β‐tocotrienol was 24.1 μg/g in wheat grain, 25.3–31.0 μg/g in the bran fractions, and 14.3–21.9 μg/g in the fractions of endosperm. Overall, germ and fine bran fractions represent good sources of vitamin E and might be used in breadmaking.  相似文献   

13.
Millstream flours, bran, pollard, and germ fractions were prepared from two Australian and two New Zealand wheat cultivars using a pilot‐scale roller mill. The distribution of six redox enzymes in milling fractions and the relationship of the enzymes to baking parameters were investigated. Lipoxygenase (LOX), dehydroascorbate reductase (DAR), and protein disulfide isomerase (PDI) tended to be higher in the tail‐end fractions of break and reduction flour streams, but the highest levels were in the bran, pollard, and germ fractions. These enzymes had moderate to strong correlations with ash content of flour. These results indicated that a considerable amount of these enzymes in the tail‐end flour streams were likely to be derived from contamination with bran, aleurone, or germ components of grain. Peroxidase (POX) tended to be higher in the break flours, but polyphenol oxidase (PPO) and ascorbate oxidase (AOX) tended to be evenly distributed in the millstream flours. These three enzymes generally had poor correlations with ash and baking parameters. LOX and DAR had a negative correlation with the baking quality of bread made in the absence of ascorbic acid (AA) but a poor correlation with improvement of bread quality made with AA. The negative correlation probably reflects the high content of ash (hence trichomes), glutathione, and protein thiols in those fractions that have high LOX and DAR, and these high‐reducing‐power components and trichomes in flour may be the actual cause of poor quality bread. PDI generally had a poor correlation with bread quality in the absence of AA but a significant positive correlation with improvement in the quality of bread made with AA. It thus seems that the endogenous levels of these six enzymes were not a limiting factor in the breadmaking process, except for PDI, the levels of which may have positively influenced breadmaking in the presence of AA.  相似文献   

14.
The physical, chemical, and morphological changes of maize seeds during germination were investigated using near‐infrared spectroscopy (NIR) and a method based on the Rapid Visco Analyser (RVA). Near‐infrared spectra provide information about both chemical and physical changes that occur in maize seed. The RVA curves make it possible to follow the process of germination. Four RVA parameters (peak viscosity, final viscosity, trough, and setback) were linearly correlated with germination time (R = 0.64–0.96), while the first derivatives of RVA curves contain specific information about starch structure. Water‐soluble protein (WSP) content of germinated maize seeds was measured using a flow injection analyser; this technique proved to be suitable for monitoring germination by following the mobilization of proteins. WSP and RVA parameters were highly correlated (R2 = 0.82–0.95) with predicted values calculated from NIR spectra of dry samples. Strong intercorrelations existed between NIR spectra and viscosity data from the beginning of the swelling and gelatinization process. The NIR and RVA methods and WSP measurements are sensitive tools for investigating the physiological status of maize seeds during germination. Detecting early phase of germination and predicting functional properties rapidly and nondestructively may enhance the importance of NIR spectroscopic methods in agricultural quality control.  相似文献   

15.
Wheat contains phenolic compounds concentrated mainly in bran tissues. This study examined the distribution of phenolics and antioxidant activities in wheat fractions derived from pearling and roller milling. Debranning (pearling) of wheat before milling is becoming increasingly accepted by the milling industry as a means of improving wheat rollermilling performance, making it of interest to determine the concentration of ferulic acid at various degrees of pearling. Eight cultivar samples were used, including five genotypes representing four commercial Canadian wheat classes with different intrinsic qualities. Wheat was pearled incrementally to obtain five fractions, each representing an amount of product equivalent to 5% of initial sample weight. Wheat was also roller milled without debranning. Total phenolic content of fractions was determined using the modified Folin‐Ciocalteau method for all pearling fractions, and for bran, shorts, bran flour, and first middlings flour from roller milling. Antioxidant activity was determined on phenolic extracts by a method involving the use of the free radical 2,2‐diphenyl‐l‐picrylhydrazyl (DPPH). Total phenolics were concentrated in fractions from the first and second pearlings (>4,000 mg/kg). Wheat fractions from the third and fourth pearlings still contained high phenolic content (>3,000 mg/kg). A similar trend was observed in antioxidant activity of the milled fractions with ≈4,000 mg/kg in bran and shorts, ≈3,000 mg/kg in bran flour, and <1,000 mg/kg in first middlings flour. Total phenolic content and antioxidant activity were highly correlated (R2 = 0.94). There were no significant differences between red and white wheat samples. A strong influence of environment (growing location) was indicated. Pearling represents an effective technique to obtain wheat bran fractions enriched in phenolics and antioxidants, thereby maximizing health benefits associated with wheat‐based products.  相似文献   

16.
Six commercially grown samples of hard spring wheat were milled using a tandem Buhler laboratory mill. Individual flour streams and branny by‐products, as well as whole‐grain wheat and straight‐grade flour, were characterized in terms of total (TP), water‐extractable (WEP), and water‐unextractable (WUP) pentosans. One representative cultivar sample was analyzed for its ratio of arabinose to xylose (A/X). TP and WEP of whole grain wheat of the six samples had ranges of 5.45–7.32% and 0.62–0.90% (dm), respectively. Neither TP nor WEP of whole grain was related to ash content variation. There was significant variation in the distribution and composition of pentosans in 16 millstreams of all the wheat samples, including bran and shorts fractions; TP and WEP contents had ranges of 1.69–32.4% and 0.42–1.76% (dm), respectively. When ash contents exceeded ≈0.6% (dm), strong positive correlations were obtained between ash and TP contents, and between ash and WUP contents for all the millstreams. Among bran and shorts fractions, TP and WUP content increased in the order of coarse bran > fine bran > shorts; while WEP, WEP/WUP and A/X showed the opposite pattern of variation of shorts > fine bran > coarse bran. Bran and shorts fractions had pentosan contents several times higher than would be predicted from the relationship between pentosan and ash contents of the flour streams. Pentosans therefore represented a much more sensitive marker of flour refinement compared with ash content. Pentosans of endosperm were substantially different in their extractability and composition from those of bran. On this basis, different functionalities of pentosans of bran and endosperm would be expected. Results demonstrated the importance of milling extraction and millstream blending in the functionality and quality of wheat flour for breadmaking.  相似文献   

17.
Freezing and prolonged frozen storage of dough results in constant deterioration in the overall quality of the final product. In this study the effect of wheat bran and wheat aleurone as sources of arabinoxylan (AX) on the quality of bread baked from yeasted frozen dough was investigated. Wheat fiber sources were milled to pass through a 0.5 mm screen, prehydrated for 15 min, and incorporated into refined wheat flour at 15% replacement level. Dough products were prepared from refined flour (control A), whole wheat flour (control B), aleurone composite flour (composite flour A), and bran composite flour (composite flour B) and stored at –18°C for 28 weeks. Dough samples were evaluated for breadmaking quality at zero time, 14 weeks, and 28 weeks of storage. Quality parameters evaluated were loaf weight, loaf specific volume, and crumb firmness. Composite flour bread samples showed the most resistance to freeze damage (less reduction in the overall product quality), indicating a possible role of some fiber components (e.g., AX) in minimizing water redistribution in the dough system and therefore lessening adverse modifications to the gluten structure. The data suggest that the shelf life of frozen dough and quality of obtained bread can be improved with the addition of an AX source.  相似文献   

18.
This study examined the effect of cell‐wall‐degrading enzymes added to temper water on wheat milling performance and flour quality. An enzyme cocktail consisting of cellulase, xylanase, and pectinase and five independent variables (enzyme concentration, incubation time, incubation temperature, tempered wheat moisture content, and tempering water pH) were manipulated in a response surface methodology (RSM) central composite design. A single pure cultivar of hard red winter wheat was tempered under defined conditions and milled on a Ross experimental laboratory mill. Some treatment combinations affected flour yield from the break rolls more than that from the reduction rolls. However, a maximum for flour yield was not found in the range of parameters studied. Though treatments did not affect the optimum water absorption for breadmaking, enzyme‐treated flours produced dough exhibiting shorter mixing times and slack and sticky textures compared with the control. Regardless of differences in mixing times, specific loaf volumes were not significantly different among treatments. Crumb firmness of bread baked with flour milled from enzyme‐treated wheat was comparable to the control after 1 day but became firmer during storage up to 5 days.  相似文献   

19.
The nicotinamide adenine dinucleotide coenzymes [NAD(P)(H)] are strong redox agents naturally present in wheat flour, and are indispensable cofactors in many redox reactions. Hence, it is not inconceivable that they affect gluten cross‐linking during breadmaking. We investigated the effect of increasing concentrations of NAD(P)(H) on gluten cross‐linking, dough properties, and bread volume using two flours of different breadmaking quality. Separate addition of the four nicotinamide coenzymes did not significantly affect mixograph properties. While addition of NAD+ hardly affected bread volume, supplementation with NADP(H) and NADH significantly decreased loaf volumes of breads made using flour of high breadmaking quality. Wheat flour incubation with NAD(P)H under anaerobic conditions increased wheat flour thiol content, while NAD(P)+ increased the extractability in SDS‐containing medium of the protein of the strong breadmaking flour. Based on the results, it was hypothesized that at least three reactions, competing for NAD(P)(H), occur during breadmaking that determine the final effect on protein, dough, and loaf properties. Next to coenzyme hydrolysis, the experiments pointed to coenzyme oxidation and NAD(P)(H) dependent redox reactions affecting protein properties.  相似文献   

20.
Mechanical properties of wheat grain outer layers from common wheat (Triticum aestivum L.) cultivars known to display distinct milling behavior were analyzed using uniaxial tension tests. Tensile modulus and strain to rupture of the tissues distinguished between the wheat cultivars. Values of strain to rupture were related to coarse bran size generated by grain milling, a characteristic that distinguishes the two hardness classes. As content of an aleurone marker in total or first break flour was also related to coarse bran size, extensibility of wheat grain outer layers' could be a key parameter to explain the observed tissue mechanical behavior and thus distribution of the aleurone layer content in flours. As tissue mechanical properties are generally linked to the cell wall biochemical composition and structure, analysis of the main wheat outer layers' cell wall compounds was undertaken to establish relationships with the differences observed in mechanical properties. No clear correlation could be found with one of the wheat outer layers' component but involvement of the outer layers' cell wall structure in the tissues behavior at milling was confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号