共查询到20条相似文献,搜索用时 15 毫秒
1.
Boyce RL 《Tree physiology》1993,12(3):217-230
I compared the shoot structures of high-elevation red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea (L.) Mill.). Needle widths, thicknesses and perimeters were measured to estimate total leaf areas from measured projected leaf areas. Measured needle perimeter/needle width ratios differed significantly from estimated ratios that assumed needles were either rhomboidal or elliptical in cross section. The vertical and horizontal silhouette shoot area to total leaf area ratios (STAR(v) and STAR(h)) of the two species were negatively correlated with needle packing and canopy height. Red spruce had higher values of STAR(v) than balsam fir at each canopy height, but STAR(v) declined with canopy height at a similar rate in the two species. The STAR(h) values of the two species did not differ significantly at a given canopy height. Needle packing increased with canopy height at the same rate in the two species. Needle weight increased in red spruce and decreased in balsam fir with increased needle packing, but showed no significant dependence on canopy height. Red spruce had higher values of STAR(h) than balsam fir at low values of needle packing, but STAR(h) values converged at high values of needle packing. The generally comparable values of STAR, along with similar needle diameters, may imply that red spruce and balsam fir have similar collection efficiencies of wet and dry particles. Measurements of STAR may be used to estimate leaf area indices (LAI) more accurately when using indirect techniques. 相似文献
2.
We investigated ecophysiological and growth responses of short (0.4 to 1.3 m in height) advance regeneration of red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea L.) six years after removal of 0, 40, 50, 60 and 100% of the overstory basal area (BA) in two yellow birch-conifer stands. Partial cuts significantly increased stomatal conductance of red spruce only. Light-saturated photosynthesis (leaf-area basis) of both species increased with BA removal, but unlike red spruce, specific leaf area (SLA) of balsam fir decreased with increased cutting intensity. Partial cuts appreciably increased the concentration of N and Ca in red spruce and balsam fir foliage, respectively, and resulted in decreased foliar concentrations of K in red spruce and Mg in balsam fir. The height and lateral growth of both species increased with BA removal, although partial cuts were more beneficial to balsam fir. The data suggest that short advance regeneration of red spruce and balsam fir can coexist under partial overstory conditions, but balsam fir has physiological characteristics and a capacity for morphological adjustment (SLA) that places it at an advantage when in competition with red spruce. 相似文献
3.
We analyzed indices of gap dynamics, i.e. gap formation and gap closure rates as well as turnover rates, in a montane conifer forest in the temperate zone and asked: (1) Are the characteristics of gap dynamics comparable with those of other temperate forests? (2) Do gap dynamics exhibit temporal trends, and (3) if so, are they related to recent climate change? We also addressed methodological issues concerning the differences observed at differing temporal and spatial scales of the used datasets. Thus, we asked further how the indices of gap dynamics are influenced (4) by differences in the length of observation periods and (5) by differences in gap size categories included in the study? 相似文献
4.
Surveys were undertaken on Mt. Mitchell, N. C. (USA) from Spring 1984 through 1987 to determine the extent and rate of decline and mortality of red spruce and Fraser fir ecosystems. Data indicate that regardless of cause and effect mechanisms the physical structure and integrity of the boreal montane forest has greatly deteriorated over the past 4 years. Along ridges, and particularly on west facing aspects greater than 80% of all mature stands are dead. No definitive conclusions can be made concerning etiological agents; however, current hypotheses include biotic factors, climatic abberations, and/or the acute or chronic stress from anthropogenic pollutants. 相似文献
5.
R. I. Bruck 《Forest Pathology》1989,19(7):389-398
Disease and insect surveys of three Southern Appalachian spruce-fir ecosystems were conducted between 1985–1988. Visual tree decline was correlated with the presence of fungal pathogens and insect pests. Fungi were isolated from tree cankers, necrotic roots and diseased foliage; while insect incidence and impact was assessed visually. With the exception of damage to Fraser fir inflicted by the balsam wooly adelgid, little significant pathology or insect infestation was noted. This survey indicates that major diseases and insect damage, particularly on red spruce, appear not be primarily causal in the observed forest decline. 相似文献
6.
Javed Iqbal David A. MacLeanJohn A. Kershaw Jr. 《Forest Ecology and Management》2011,261(6):1106-1114
Hemlock looper (Lambdina fiscellaria fiscellaria (Guen.)) is an economically damaging defoliator that undergoes periodic outbreaks in Newfoundland, Canada. It defoliates and causes extensive tree mortality to its primary host, balsam fir (Abies balsamea [L.] Mill.). We quantified tree survival using data from permanent sample plots (PSPs) and growth reduction or release using dendrochronology, and related these impacts to defoliation severity determined from annual aerial defoliation survey data. Such impact relationships are necessary as a fundamental input to a Decision Support System. Growth and survival of balsam fir, black spruce (Picea mariana (Mill.) B.S.P.) and white birch (Betula papyrifera Marsh.) were assessed from 1996 to 2008 in 48 Newfoundland Forest Service PSPs, selected based on four classes of defoliation severity. Two years of severe (71-100%) defoliation resulted in almost complete mortality for balsam fir, 10 years after defoliation, whereas survival was 70-80% for black spruce and white birch. Lower defoliation severity (1-2 years of moderate (31-70%) or 1 year of severe) resulted in approximately 60% survival for balsam fir and no reduction in survival for black spruce and white birch. Maximum growth reduction of balsam fir was 10-15% with 1 year of moderate-severe defoliation, 35-40% with 2 years of moderate defoliation, and about 50% with 2 years of severe defoliation. Growth recovered to pre-defoliation rates 5 years after defoliation ceased in all severity classes. Growth reduction and recovery of black spruce were more variable and lower than for balsam fir, and white birch exhibited only minor (<10%) growth reduction during the defoliation year or 1 year after defoliation. Control measures should focus on avoiding severe defoliation for two consecutive years. 相似文献
7.
8.
Thermogravimetric and differential thermal analyses techniques have been applied to investigate the thermal degradation characteristics
and chemical kinetics of Japanese cedar, cypress, fir, and spruce. The decomposition of the components could be modeled by
an Arrhenius kinetic expression. The kinetic parameters were extracted from the thermogravimetric data using least-squares
techniques. The heating rates used for the analyses were 10°, 5°, and 0.33°C/min; and the activation energy and reaction order
of the above woods were 7.54, 8.39, 2.87, and 7.88 kJ/mol and 0.71, 0.64, 0.44, and 0.63, respectively. Finally, carbonization
was done to produce charcoal from these woods under various operating conditions, and the charcoal was characterized in respect
to yield, heating value, electrical conductivity, and X-ray diffraction. The quality of the charcoal from fir was the best
among the four types of wood. The charcoal produced is inferior to binchotan (white charcoal) in respect to electrical conductivity
and crystalline structure.
Received: February 13, 2002 / Accepted: July 12, 2002
Acknowledgment The authors express their gratitude to Professor Yoshida of Applied Chemistry in Tokyo Metropolitan University for performing
the TG/DTA in his laboratory and for his valuable suggestions about the analyses. 相似文献
9.
Two-year-old, container-grown red spruce (Picea rubens Sarg.) seedlings from a New Hampshire seed source were exposed to 10 or 11 drying cycles in which the seedlings were not watered until their midday (1400 h) xylem water potentials averaged -1.57 MPa. Control seedlings were kept well watered to maintain midday water potentials of about -0.73 MPa. After the final drying cycle, the water-stressed seedlings were rehydrated and osmotic potentials were determined by pressure-volume analysis. Gas exchange at ambient CO(2) concentration (338 ppm) and at an elevated CO(2) concentration (838 ppm) was measured on both groups of plants as they slowly dried down. No osmotic adjustment or photosynthetic acclimation occurred as a result of the water-stress treatment and both groups of seedlings maintained photosynthesis to water potentials as low as -3.0 MPa. Twenty-four hours after rehydration, the water-stressed seedlings had photosynthetic rates as high as the control seedlings. Estimated stomatal limitation to photosynthesis was approximately 30% down to water potentials of -1.4 MPa, but increased steadily as water potentials decreased further. At ambient CO(2) concentrations (338 ppm) and water potentials averaging -2.45 MPa, photosynthetic rates of water-stressed seedlings were 15% those of well-watered seedlings, whereas when the same water-stressed seedlings were measured in the presence of an elevated concentration of CO(2) (838 ppm) their photosynthetic rates were 73% those of well-watered seedlings measured at an ambient CO(2) concentration (338 ppm). 相似文献
10.
Long-term growth and yield effects of respacing natural regeneration of Sitka spruce in Britain 总被引:2,自引:0,他引:2
Stands of Sitka spruce (Picea sitchensis (Bong.) Carr.) originating from natural regeneration can be extremely dense with high mortality, poor growth form and low volume production. Although costly, respacing (pre-commercial thinning) can reduce resource competition for the remaining trees, altering the final crop produced. Three experiments were established to examine the effect of respacing 1–2 m tall trees to different target densities. The impact on stand growth and yield was measured 11–17 years after respacing, and the longer-term impact was modelled to year 50. Unrespaced control treatments self-thinned at a similar and constant rate at two sites. At the third, extremely high initial density resulted in a higher rate of self-thinning and lower density after 11 years. Wider respacing treatments resulted in larger mean tree diameter, but there was no significant effect of respacing on stand volume 11–17 years after respacing; greater diameter growth did not compensate for low tree number. Results indicate a volume penalty associated with delaying respacing until trees were 4 m tall, but this treatment was unreplicated. Modelled stand volume in year 50 was higher for the 2.6 m × 2.6 m respacing treatment than for the 1.8 m × 1.8 m, 2.1 m × 2.1 m or 3.3 m × 3.3 m treatments. However, open-grown conditions may reduce timber quality compared to closer spacing treatments. The results are presented using a stand density management diagram for Sitka spruce growing in Canada and support recent suggestions that British stands have a shallower size–density relationship than Canadian stands. 相似文献
11.
Early tree growth, crop yields and estimated returns for an agroforestry trial in Goldsboro, North Carolina 总被引:1,自引:0,他引:1
Frederick Cubbage Viola Glenn J. Paul Mueller Daniel Robison Russell Myers Jean-Marie Luginbuhl Ron Myers 《Agroforestry Systems》2012,86(3):323-334
A 17 acre (6.9?ha) agroforestry research and extension alley cropping trial was established at the Center for Environmental Farming Systems in Goldsboro, North Carolina in January 2007, with a randomized block design with five replications. Loblolly pine (Pinus taeda), longleaf pine (Pinus palustris) and cherrybark oak (Quercus pagoda) were planted in staggered rows, with each species planted for 140?ft (43?m) per replication. Crop land alleys of 40?ft or 80?ft (12.2–24.4?m) wide were left between the tree rows. Crops of soybeans (Glycine max) and corn (Zea mays) were planted in alternating years since establishment. As of 2011, survival rates were 93% for cherrybark oak, 88% for longleaf pine and 97% for loblolly pine. Average tree diameter at ground level was 1.0?in (2.5?cm) for cherrybark oak, 2.1?in (5.3?cm) for longleaf and 3.2?in (8.1?cm) for loblolly. Heights averaged 4.6?ft (1.4?m) for cherrybark oak, 5.2?ft (1.6?m) for longleaf pine and 10.4?ft (3.2?m) for loblolly pine. Growth, yield and economic projections for traditional timber production indicated that species volumes and values tracked the height and diameter relationships measured on the site. Loblolly pine had the largest projected internal rate of return, at 7.2%, followed by longleaf pine with pine straw harvests at 5.5%, longleaf without pine straw at 3.5% and cherrybark oak at 1.9%. There might be more loss in crop and silvopasture production with loblolly, however, and production of pine straw for longleaf or game mast for cherrybark oak may offer other benefits. Crop yields on the sandy soils on the site were very poor during the 4?years observed, which had a series of droughts and floods. These led to net financial losses in those years for the demonstration site, but state-wide average farm budget returns did show moderate profits. The results support the merits of agroforestry systems in the upper South to diversify income and reduce financial risks. 相似文献
12.
13.
G. M. Rothe H. Weil M. Geider P. Pfennig V. Wilhelmi W. D. Maurer 《Forest Pathology》1988,18(2):98-111
A 17-year-old Norway-spruce stand at Mt. Kleiner Feldberg (Taunus) was investigated. The mineral soil was found to be in the aluminum buffer range (pH H2O = 3.5) but the fine and very fine roots of injured and uninjured trees were sufficiently supplied with Ca and Mg. Mg-deficiency, however, was observed in current-year needles where the contents were 30 % and 45 % below standard values in uninjured and injured trees, respectively. In injured trees the severe Mg-losses of current-year needles coincided with a 20 to 60 % loss of the activities of a number of enzymes involved in the carbohydrate metabolism and a significant reduction of the growth of current-year twigs. 相似文献
14.
Dumais Daniel Larouche Catherine Raymond Patricia Bédard Steve Lambert Marie-Claude 《New Forests》2019,50(4):573-592
New Forests - Advance regeneration of red spruce (Picea rubens Sarg.) is scarce in many forest stands, due to past clearcuts and heavy harvesting of large seed trees in partial cuts. Understory... 相似文献
15.
Kenji Fukuda Yuko Nishiya Masayuki Nakamura Kazuo Suzuki 《Journal of Forest Research》1997,2(2):79-84
Recently, symptoms of decline have been widely observed in Yezo spruce (Picea jezoensis) and Todo fir (Abies sachalinensis) in Hokkaido. In order to clarify the mechanism of decline, the water status of Yezo spruce and Todo fir trees in the Tokyo
University Forest in Hokkaido were investigated. The decline is observed mainly in stands damaged by Typhoon XV of 1981 (D-stands),
but is not observed in undamaged stands (C-stands). Sampled trees in both types of stands were selected, the severity of their
decline estimated, diurnal water potentials measured and water relation parameters such as water potential at turgor-loss
point (
) and osmotic potential at full saturation (
) were estimated by pressure-volume analysis. The diurnal trends of leaf water potential and midday water potential (
) of the sample trees were clearly different between the D-stands and the C-stand. Water stress in trees was much more severe
in the D-stands than in the C-stand.
and
of the declining trees were lower in the D-stands than in the C-stand. However,
and
were not significantly different between declining trees and healthy-looking trees in D-stands. It was concluded that stand-level
water stress, induced by the destruction of the canopy by the typhoon, was associated with the decline symptoms. The measurement
of water relation parameters proved to be useful for diagnosis and prediction of decline at a stand level in this area. 相似文献
16.
Recent studies have shown that winter needle mortality in red spruce (Picea rubens Sarg.) is increased by exposure to direct solar radiation, possibly as a result of photo-oxidative damage, accelerated winter desiccation, or reduced cold tolerance due to heating of sun-exposed needles. In an experiment at controlled subfreezing air temperatures of -10 to -20 degrees C, visible radiation was less effective than infrared radiation in producing needle desiccation and visible injury during freeze-thaw cycles. However, visible radiation produced a red-brown color in injured needles, similar to natural winter injury, whereas injured needles exposed to infrared radiation were yellow and injured needles kept in darkness were dark brown. Thus, visible radiation was necessary to produce the red-brown color of damaged needles, but not the injury itself. Needle desiccation was not strongly correlated with visible injury, but the pattern of variation in visible injury among trees and the positive correlation between electrolyte leakage and visible injury suggested that freezing damage following freeze-thaw cycles might cause the visible injury. This was confirmed by a second experiment that showed loss of cold hardiness in needles thawed by radiational heating for six consecutive days. Even with a constant nighttime temperature of -10 degrees C, six days of radiational heating of needles to above freezing caused a small (2.8 degrees C) mean decrease in needle cold tolerance, as measured by electrolyte leakage. Continuous darkness at -10 degrees C for six days resulted in an estimated 5.6 degrees C mean increase in needle cold tolerance. Freezing injury stimulated desiccation: cooling at 4 degrees C h(-1) to -43 or -48 degrees C increased the dehydration rate of isolated shoots by a factor of two to three during the first day after thawing. Within three days at 15 to 22 degrees C and 50% relative humidity, the mean water content of these shoots fell to 60% or lower, compared to 90% or greater for unfrozen controls or shoots subject to less severe freezing stress. In some but not all severely freeze-stressed shoots, accelerated needle desiccation and abscission were accompanied by a red-brown color typical of red spruce winter needle injury. We conclude that severe winter desiccation in red spruce may often be due to prior freezing injury, increased as a result of exposure to direct solar radiation. Furthermore, freezing injury in red spruce may sometimes cause desiccation and abscission of green needles. 相似文献
17.
《Scandinavian Journal of Forest Research》2012,27(6):550-558
Abstract Effects of stump harvesting on the properties of surface soil and on the density, structure and growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) stands were estimated in a field trial in western Finland. The experiment was established in 1977 and measured in 2010. Stems and logging residues were harvested after clear-cutting, and stumps were lifted and removed from half of the experimental area. Sixteen plots were planted with pine seedlings and 16 with spruce. The main effects of stump harvesting were improved survival of planted trees and an increase in natural regeneration. No clearly negative effects were noted in the stand development. Stump harvesting had no or minimal effects on the properties of the organic layer and those of the 0- to 10-cm mineral-soil layer. Soil properties did not differ between tree species. Pine production was higher on plots with stump removal compared to plots without soil treatment. 相似文献
18.
Four clones of Sitka spruce (Picea sitchensis (Bong.) Carr.) from two provenances, at 53.2 degrees N (Skidegate a and Skidegate b) and at 41.3 degrees N (North Bend a and North Bend b), were grown near Edinburgh (55.5 degrees N), U.K., for three growing seasons in ambient (~350 micromol per mol) and elevated (~700 micromol per mol) CO2 concentrations under conditions of non-limiting water and nutrient supply. Bud phenology was not affected by elevated [CO2] in the second growing season, but in the third year, the duration of shoot extension growth in three of the four clones (North Bend clones and Skidegate a) was significantly shortened, because of the suppression of lammas growth. Saplings in elevated [CO2] had significantly greater dry masses of all components than saplings in ambient [CO2]. However, comparison of relative component dry masses between plants of similar size showed no effect of [CO2] treatment on plant allometric relationships. This finding, and the observed suppression of lammas growth by high [CO2] during the third growing season suggests that the main effect of increasing [CO2] is to accelerate sapling development. Clonal provenance did not affect dry mass production in ambient [CO2]. However, in elevated [CO2] the more southerly clones significantly out-performed the more northerly clones when grown at a latitude close to the latitudinal provenance of the Skidegate clones. As atmospheric carbon dioxide concentration rises, such changes in the relative performance of genotypes may be exploited for economic gain through appropriate selection of provenances for forest plantings. 相似文献
19.
Acidic deposition in high-elevation forests in the Appalachian Mountains of the eastern United States has been implicated in the decline of red spruce (Picea rubens Sarg.). Elevated soil acidity may increase soil Al availability and toxicity to roots. Enhanced soil solution NO(3) (-) concentrations, resulting from precipitation inputs and enhanced soil organic matter mineralization, may exacerbate Al toxicity by increasing root Al uptake. We exposed red spruce seedlings to 350, 500, 800 or 1400 micro M NO(3) (-) and 0 or 200 micro M Al in a factorial design in sand-nutrient solution culture to test if increased NO(3) (-) concentrations enhance Al uptake and toxicity. In addition to significant reductions in seedling growth parameters resulting from Al exposure, we found significant interactions between NO(3) (-) and Al for seedling height growth rate, needle weight, shoot weight and root weight. Differences in these parameters between Al treatments became more pronounced as solution NO(3) (-) concentration increased and reflected an Al-mediated inhibition of seedling response to increasing NO(3) (-) concentration. Solution NO(3) (-) concentrations above 500 micro M induced root nitrate reductase (NR) activity, whereas shoot NR activity increased in response to NO(3) (-) up to 500 micro M and declined above that concentration. In contrast, exposure to Al depressed NR activity of roots but tended to stimulate needle NR activity. Foliar N concentrations increased in seedlings grown in cultures containing between 350 and 500 micro M NO(3) (-), with no change above 500 micro M. Increasing concentrations of NO(3) (-) depressed foliar P concentrations, with reductions being greatest in seedlings exposed to 1400 micro M NO(3) (-). Exposure to Al increased foliar Ca, K and Al concentrations, decreased foliar P concentrations, and inhibited increases in foliar Mg concentration in response to increasing NO(3) (-). The consistent interactions between NO(3) (-) and Al for growth, root NR activity and foliar Mg concentration were the result of an inhibition of seedling response to NO(3) (-) mediated by Al in solution, rather than enhanced Al toxicity resulting from growth in the presence of elevated NO(3) (-) concentrations. 相似文献
20.
In managed forests dominated by true fir (Abies) species, stands are often restocked using understory trees retained during timber harvest, making the effects of dwarf mistletoe (Arceuthobium spp.) infestation on small true fir a concern. This study examined the response of small red (A. magnifica) and white (A. concolor) fir and their dwarf mistletoes (A. abietinum f.sp. magnificae and A. abietinum f.sp. concoloris, respectively) to precommercial thinning treatments in fir‐dominated stands in the Sierra Nevada Mountains of California. Tree diameters and dwarf mistletoe ratings were monitored from 1981 to 2001, and mortality was observed from 1981 to 2006. Red and white fir survival and radial growth decreased significantly with greater mistletoe ratings and increased with larger diameters and live crown ratios. Thinning significantly increased survival and growth of white, but not red fir. Over the course of the study, mistletoe ratings for both fir species did not change significantly in unthinned stands, but increased in thinned stands. However, while statistically significant, increases in mistletoe ratings in thinned stands were gradual and mistletoe ratings did not statistically differ between treatments 20 years post‐thinning. Additionally, thinning did not significantly influence mistletoe spread to uninfected trees, indicating that precommercial thinning in lightly infested red and white fir stands will not likely result in substantial increases in dwarf mistletoe abundance over typical harvesting intervals. Overall, while severe dwarf mistletoe infection ratings reduced tree survival and growth, because ratings remained low, actual losses resulting from mistletoes during this study were minor and will not likely result in substantial economic losses over normal harvesting intervals. This finding indicates that precommercial thinning treatments designed specifically to compensate for mistletoe‐associated losses may not be necessary when managing red and white fir for timber production. 相似文献