首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were conducted with two newly developed gluten‐free bread recipes. One was based on corn starch (relative amount 54), brown rice (25), soya (12.5), and buckwheat flour (8.5), while the other contained brown rice flour (50), skim milk powder (37.5), whole egg (30), potato (25), and corn starch (12.5), and soya flour (12.5). The hydrocolloids used were xanthan gum (1.25) and xanthan (0.9) plus konjac gum (1.5), respectively. Wheat bread and gluten‐free bread made from commercial flour mix were included for comparison. Baking tests showed that wheat and the bread made from the commercial flour mix yielded significantly higher loaf volumes (P < 0.01). All the gluten‐free breads were brittle after two days of storage, detectable by the occurrence of fracture, and the decrease in springiness (P < 0.01), cohesiveness (P < 0.01), and resilience (P < 0.01) derived from texture profile analysis. However, these changes were generally less pronounced for the dairy‐based gluten‐free bread, indicating a better keeping quality. Confocal laser‐scanning microscopy showed that the dairy‐based gluten‐free bread crumb contained network‐like structures resembling the gluten network in wheat bread crumb. It was concluded that the formation of a continuous protein phase is critical for an improved keeping quality of gluten‐free bread.  相似文献   

2.
The effects of freeze damage on the crumb grain and on the underlying gluten fibrils of baked breads were studied using scanning electron microscopy (SEM) and magnetic resonance imaging (MRI). Sweet and white bread doughs were stored at ‐20°C and subjected to freeze‐thaw cycles. SEM images of grain pore walls that were washed with distilled water (20°C) clearly showed that gluten fibrils forming the skeletal framework of pore walls were cut and became coarse and nonuniform strings and that many knots were generated on gluten fibrils from freeze damage. An increase in the number of freeze‐thaw cycles increased both the coarseness of the gluten fibrils and the size of the knots, although the apparent damage was not clearly detected on the crumb grain with MRI.  相似文献   

3.
Selected types of commercial breads obtained from local markets, including white sandwich, Irish oatmeal, soft rye, hearty rye, sour dough, home-like white, and onion-basil, were analyzed for volatiles. Using a purge and trap instrument, volatiles were purged directly from fresh crumb and crust samples of each bread type, collected on a trap (Tenax-TA), and transferred to a gas chromatograph. Separated components were detected and identified using mass and infrared spectroscopic detectors. Many components were present in all of the bread samples, with relative amounts varying among bread types and crust and crumb samples of a given bread type. Alcohols were generally the most abundant, followed in approximate order by aldehydes, esters, ketones, acids, various aromatics, terpenes, and hydrocarbons. Flavor additives, such as limonene, carvone, and other related compounds, were found mostly in rye and onion-basil breads. Composition of volatiles from sour dough bread differed greatly from the other breads, especially in increased levels of aldehydes, acids, and certain esters. Unsaturated aldehydes, such as 2-hexenal and 2-heptenal, were most abundant in sour dough bread.  相似文献   

4.
It is well known that gluten plays a major role in determining cooking quality in durum wheat pasta. This work is an attempt to systematically elucidate the role of gluten quantity and nature in determining cooking quality as a function of the drying cycle used in the manufacturing process. Gluten and starch were fractionated from two durum wheat cultivars possessing good and poor gluten quality. Either of them were then added back to the original base semolina to alter its protein content and to produce two semolina series with identical protein contents. Semolinas were processed into pasta and dried following three drying programs (low, medium, and high temperature). Cooking quality was determined with sensorial, chemical, and instrumental methods. The results indicate that optimum cooking time is governed by gluten quality. The positive effect on cooking quality of increasing gluten contents and of the application of HT drying is evident in weak gluten samples, but it is not significant in the strong gluten samples.  相似文献   

5.
The effects of amylose content on thermal properties of starches, dough rheology, and bread staling were investigated using starch of waxy and regular wheat genotypes. As the amylose content of starch blends decreased from 24 to 0%, the gelatinization enthalpy increased from 10.5 to 15.3 J/g and retrogradation enthalpy after 96 hr of storage at 4°C decreased from 2.2 to 0 J/g. Mixograph water absorption of starch and gluten blends increased as the amylose content decreased. Generally, lower rheofermentometer dough height, higher gas production, and a lower gas retention coefficient were observed in starch and gluten blends with 12 or 18% amylose content compared with the regular starch and gluten blend. Bread baked from starch and gluten blends exhibited a more porous crumb structure with increased loaf volume as amylose content in the starch decreased. Bread from starch and gluten blends with amylose content of 19.2–21.6% exhibited similar crumb structure to that of bread with regular wheat starch which contained 24% amylose. Crumb moisture content was similar at 5 hr after baking but higher in bread with waxy starch than in bread without waxy starch after seven days of storage at 4°C. Bread with 10% waxy wheat starch exhibited lower crumb hardness values compared with bread without waxy wheat starch. Higher retrogradation enthalpy values were observed in breads containing waxy wheat starch (4.56 J/g at 18% amylose and 5.43 J/g at 12% amylose) compared with breads containing regular wheat starch (3.82 J/g at 24% amylose).  相似文献   

6.
The effect of baking method on folates of rye and wheat breads, as well as the effect of sourdough fermentation of rye, were examined. Sourdough fermentations were performed both with and without added yeast, and samples were taken throughout the baking process. Samples were analyzed microbiologically for their total folate content after trienzyme extraction. Individual folate vitamers were determined by HPLC after affinity chromatographic purification. The lowest folate contents for both rye and wheat breads were found from breads baked without added yeast. Total folate content increased considerably during sourdough fermentation due to increased amounts of 10‐HCO‐H2folate, 5‐CH3‐H4folate, and 5‐HCO‐H4folate. Baker's yeast contributed markedly to the final folate content of bread by synthesizing folates during fermentation. Proofing did not influence total folate content but changes in vitamer distribution were observed. Folate losses in baking were ≈25%. The variety of sourdoughs and baking processes obviously lead to great variation in folate content of rye breads. The possibilities to enhance natural folate content of rye bread by improving folate retention in technological processes and by screening and combining suitable yeasts and lactic acid bacteria should be further investigated.  相似文献   

7.
Gluten‐free breads, which are composed of gluten‐free flours, starch, and hydrocolloids, differ from wheat and rye breads in relation to texture, volume, and crumb structure. Moreover, the dietary fiber content is lower compared with wheat or rye breads. Cereal isolates of lactic acid bacteria frequently produce oligo‐ and homopolysaccharides from sucrose, which can improve the nutritional and technological properties of gluten‐free breads as prebiotic carbohydrates and hydrocolloids, respectively. Sorghum sourdough was fermented with Lactobacillus reuteri LTH5448 or Weissella cibaria 10M, which synthesize fructooligosaccharides (FOS) and levan, and isomaltooligosaccharides and dextran, respectively. The gluten‐free bread was produced with 14% sourdough addition. L. reuteri LTH5448 formed FOS and 1.5 g of levan/kg DM in quinoa sourdoughs. FOS were digested by the baker's yeast during proofing, and the levan could be qualitatively detected in the bread. W. cibaria 10M produced >60 g of isomaltooligosaccharides/kg DM and 0.6 g of dextran/kg DM, which could still be detected in the bread. Breads prepared with W. cibaria 10M were less firm compared with breads prepared with L. reuteri LTH5448 or a FOS and levan‐negative mutant of L. reuteri LTH5448. The addition of sourdoughs fermented with oligo‐ and polysaccharide forming starter cultures can increase the content of prebiotic oligosaccharides in gluten‐free breads.  相似文献   

8.
Water self‐diffusion coefficient (D) was investigated in bread crumb during storage to determine the effect of moisture loss and glycerol on the staling mechanism. D increased with added glycerol in breads of the same moisture content. D remained unchanged after storage without crust (with no moisture loss from crumb to crust). When stored with crust (with moisture loss), more mobile water was lost (probably from glycerol), resulting in a more rapid initial decrease in D in glycerol‐added bread. Competition of water may be a key influencing factor. Glycerol and loss of moisture (according to crumb‐crust moisture gradient) triggered a shift in moisture redistribution from starch and gluten to glycerol. This could have contributed to the increased structural rigidity and more rapid firming of the glycerol‐added bread. As a result, a greater firming rate was observed in glycerol‐added bread even with less amylopectin recrystallization as compared with the control.  相似文献   

9.
10.
The influence of bran particle size on bread‐baking quality of whole grain wheat flour (WWF) and starch retrogradation was studied. Higher water absorption of dough prepared from WWF with added gluten to attain 18% protein was observed for WWFs of fine bran than those of coarse bran, whereas no significant difference in dough mixing time was detected for WWFs of varying bran particle size. The effects of bran particle size on loaf volume of WWF bread and crumb firmness during storage were more evident in hard white wheat than in hard red wheat. A greater degree of starch retrogradation in bread crumb stored for seven days at 4°C was observed in WWFs of fine bran than those of coarse bran. The gels prepared from starch–fine bran blends were harder than those prepared from starch–unground bran blends when stored for one and seven days at 4°C. Furthermore, a greater degree of starch retrogradation was observed in gelatinized starch containing fine bran than that containing unground bran after storage for seven days at 4°C. It is probable that finely ground bran takes away more water from gelatinized starch than coarsely ground bran, increasing the extent of starch retrogradation in bread and gels during storage.  相似文献   

11.
Commercial durum wheat (Triticum durum desf.) semolina was fractionated into starch, gluten, and water extractables. Starch surface proteins and surface lipids were removed, and two starches with manipulated granule size distributions were produced to influence starch properties, affecting its interaction with other semolina components. Reconstituted spaghetti was made with untreated (control) or treated starches. The pasta made from the starting semolina material had lower cooking time and was of lower quality than the samples made from reconstituted material. This was not due to changes in gluten properties as a result of the first step of the fractionation process. For the reconstituted samples, starch interaction behavior was not changed after surface protein or surface lipid removal. Starch surface properties thus do not influence the starch interaction behavior, indicating that starch-gluten interaction in raw (uncooked) pasta is mainly due to physical inclusion. All reconstituted pasta samples also had generally the same cooking quality. It was concluded that the small changes in starch gelatinization behavior, caused by the above-mentioned starch modifications, are of little importance for pasta quality.  相似文献   

12.
A rapid shear‐based test (the GlutoPeak test, recently proposed by Brabender) was used to investigate gluten aggregation properties of durum wheat semolina and to relate them to pasta cooking behavior. Thirty semolina samples were characterized by means of the conventional approaches used for pasta‐quality prediction (protein content, gluten index, and alveographic indices). All samples were also analyzed by the GlutoPeak test, obtaining three parameters: maximum peak torque, maximum peak time, and area under the peak. The GlutoPeak indices were significantly correlated with protein content, gluten index, and W alveographic parameter. The cooking quality of pasta obtained from the 30 semolina samples was evaluated by sensory analysis in terms of stickiness, bulkiness, firmness, and overall quality. The GlutoPeak indices were significantly correlated with the sensorial parameters. In comparison with the alveographic test, which is presently the most used rheological approach for semolina characterization, GlutoPeak analysis presents some advantages represented by a smaller amount of sample (9 g), a shorter time (less than 5 min), and the possibility that untrained analysts can carry it out. In addition, following testing with larger sample numbers, the GlutoPeak test has the potential to be used instead of the gluten index as a rapid and reliable approach for medium‐quality semolina characterization.  相似文献   

13.
The effects of varying the gluten composition at constant protein, protein content at constant composition, and glutenin‐to‐gliadin (glu/gli) ratio on durum semolina rheological properties and the quality of the spaghetti derived from these doughs was investigated using the reconstitution method. Reconstituted flours were built up from a common durum starch and water‐soluble fraction but with varying gluten types from a range of wheats at both 12 and 9% total protein. A 10‐g mixograph and microextensigraph properties were affected by the source of the gluten, which was related to glutenin composition and polymeric molecular weight distribution. Cooked pasta firmness was highly correlated to mixograph development time (MDDT). Furthermore, varying the protein content (9–20%) showed an increase in mixograph peak resistance (PR) with no effect on extensigraph Rmax. Pasta firmness increased and stickiness decreased with increasing protein content. In another experiment, the glutenin and gliadin fractions isolated from durum wheat were added to the respective base semolina to investigate the effect of varying the glu/gli ratio by 1.3–1.6 fold. Increasing the ratio increased MDDT but had no effect on PR and resistance breakdown. Variable effects were obtained for spaghetti firmness. The information obtained should prove useful to durum breeders by providing further evidence for the importance of protein to pasta quality.  相似文献   

14.
A pool of selected lactic acid bacteria was used to ferment durum wheat semolina under liquid conditions. After fermentation, the dough was freeze-dried, mixed with buckwheat flour at a ratio of 3:7, and used to produce the "fusilli" type Italian pasta. Pasta without prefermentation was used as the control. Ingredients and pastas were characterized for compositional analysis. As shown by two-dimensional electrophoresis, 92 of the 130 durum wheat gliadin spots were hydrolyzed almost totally during fermentation by lactic acid bacteria. Mass spectrometry matrix-assisted laser desorption/ionization time-of-flight and reversed phase high-performance liquid chromatography analyses confirmed the hydrolysis of gliadins. As shown by immunological analysis by R5-Western blot, the concentration of gluten decreased from 6280 ppm in the control pasta to 1045 ppm in the pasta fermented with lactic acid bacteria. Gliadins were extracted from fermented and nonfermented durum wheat dough semolina and used to produce a peptic-tryptic (PT) digest for in vitro agglutination tests on cells of human origin. The whole PT digests did not cause agglutination. Affinity chromatography on Sepharose-6-B mannan column separated the PT digests in three fractions. Fraction C showed agglutination activity. The minimal agglutinating activity of fraction C from the PT digest of fermented durum wheat semolina was ca. 80 times higher than that of durum wheat semolina. Pasta was subjected to sensory analysis: The scores for stickiness and firmness were slightly lower than those found for the pasta control. Odor and flavor did not differ between the two types of pasta. These results showed that a pasta biotechnology that uses a prefermentation of durum wheat semolina by selected lactic acid bacteria and tolerated buckwheat flour could be considered as a novel tool to potentially decrease gluten intolerance and the risk of gluten contamination in gluten-free products.  相似文献   

15.
Alkylresorcinol (AR) content was determined in multiple-stage whole wheat and whole rye flour sours, as well as in whole wheat and whole rye flour doughs and breads. AR content decreased considerably during fermentation and baking. AR content was reduced by 20 and 46%, respectively, at the end of sourdough starter fermentation of whole wheat and whole rye flour sours. AR content, which was 512 and 210 μg/g in whole rye and whole wheat flour doughs, respectively, was 30 and 0 μg/g, respectively, after baking of breads. Synthetic AR added at different levels to doughs was also greatly reduced during fermentation and baking.  相似文献   

16.
17.
The aim of this work was to evaluate the analysis of DNA microsatellites for the detection of soft wheat (Triticum aestivum L.) in semolina and durum wheat bread (prepared from Triticum turgidum L. var. durum). The results enabled selection of an efficient D-genome-specific repetitive DNA sequence to detect common wheat in semolina and breads by qualitative PCR with a threshold of 3 and 5%, respectively, lowered to 2.5% by real-time PCR. This is of major importance for checking during production of some typical products recently awarded the European Protected Designation of Origin (PDO) mark such as Altamura bread, which should not contain soft wheat flour. The feasibility of quantification of common wheat adulteration in semolina using real-time PCR was also demonstrated.  相似文献   

18.
The effect of various sourdoughs and additives on bread firmness and staling was studied. Compared to the bread produced with Saccharomyces cerevisiae 141, the chemical acidification of dough fermented by S. cerevisiae 141 or the use of sourdoughs increased the volume of the breads. Only sourdough fermentation was effective in delaying starch retrogradation. The effect depended on the level of acidification and on the lactic acid bacteria strain. The effect of sourdough made of S. cerevisiae 141-Lactobacillus sanfranciscensis 57-Lactobacillus plantarum 13 was improved when fungal alpha-amylase or amylolytic strains such as L. amylovorus CNBL1008 or engineered L. sanfranciscensis CB1 Amy were added. When pentosans or pentosans, endoxylanase enzyme, and L. hilgardii S32 were added to the same sourdough, a greater delay of the bread firmness and staling was found. When pentosans were in part hydrolyzed by the endoxylanase enzyme, the bread also had the highest titratable acidity, due to the fermentation of pentoses by L. hilgardii S32. The addition of the bacterial protease to the sourdough increased the bread firmness and staling.  相似文献   

19.
Lactic acid bacteria (LAB) were obtained from durum wheat flour samples and screened for roseoflavin-resistant variants to isolate natural riboflavin-overproducing strains. Two riboflavin-overproducing strains of Lactobacillus plantarum isolated as described above were used for the preparation of bread (by means of sourdough fermentation) and pasta (using a prefermentation step) to enhance their vitamin B2 content. Pasta was produced from a monovarietal semolina obtained from the durum wheat cultivar PR22D89 and, for experimental purposes, from a commercial remilled semolina. Several samples were collected during the pasta-making process (dough, extruded, dried, and cooked pasta) and tested for their riboflavin content by a high-performance liquid chromatography method. The applied approaches resulted in a considerable increase of vitamin B2 content (about 2- and 3-fold increases in pasta and bread, respectively), thus representing a convenient and efficient food-grade biotechnological application for the production of vitamin B2-enriched bread and pasta. This methodology may be extended to a wide range of cereal-based foods, feed, and beverages. Additionally, this work exemplifies the production of a functional food by a novel biotechnological exploitation of LAB in pasta-making.  相似文献   

20.
The effects of storage methods and glycerol on the aging of breadcrumbs were studied using solid-state (13)C CP/MAS NMR. After baking, a shift in C(1) peaks from triplet (A-type) to singlet (V-type) was observed. Addition of glycerol reduced the carbon peak intensities of fresh and aged breads, which correlated well with the DSC amylopectin "melting" enthalpy (r(2) = 0.91). Upon storage of bread with crust in hermetically sealed containers (when moisture migrated from the crumbs to the crust), the (13)C CP/MAS NMR peak intensity increased more rapidly during aging than when the bread was stored without crust. Although addition of glycerol retarded the starch retrogradation, as observed by (13)C CP/MAS NMR and DSC, it accelerated the firming rate. Therefore, bread firming in this case was controlled not only by starch retrogradation but also by other events (such as local dehydration of the matrix or gluten network stiffening).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号