首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of wildfire and the subsequent harvesting on soil degradation was evaluated in a burned Pinus pinaster stand in Galicia (NW Spain). During the first year following a fire of moderate intensity, burned trees were not harvested and soil erosion losses, measured by sediment collection at the bottom of bordered plots, were very low. An apparently limited impact of fire on soil and reduced rainfall erosivity for this period could be responsible for that result. Salvage logging took place 13 months after fire. Three post‐fire alternatives were compared: no harvesting (standing burned trees), harvesting + windrowed slash and harvesting + slash chopping. Soil losses were even lower during the 14 months after these treatments than for the previous pre‐harvesting period. Again, low mineral soil exposition and rainfall erosivity seemed to contribute to that result. Changes in soil bulk density and soil shear strength after clearcutting and slash manipulation were small and not enough to trigger sediment yield significantly. Harvesting and logging operations apparently increased soil inhomogeneities. This degree of variability was more adequately assessed by using micro‐plot fences instead of plot fences. The percentage of soil disturbed by machinery was the variable most related with the observed minor soil losses after harvesting, at micro‐plot level. This study indicated that the combined effect of wildfire and clearcutting caused only an acceleration of soil erosion when significant exposition of mineral soil occurred after these perturbations. However, these results must be taken with caution because rain erosivity during the study was low. To delay post‐fire clearcutting until several months after the fire could reduce the impact of this forestry operation on burned soils, taking advantage of the natural mulch created by scorched leaves fall, although other issues must be taken into account. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The first‐year effect of two different prescribed burning treatments on throughfall, runoff and soil erosion was evaluated in gorse shrubland (Ulex europaeus L.) in Galicia (NW Spain). The treatments compared were: intense burn, light burn and control (no burn). Accumulated annual throughfall represented between the 81 and 87 per cent of total rainfall in intensely burned and lightly burned areas, respectively, whereas in the unburnt areas it was 60 per cent. No significant differences between burning treatments were found for the annual throughfall. However, runoff was significantly greater in intensely burned plots (1·5‐times) than in lightly burned plots. Burning also resulted in a significant increase in runoff (between 2·5 and 1·7‐times, respectively) compared with controls. Total soil losses were small in all treatments, but the intense burn caused significantly greater soil erosion (5·8‐times) compared with the unburned areas. Soil losses after the light burn did not significantly differ from the control although they were higher (2·3‐times). The relationships obtained between erosion and several rainfall parameters were significantly different in burned areas compared to the control. The same response was observed for runoff. Annual erosion losses showed a strong dependence on percentage of bare soil even for small values of this variable. Litter thickness was also a very important variable influencing on erosion rates. This study indicated that by combining ignition techniques and high litter moisture content to maintain the percentage of bare soil below 85 per cent, soil erosion was low. Nevertheless, this result was constrained by the low rainfall that occurred during the study. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
A revised version of the Morgan–Morgan–Finney model for prediction of annual soil loss by water is presented. Changes have been made to the way soil particle detachment by raindrop impact is simulated, which now takes account of plant canopy height and leaf drainage, and a component has been added for soil particle detachment by flow. When tested against the same data set used to validate the original version at the erosion plot scale, predictions made with the revised model gave slopes of a reduced major-axis regression line closer to 1.0 when compared with measured values. The coefficient of efficiency, for sites with measured runoff and soil loss, increased from 0.54 to 0.65. When applied to a new data set for erosion plots in Denmark, Spain, Greece and Nepal, very high coefficients of efficiency of 0.94 for runoff and 0.84 for soil loss were obtained. The revised version was applied to two small catchments by dividing them into land elements and routing annual runoff and sediment production over the land surface from one element to another. The results indicate that, when used in this way, the model provides useful information on the source areas of sediment, sediment delivery to streams and annual sediment yield.  相似文献   

4.
Soil conservation is a major concern for catchments affected by forest fires. The lack of vegetation cover and the development of soil water repellency increase the risk of topsoil erosion. This paper evaluates two soil conditioners (a wetting agent and a polyvinyl acetate) for limiting overland flow and erosion in inter‐rill areas. Unburned and burned soil samples were treated with one or both soil conditioners. The effects of these treatments on run‐off, water retention, erosion and plant growth were assessed using laboratory rainfall simulations. Polyvinyl acetate had little impact on water retention but was effective in reducing soil loss. The surfactant had little impact on water run‐off or soil loss but substantially improved water retention and plant biomass production. Application of soil conditioners on post‐fire areas could be a valuable technique in a soil conservation strategy. To maximize their benefits, soil conditioners could be applied with seeding using hydroseeding techniques and be limited to particular areas, such as paths and roadsides. Laboratory results indicate that field testing should also be carried out.  相似文献   

5.
Soil erosion modelling applied to burned forests in different global regions can be unreliable because of a lack of verification data. Here, we evaluated the following three erosion models: (1) Water Erosion Prediction Project (WEPP), (2) Morgan-Morgan-Finney (MMF) and (3) Universal Soil Loss Equation-Modified (USLE-M). Using field plots that were either untreated or mulched with straw, this study involved observations of soil loss at the event scale at a burned pine forest in Central Eastern Spain. The erosion predictions of the three models were analysed for goodness-of-fit. Optimization of the MMF model with a new procedure to estimate the C-factor resulted in a satisfactory erosion prediction capacity in burned plots with or without the mulching treatment. The WEPP model underestimated erosion in the unburned areas and largely overestimated the soil loss in burned areas. The accuracy of soil loss estimation by the USLE-M model was also poor. Calibration of the curve numbers and C-factors did not improve the USLE-M model estimation. Therefore, we conclude that an optimized MMF model was the most accurate way to estimate soil loss and recommend this approach for in Mediterranean burned forests with or without postfire mulching. This study gives land managers insight about the choice of the most suitable model for erosion predictions in burned forests.  相似文献   

6.
The impacts of a wildfire and subsequent rainfall event in 2013 in the Warrumbungle National Park in New South Wales, Australia were examined in a project designed to provide information on post‐fire recovery expectations and options to land managers. A coherent suite of sub‐projects was implemented, including soil mapping, and studies on soil organic carbon (SOC) and nitrogen (N), erosion rates, groundcover recovery and stream responses. It was found that the loss of SOC and N increased with fire severity, with the greatest losses from severely burnt sandstone ridges. Approximately 2.4 million t of SOC and ~74,000 t of N were lost from soil to a depth of 10 cm across the 56,290 ha affected. Soil loss from slopes during the subsequent rainfall event was modelled up to 25 t ha?1, compared to a long‐term mean annual soil loss of 1.06 t ha?1 year?1. Groundcover averages generally increased after the fire until spring 2015, by which time rates of soil loss returned to near pre‐fire levels. Streams were filled with sand to bank full levels after the fire and rainfall. Rainfall events in 2015–2016 shifted creek systems into a major erosive phase, with incision through the post‐fire sandy bedload deposits, an erosive phase likely related to loss of topsoils over much of the catchment. The effectiveness of the research was secured by a close engagement with park managers in issue identification and a communications programme. Management outcomes flowing from the research included installation of erosion control works, redesign of access and monitoring of key mass movement hazard areas.  相似文献   

7.
The effects of two different soil rehabilitation treatments on runoff, infiltration, erosion and species diversity were evaluated in a shrubland area in Galicia (NW Spain) after an experimental fire by means of rainfall simulations. The treatments compared were: seeding, seeding + mulching and control (untreated). Rainfall simulations were conducted 9 months after fire and the application of soil rehabilitation treatments. A rainfall rate of 67 mm h−1 was applied for 30 min to each runoff plot. Seeding significantly increased plant species richness in the treated plots relative to the control plots, although it had no effect on diversity or evenness. Rehabilitation treatments did not significantly increase soil cover or affect runoff and infiltration. Soil losses were low in all cases, varying from 75·6 kg ha−1 in the seeded + mulched plots to 212·1 kg ha−1 in the untreated plots. However, there were no significant differences in sediment yields between treatments. The percentage of bare soil appeared to be a critical variable in controlling runoff and erosion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The impact of different logging techniques on nutrient losses in burnt eucalyptus and pine forests in northern Portugal was investigated. A variety of logging techniques is used in the region resulting in varying amounts of slash debris on the slopes. The efficacy of this litter in reducing soil erosion is well established but less is known about the impact on nutrient losses. Small bounded plots were used to examine the impact of varying amounts of slash debris and pine‐needle cover on nutrient losses in overland flow and adsorbed to eroded sediment over 19 months during the first two–three years after fire. Nutrient losses in solution and adsorbed to eroded sediment were substantially higher on burnt terrain due to increased erosion and overland flow generation and high nutrient concentrations at the soil surface in the burned forests. Post‐fire logging techniques in eucalyptus forests resulting in large amounts of litter debris on the slopes are effective at reducing eroded sediment nutrient losses but less effective at reducing losses in solution. In pine forests, litter is largely ineffective in reducing solute and sediment nutrient losses. However, a covering of pine needles was shown to be highly effective in reducing eroded sediment nutrient losses and to a lesser extent solute losses. Conservational methods of logging are suggested for both eucalyptus and pine forests in the region. In the absence of such measures, the sustainability of short‐rotation eucalyptus forestry is questioned in northern Portugal. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Only recently have erosion models begun to be used in research work in Cuba, specifically the USLE and the thematic cartography of factors in a GIS framework without using a specific model. It therefore becomes necessary to include simulation models for karst regions that make possible an integral assessment of the specific types of soil erosion in those environments and take into consideration the effects of climate change in soil management systems. Morphometric analysis of karst doline absorption forms in regions of La Habana Province in 1986, 1997, and 2009 allowed the characterisation and application of the Morgan Morgan Finney (MMF) conceptual empirical erosion model in the Country for the first time. The results showed previously unreported losses of 12·3–13·7 t of soil ha −1 y−1, which surpasses the permissible erosion threshold. Furthermore, it clearly shows the unsustainable trend of Red Ferralitic and Ferrasol Rhodic (World Reference Base) soils use. The model applied considered the effects of extreme rainfall events associated with climate change in recent years. The results found have led to strategies for coping with future climate change in each scenario and have made it possible to evaluate the consequences. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
This article discusses research in which the authors applied the Revised Universal Soil Loss Equation (RUSLE), remote sensing, and geographical information system (GIS) to the maping of soil erosion risk in Brazilian Amazonia. Soil map and soil survey data were used to develop the soil erodibility factor (K), and a digital elevation model image was used to generate the topographic factor (LS). The cover‐management factor (C) was developed based on vegetation, shade, and soil fraction images derived from spectral mixture analysis of a Landsat Enhanced Thematic Mapper Plus image. Assuming the same climatic conditions and no support practice in the study area, the rainfall–runoff erosivity (R) and the support practice (P) factors were not used. The majority of the study area has K values of less than 0·2, LS values of less than 2·5, and C values of less than 0·25. A soil erosion risk map with five classes (very low, low, medium, medium‐high, and high) was produced based on the simplified RUSLE within the GIS environment, and was linked to land use and land cover (LULC) image to explore relationships between soil erosion risk and LULC distribution. The results indicate that most successional and mature forests are in very low and low erosion risk areas, while agroforestry and pasture are usually associated with medium to high risk areas. This research implies that remote sensing and GIS provide promising tools for evaluating and mapping soil erosion risk in Amazonia. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
基于RS/GIS和RUSLE的华北平原土壤侵蚀现状分析   总被引:4,自引:0,他引:4  
对华北平原的土壤侵蚀状况进行分析,可为粮食主产区的生态保护及土壤侵蚀防治提供重要依据。在GIS技术支持下,利用遥感影像解译资料、数字高程模型(DEM)及土壤、降雨等数据,对修正土壤流失方程(RUSLE)中的各因子进行了量化,实现了对华北平原土壤侵蚀量的估算,并对结果进行土壤侵蚀强度分级。分析结果表明,华北平原多年平均土壤侵蚀模数为2 674.26t/(km2.a),最大值可达8 302.11t/(km2.a),总体上属中度侵蚀。发生轻度以下侵蚀面积占总面积的82.94%,表明华北平原的水土流失在总体上得到了较好的控制。但仍有占总面积7.33%的区域属于较强以上的侵蚀等级,说明局部水土流失严重,尤以沿太行山、燕山、泰山和大别山的低山丘陵地带的土石山区最为严重,是华北平原土壤侵蚀治理的重点地区。  相似文献   

12.
Soil erosion is a serious problem in the Loess Plateau of China, and assessment of soil erosion at large watershed scale is urgently need. This study used RUSLE and GIS to assess soil loss in the Yanhe watershed. All factors used in the RUSLE were calculated for the watershed using local data. RUSLE‐factor maps were made. The mean values of the R‐factor, K‐factor, LS‐factor, C‐factor and P‐factor were 970 209 MJ km−2 h−1 a−1, 0·0195 Mg h MJ−1 mm−1, 10·27, 0·33359 and 0·2135 respectively. The mean value of the annual average soil loss was found to be 14 458 Mg km−2 per year, and the soil loss rate in most areas was between 5000 and 20 000 Mg km−2 per year. There is more erosion in the centre and southeast than in the northwest of Yanhe watershed. Because of the limitations of the RUSLE and spatial heterogeneity, more work should be done on the RUSLE‐factor accuracy, scale effects, etc. Furthermore, it is necessary to apply some physical models in the future, to identify the transport and deposition processes of sediment at a large scale. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
东北典型薄层黑土区土壤可蚀性模型适用性分析   总被引:8,自引:3,他引:5  
土壤可蚀性是土壤侵蚀预报和环境效应评价模型的重要参数。该文选取东北典型薄层黑土区宾州河流域为研究区,通过校验极细砂粒含量转换式,分析侵蚀—生产力影响模型(erosion productivity impact calculator,EPIC)、通用土壤流失方程(universal soil loss equation,USLE)和修正土壤流失方程(revised universal soil loss equation,RUSLE2)3种模型K值估算方法间的差异,以探讨各估算方法在东北典型薄层黑土区的适用性。结果表明:与实测值相比,RUSLE2模型整体"低估"极细砂粒含量,平均低估22.5%;建立的薄层黑土区极细砂粒含量转换方程可使估算精度提高95%以上。RUSLE2模型K值估算方法适用于薄层黑土区。EPIC与USLE模型K值估算方法均"高估"薄层黑土区的土壤可蚀性,但通过建立的修正方程进行校正,仍可用于中国东北薄层黑土区K值估算。该研究可为薄层黑土区及相似地区的土壤侵蚀定量评价和土壤质量危险性评价提供必要的科学依据。  相似文献   

14.
Fire affects large parts of the dry Mediterranean shrubland, resulting in erosion and losses of plant nutrients. We have attempted to measure these effects experimentally on a calcareous hillside representative of such shrubland. Experimental fires were made on plots (4 m × 20 m) in which the fuel was controlled to obtain two different fire intensities giving means of soil surface temperature of 439°C and 232°C with temperatures exceeding 100°C lasting for 36 min and 17 min. The immediate and subsequent changes induced by fire on the soil's organic matter content and other soil chemical properties were evaluated, together with the impact of water erosion. Seven erosive rain events, which occurred after the experimental fires (from August 1995 to December 1996), were selected, and on them runoff and sediment produced from each plot were measured. The sediments collected were weighed and analysed. Taking into account the variations induced by fire on the soil properties and their losses by water erosion, estimates of the net inputs and outputs of the soil system were made. Results show that the greatest losses of both soil and nutrients took place in the 4 months immediately after the fire. Plots affected by the most intense fire showed greater losses of soil (4077 kg ha?1) than those with moderate fire intensity (3280 kg ha?1). The unburned plots produced the least sediment (72.8 kg ha?1). Organic matter and nutrient losses by water erosion were related to the degree of fire intensity. However, the largest losses of N‐NH4+ and N‐NO3 by water erosion corresponded to the moderate fire (8.1 and 7.5 mg N m?2, respectively).  相似文献   

15.
Despite ample literature, the influence of the individual soil properties and covers on the hydrological response of burned soils of forests has not clearly identified. A clear understanding of the surface runoff and erosion rates altered by wildfires and prescribed fires is beneficial to identify the most suitable post-fire treatment. This study has carried out a combined analysis of the hydrological response of soil and its driving factors in burned forests of Central-Eastern Spain. The pine stands of these forests were subjected to both prescribed fire and wildfire, and, in the latter case, to post-fire treatment with mulching. Moreover, simple multi-regression models are proposed to predict runoff and erosion in the experimental conditions. In the case of the prescribed burning, the fire had a limited impact on runoff and erosion compared to the unburned areas, due to the limited changes in soil parameters. In contrast, the wildfire increased many-fold the runoff and erosion rates, but the mulching reduced the hydrological response of the burned soils, particularly for the first two-three rainfalls after the fire. The increase in runoff and erosion after the wildfire was associated to the removal of the vegetation cover, soil water repellency, and ash left by fire; the changes in water infiltration played a minor role on runoff and erosion. The multi-regression models developed for the prescribed fire were accurate to predict the post-fire runoff coefficients. However, these models were less reliable for predictions of the mean erosion rates. The predictions of erosion after wildfire and mulching were excellent, while those of runoff were not satisfactory (except for the mean values). These results are useful to better understand the relations among the hydrological effects of fire on one side and the main soil properties and covers on the other side. Moreover, the proposed prediction models are useful to support the planning activities of forest managers and hydrologists towards a more effective conservation of forest soils.  相似文献   

16.
三峡库区小流域修正通用土壤流失方程适用性分析   总被引:4,自引:0,他引:4  
土壤侵蚀量的定量研究可为国家生态环境建设和水土保持宏观决策的制定提供重要的依据。修正通用土壤流失方程(revised universal soil loss equation,RUSLE)是开展土壤侵蚀定量评价的主要手段。该文在地理信息系统(geographic information system,GIS)的支持下,依据中国土壤流失方程各因子的算法确定RUSLE模型各因子值,估算了三峡库区黄冲子小流域不同时期的土壤侵蚀量,并与基于泥沙平衡原理计算的土壤侵蚀量比较后分析RUSLE模型在库区小流域的适用性。结果表明,基于RUSLE模型估算的小流域1963-2000年(农地小流域)和2001-2014年(林地小流域)的年均土壤侵蚀模数分别为2246.09和868.3 t/(km2·a),其结果与采用137Cs和210Pb技术的塘库沉积物定年结果基本吻合,表明210Pb定年结果可靠。依据泥沙平衡原理计算的小流域1963-2000年和2001-2014年的年均土壤侵蚀模数分别为942.48和811.47t/(km2·a)。RUSLE模型估算小流域1963-2000年和2001-2014年的土壤侵蚀模数相对误差分别为138.32%和7.00%。因此RUSLE模型适用于库区林地小流域,而不适用于库区农地小流域;但是基于地形因子(LS因子)修正的RUSLE模型估算结果相对误差减少至8.14%,其适用于库区农地小流域。  相似文献   

17.
Quantitative identification of the covariation between sediment connectivity and soil erosion can contribute to provide the key information for watershed sediment management. However, this covariation and its spatiotemporal response mechanisms are still unclear, especially whether this covariation can be used as a basis for identifying critical source areas of sediment in large-scale ecological restored watersheds. In this study, an integrated methodology framework by the revised universal soil loss equation (RUSLE), index of connectivity (IC) and sediment delivery ratio (SDR) was proposed to visually assess the spatiotemporal characteristics of erosion and sediment yield processes in the Yanhe Watershed with large-scale ecological restoration from 1985 to 2020 and to identify the covariation between sediment connectivity and erosion in subbasins. The soil erosion estimated by RUSLE has decreased by over 80% since 1985 owing to increased vegetation cover and the effective implementation of soil conservation measures, but the upper reaches still have high erosion intensity due to differences in specific controlling factors such as topographic conditions and land cover, requiring focused soil conservation practice. The IC results showed that as the vegetation restoration and soil conservation measures in the Yanhe Watershed varied from year to year, their spatial and temporal patterns had a strong influence on the distribution of sediment connectivity, and some local areas in the middle reaches showed local minima of IC in 1995, 1998 and 2010 mainly due to the implementation of long-term ecological restoration project. The developed IC-Erosion maps indicated that areas with high connectivity but low erosion accounted for over 60% of the total watershed area from 1985 to 1999, demonstrating a reverse correlation between sediment connectivity and erosion. Meanwhile, over 40% of the erosion occurred in a few areas (approximately 20%) with high connectivity and high erosion from 2000 to 2004, which can be characterized as the critical areas of erosion. The methods and results of this study provide ideas for separately defining both erosion and connectivity and quantifying bi-variable erosion–connectivity classification, which can be easily viewed on a scatterplot.  相似文献   

18.
Gully erosion reduces agricultural productivity by destroying valuable land resources, increases sediment concentrations, reduces water quality, and fills up reservoirs. Gully rehabilitation has proven to be challenging especially in the high‐rainfall areas of the Ethiopian Highlands and has therefore had limited success. This paper describes a successful low‐cost gully rehabilitation effort with community participation in the Birr watershed in the Blue Nile basin that begun in early 2013. Initially, farmers were reluctant to participate for religious reasons, but with the aid of local priests and respected elders, community discussions, and a visit to a rehabilitated gully, a consensus was reached to rehabilitate a 0·71‐ha upland gully. The rehabilitation measures consisted of regrading the gully head at a 45° slope, constructing low‐cost check dams from locally available materials, and planting Pennisetum purpureum grass and Sesbania sesban. At the end of the first post‐implementation rainy season, 2,200 tons of soil was conserved by the constructed check dams and newly planted vegetation, compared with soil losses of 680 and 560 tons in two untreated, nearby gullies. In 2014, an additional 3,100 tons of soil was conserved. In 2013, the marginal rate of return (MRR) on the gully rehabilitation investment was 2·6 based on the value of increased forage production alone. When we include trapped soil nutrient values, the rehabilitation MRR was increased to 10. Although these numbers are impressive, the best proof of the success was that farmers on their own initiative rehabilitated an additional five gullies in 2014. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
针对京津水源区生态环境脆弱,水土流失空间分异大,突发性强等问题,选择河北省滦平县西北沟小流域为研究对象,利用气候、土壤、地形、土地利用及植被盖度等数据,运用GIS和RUSLE的方法对小流域土壤侵蚀强度及其空间分异特征进行了研究。结果表明,流域多年平均侵蚀模数为3 816.835t/(km2.a),属中度侵蚀;潜在侵蚀模数为31 583.150t/(km2.a),是现实侵蚀模数的8.28倍;不同土地利用方式中,零星分布的大坡度坡耕地侵蚀强度最大,其次为高度风化,坡度较大的退化荒草地,退化荒草地面积占流域总面积的59.38%,侵蚀量占总量的88.48%,是最主要的泥沙来源地;不同坡度土壤侵蚀强度随坡度加大而显著增加,流域坡度>25°的面积约占流域总面积的1/3,侵蚀量约占2/3;不同坡向的土壤侵蚀空间分异也十分明显,表现为正阳坡>半阳坡>半阴坡>正阴坡>平地。  相似文献   

20.
Ecuador has the highest deforestation rate in South America, causing large‐scale soil erosion. Inter‐Andean watersheds are especially affected by a rapid increase of the population leading to the conversion of large areas of montane forest into pasture and cropland. In this study, we estimate soil erosion risk in a small mixed land‐use watershed in the southern Andes of Ecuador. Soil loss was estimated at a spatial resolution of 30 m, using the Revised Universal Soil Loss Equation (RUSLE) where the RUSLE factors were estimated on the basis of limited public available data. Land‐cover maps for 1976, 2008 and 2040 were created assuming increasing deforestation rates over the ensuing decades. Greater erosion rates are estimated for succession areas with agricultural cropland and pasture with maximum values of 936 Mg ha−1 y−1, where slopes and precipitation amounts are the greatest. Under natural forest vegetation, the estimated soil erosion rates are negligible (1·5 to 40 Mg ha−1 y−1) even at steep slopes and higher elevations where rainfall amounts and intensities are generally higher. When the entire watershed has undergone substantial deforestation in 2040, erosion values may reach 2,021 Mg ha−1 y−1. Vegetation cover is the most important factor for potential soil erosion. Secondary factors are related to rainfall (R‐factor) and topography (LS factors). Although the spatial predictions of potential soil erosion have only limited meaning for erosion risk, this method provides an important screening tool for land management and assessment of land‐cover change. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号