首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
β‐Glucan is known to have valuable properties for preventative health and is finding widespread use in foods. This study investigated the benefit of adding a commercial source of β‐glucan, Barley Balance (BB) flour, as a functional ingredient in spaghetti. Durum wheat semolina was substituted with BB at levels of 7.5, 15, and 20%, from which spaghetti was prepared on a laboratory scale. The substitution of BB increased the β‐glucan content of semolina from 0.3 to 6% in uncooked and 8% in cooked pasta. Antioxidant activity (measured by 2,2‐diphenyl‐1‐picrylhydrazyl) increased with BB and did not decline significantly on processing and cooking. Compared with the control, 7.5% BB had no or minimal effect on pasta cooking loss, stickiness, water absorption, aroma, and sensory texture. However, at higher doses, pasta became less yellow and more brown, firmer, of inferior aroma, more rubbery, and chewy, but less floury to the mouth. The extent of starch digestion decreased with increasing quantities of BB, suggesting that BB may lower glycemic index, with microscopy data suggesting that this decrease was mediated through the development of a more intensive fiber or fiber/protein matrix retarding enzymatic access to starch granules.  相似文献   

2.
Starches from the endosperm of three types of total‐waxy cereals (bread wheat, maize, and barley) were used in reconstitution studies of durum wheat semolinas to investigate the effect of waxy starch on pasta cooking quality. The chemical composition and the pasting and gelatinization properties of the starches used in this study were evaluated to define the functional properties of each waxy starch. The rheological properties of dough semolinas were evaluated by small‐scale mixograph. Spaghetti was prepared using a small‐scale pasta extruder and its cooking quality was assessed using a texture analyzer. Cooked pasta firmness, resilience, and stickiness were measured. The substitution of semolina starch with waxy starches from different sources changed the functional properties of dough and their pasta quality. A decrease in firmness was detected in all the semolinas reconstituted with waxy starches. An increase in stickiness was found when semolinas with waxy starch from wheat were evaluated. No improvement in pasta quality should be expected if the waxy character is introduced in durum wheat.  相似文献   

3.
《Cereal Chemistry》2017,94(5):840-846
Currently, production of pasta that is either gluten‐free or having lower content of gluten, using low‐cost nonwheat cereals and legumes, is becoming increasingly popular worldwide. This is mainly done to increase the nutritional value and reduce the allergenicity of the product. The quality attributes of pasta prepared from micronized maize flour with additives such as guar gum (MPG) and a combination of guar and xanthan gum (MPGX) were compared with pasta prepared from unmicronized flour with guar gum (UMPG). The optimum cooking time for pasta in all three cases (UMPG, MPG, and MPGX) was 3 min. The cooked weight of pasta MPG and MPGX was less compared with UMPG, indicating limited water penetration during cooking. The solid loss of pasta ranged between 8 and 9.5% and was within acceptable levels (<12%). Micronization increased the firmness in MPG (3.7 N) and MPGX (4.5 N) compared with UMPG pasta (2.7 N). MPGX pasta exhibited improved texture, color, and overall acceptability compared with UMPG, and these quality attributes were also comparable to commercial wheat pasta. The study indicated that micronized maize flour with gums can be used in the preparation of maize pasta with good quality attributes.  相似文献   

4.
Pasta yellowness depends on the semolina carotenoid content, carotenoid degradation by lipoxygenase (LOX), and pasta processing conditions. In breeding programs, early generation lines are selected for high grain yellow pigment content with the intent to improve pasta color. This approach has been successful in increasing the grain yellow pigment of Canadian durum wheat in the last few decades. In recent years, however, a weak relationship between pasta yellowness (b*) as measured by a Minolta spectrophotometer and semolina yellow pigment content (r = 0.19–0.52) was noted in the Canadian durum wheat lines. Thus, total semolina yellow pigment content cannot effectively predict the yellowness of its pasta product. Therefore, a fast and simple method was developed to predict pasta yellowness by measuring semolina dough sheet color at different time intervals after sheeting (0.5, 2.0, and 24 hr). Spaghettis were processed from the semolina samples at two drying temperature cycles (70 and 90°C). There were significant correlations between dough sheet b* values at all three times and spaghetti b* values at both drying temperatures (r = 0.87–0.94). Semolina dough sheet can be easily prepared in 15 min and requires only 30 g of material. Shortly after sheeting (30 min), dough sheet b* values can be used to predict pasta yellowness without producing the end product (involving mixing, extrusion, and drying). In this study, we also found that dough sheet b* values increased significantly with time over the sampling intervals after sheeting for those breeding lines with superior pasta color. DNA analysis revealed that all those lines lacked the Lpx‐B1.1 duplication.  相似文献   

5.
Pasta prepared by extrusion from 25 g of semolina has been compared with that made from a standard laboratory extruder and found to have similar quality. Durum semolina was fractionated into its starch, gluten, water soluble, and residue fractions. The freeze‐dried components were reconstituted and the properties of the reconstituted semolina (ReSem) have been measured. Examination using a 2 g‐mixograph and micro‐extension tester has shown that ReSem behaves similarly to the original semolina. ReSem and semolina were made into pasta using a small‐scale pasta extruder and were of comparable cooking quality. The fractionation and reconstitution of durum semolina on this scale is a useful technique to evaluate the contribution of semolina components to pasta quality.  相似文献   

6.
The effect of hydration level on processing properties and the effects of hydration level, concentration of buckwheat bran flour and drying temperature on the physical and cooking quality of spaghetti were determined. Specific mechanical energy transferred to the dough during extrusion decreased 69% for semolina and 79% for semolina containing 30%, w/w, buckwheat bran flour, as hydration level increased 29–32% absorption. Little or no postdrier checking occurred in spaghetti made from semolina or spaghetti containing buckwheat bran flour when dried at high (70°C) or ultrahigh temperature (90°C). When dried at low temperature (40°C), tolerance to postdrier checking of spaghetti decreased as buckwheat bran flour increased 0–30% (w/w). Hydration level before extrusion did not affect cooking loss of spaghetti made from semolina. However, cooking loss was greater from spaghetti made with semolinabuckwheat bran flour that was hydrated to 32% compared with 29–31% absorption. Cooked firmness of spaghetti containing buckwheat bran flour decreased from 0.588–0.471 Nm as hydration increased from 29–32% absorption. Cooking loss was lower and cooked firmness was greater when spaghetti containing buckwheat bran flour was dried at ultrahigh than at low temperature.  相似文献   

7.
Changes in total yellow pigment (TYP) content and carotenoid composition were examined at different stages of pasta processing. Semolina samples were milled from durum genotypes with and without the Lpx‐B1.1 gene deletion and then processed into dry pasta. Significant pigment loss (12.8–15.3%) based on TYP content was observed from semolina to dough in genotypes without the gene deletion. Such loss remained low (2.0–2.8%) for genotypes with the Lpx‐B1.1 gene deletion. Extrusion and drying processes did not result in substantial pigment loss. The overall pigment loss (from semolina to dried pasta) of genotypes with the gene deletion was 9.1–12.8%, in comparison with 19.0–21.7% in genotypes without the deletion. Changes in carotenoids examined by ultra‐performance liquid chromatography showed that lutein decreased gradually from representing 80% of total carotenoids to 70% of total carotenoids during pasta processing. The reduction of lutein was mostly during dough mixing, with a decrease of 16.7% in genotypes with the Lpx‐B1.1 deletion and 27.8% in genotypes without the deletion. Minor carotenoids increased during pasta drying, possibly at the expense of lutein. Results of this study showed that although breeding for elevated yellow pigments is the key, pasta color can be further improved by reducing pigment losses at different stages of pasta processing through selection of genotypes with Lpx‐B1.1 deletion and applying a vacuum during mixing and extrusion processes.  相似文献   

8.
The effects of cultivar on dough properties of ground whole wheat durum, and the effects of cultivar and drying temperature on the physical and cooking quality of spaghetti made from semolina and whole wheat were evaluated. Rankings of cultivars based on dough properties were similar for whole wheat and semolina. Dough made from whole wheat was weak and had poor stability. Whole wheat spaghetti had a rough reddish brown surface compared with the very smooth, translucent yellow color of spaghetti made from semolina. The reddish brown color of whole wheat spaghetti was enhanced by high‐temperature drying (70°C). Mechanical strength and cooking quality of spaghetti made from ground whole wheat or semolina varied with cultivar and with drying temperature. Compared with spaghetti made from semolina, whole wheat spaghetti had lower mechanical strength and cooked firmness and had greater cooking loss. Mechanical strength of whole wheat spaghetti was lower when dried at high temperature (70°C) than at low temperature (40°C). Conversely, the mechanical strength of spaghetti made from semolina was greater when dried at high temperature than at low temperature. Whole wheat and traditional spaghetti dried at high temperature had lower cooking losses than spaghetti dried at low temperature. When overcooked 6 min, firmness of spaghetti made from semolina or whole wheat was greater when dried at high temperature than at low temperature.  相似文献   

9.
Lignans are of increasing interest because of their potential anticarcinogenic, antioxidant, estrogenic, and antiestrogenic activities. In this work, mixed‐cereal pastas manufactured by adding 60% whole‐grain flours of different cereals (wheat, oat, rye, barley, and rice) to durum wheat semolina, a multigrain pasta with different grains (cereals, legumes, and flaxseed), and a traditional industrial durum wheat semolina were analyzed for their lignans content both in the raw and in the cooked state, ready for consumption. For raw mixed‐cereal pastas, total lignans were within the range 94.91–485.62 μg/100 g d.w. After cooking, total lignans losses of about 35.5, 18.31, and 5.46% were observed respectively in oat‐, rye‐, and rice‐added pastas, whereas increases of 5.74 and 13.62% were observed in barley‐added and whole durum wheat pastas. Interesting results were obtained for the multigrain pasta: the raw product exhibited a total lignans content of 9,686.17 ± 287.03 μg/100 g d.w., and the major contribution was given by secoisolariciresinol. This highest total lignans value resulted from its rich and varied composition in seeds of different origin, legumes, and flaxseed in particular. Our findings showed that mixed‐cereal and multigrain pastas can be considered a good source of lignans. The effect of cooking was not the same for each product, and it depended on the different lignans profile of each grain, on the different chemical structure of each lignan, and on the nature of the food matrix.  相似文献   

10.
Pigeon pea (Cajanus cajan var. aroíto) seeds were fermented in order to remove antinutritional factors and to obtain functional legume flour to be used as pasta ingredients. Fermentation brought about a drastic reduction of alpha-galactosides (82%), phytic acid (48%), and trypsin inhibitor activity (39%). Fermented legume flours presented a notable increase of fat and total soluble available carbohydrates, a slight decrease of protein, dietary fiber, calcium, vitamin B2, vitamin E, and total antioxidant capacity, and a decrease of soluble dietary fiber, Na, K, Mg, and Zn contents. No changes were observed in the level of starch and tannins as a consequence of fermentation. The fermented flour was used as an ingredient to make pasta products in a proportion of 5, 10, and 12%. The supplemented pasta products obtained had longer cooking times, higher cooking water absorptions, higher cooking loss, and higher protein loss in water than control pasta (100% semolina). From sensory evaluations, fortified pasta with 5 and 10% fermented pigeon pea flour had an acceptability score similar to control pasta. Pasta supplemented with 10% fermented pigeon pea flour presented higher levels of protein, fat, dietary fiber, mineral, vitamin E, and Trolox equivalent antioxidant capacity than 100% semolina pasta and similar vitamins B1 and B2 contents. Protein efficiency ratios and true protein digestibility improved (73 and 6%, respectively) after supplementation with 10% fermented pigeon pea flour; therefore, the nutritional value was enhanced.  相似文献   

11.
A rapid shear‐based test (the GlutoPeak test, recently proposed by Brabender) was used to investigate gluten aggregation properties of durum wheat semolina and to relate them to pasta cooking behavior. Thirty semolina samples were characterized by means of the conventional approaches used for pasta‐quality prediction (protein content, gluten index, and alveographic indices). All samples were also analyzed by the GlutoPeak test, obtaining three parameters: maximum peak torque, maximum peak time, and area under the peak. The GlutoPeak indices were significantly correlated with protein content, gluten index, and W alveographic parameter. The cooking quality of pasta obtained from the 30 semolina samples was evaluated by sensory analysis in terms of stickiness, bulkiness, firmness, and overall quality. The GlutoPeak indices were significantly correlated with the sensorial parameters. In comparison with the alveographic test, which is presently the most used rheological approach for semolina characterization, GlutoPeak analysis presents some advantages represented by a smaller amount of sample (9 g), a shorter time (less than 5 min), and the possibility that untrained analysts can carry it out. In addition, following testing with larger sample numbers, the GlutoPeak test has the potential to be used instead of the gluten index as a rapid and reliable approach for medium‐quality semolina characterization.  相似文献   

12.
Food products that are high in fiber and low in glycemic impact are healthier. Amylose is a form of resistant starch that mimics dietary fiber when consumed. A durum wheat (Triticum durum) line was created that lacks starch synthase IIa (SSIIa) activity, a key enzyme in amylopectin biosynthesis, by identifying a null mutation in ssIIa‐B following mutagenesis of a line that has a naturally occurring ssIIa‐A null mutation. Our objective here was to compare seed, milling, pasta, and nutritional characteristics of the SSIIa null line with a wild‐type control line. The SSIIa null line had increased amylose and grain protein with lower individual seed weight and semolina yield. Refined pasta prepared from the SSIIa null semolina absorbed less water, had increased cooking loss, had a shorter cook time, and was considerably firmer even after overcooking compared with the wild‐type line. Color of the SSIIa null cooked and uncooked pasta was diminished in brightness compared with the wild type. Nutritionally, the SSIIa null pasta had increased calories, fiber, fat, resistant starch, ash, and protein compared with the control line, along with reduced total and available carbohydrates. Pasta made from high‐amylose durum wheat provides a significant nutritional benefit along with enhanced end‐product quality via firmer pasta that resists overcooking.  相似文献   

13.
There is no information on the effect of sulfuryl fluoride (SF) on durum wheat technological properties and products made from fumigated durum wheat. Durum wheat and semolina were exposed to a range of SF applications under conditions that might be typically encountered in bulk storage facilities used in many countries. SF greatly reduced the germination percentage of fumigated durum wheat, with increasing impact under higher SF concentration, grain moisture content, and fumigation temperature. SF greatly reduced seed germination percentage, impacting more the higher the SF concentration. SF had little to no effect on grain test weight, 1,000‐grain weight, hardness, protein content, semolina ash content, and mixograph properties. At the highest SF concentration (31.25 mg/L for 48 h) there was a tendency for pasta cooking loss to be increased but still acceptable, and other pasta properties were largely unaffected. Fumigation with SF did not have any impact on the baking properties of a wholemeal durum flour–commercial flour mix. Therefore, SF is not recommended if the grains are to be used as seeds for agricultural production, but for the production of semolina, pasta, and bread, SF used under typical fumigation conditions has little to no impact on technological properties of durum wheat.  相似文献   

14.
Commercial durum wheat (Triticum durum desf.) semolina was fractionated into starch, gluten, and water extractables. Starch surface proteins and surface lipids were removed, and two starches with manipulated granule size distributions were produced to influence starch properties, affecting its interaction with other semolina components. Reconstituted spaghetti was made with untreated (control) or treated starches. The pasta made from the starting semolina material had lower cooking time and was of lower quality than the samples made from reconstituted material. This was not due to changes in gluten properties as a result of the first step of the fractionation process. For the reconstituted samples, starch interaction behavior was not changed after surface protein or surface lipid removal. Starch surface properties thus do not influence the starch interaction behavior, indicating that starch-gluten interaction in raw (uncooked) pasta is mainly due to physical inclusion. All reconstituted pasta samples also had generally the same cooking quality. It was concluded that the small changes in starch gelatinization behavior, caused by the above-mentioned starch modifications, are of little importance for pasta quality.  相似文献   

15.
As part of a general study aiming to clarify the role of arabinoxylans (AX) in pasta processing and quality, AX were modified by the addition of endoxylanases during pasta processing. The influence on processing parameters and quality were determined. Pasta (800 g) was produced from two commercial semolinas (semA and semB) using dosages of Bacillus subtilis (XBS) and Aspergillus niger (XAN) endoxylanases of 0–0.225 Somogyi units/g of semolina. Increased dosages resulted in a drop of extrusion pressure. The endoxylanase treatments had no great effect on the resulting pasta quality (color of dry products and surface condition, viscoelastic index, and resistance to longitudinal deformations of cooked products). High dosages of XAN and XBS resulted in high levels of solubilized AX (as an extra source of soluble dietary fiber) of low molecular weight which were expected to easily leach out during the cooking process of pasta. Surprisingly, only low levels of AX were found in the cooking water, even with extremely high dosages of endoxylanases used and cooking beyond optimum time. A method is provided to obtain high‐quality pasta with increased levels of soluble fiber.  相似文献   

16.
《Cereal Chemistry》2017,94(6):963-969
Single‐pass and multipass milling systems were evaluated for the quality of whole wheat durum flour (WWF) and the subsequent whole wheat (WW) spaghetti they produced. The multipass system used a roller mill with two purifiers to produce semolina and bran/germ and shorts (bran fraction). The single‐pass system used an ultracentrifugal mill with two configurations (fine grind, 15,000 rpm with 250 μm mill screen aperture; and coarse grind, 12,000 rpm with 1,000 μm mill screen aperture) to direct grind durum wheat grain into WWF or to regrind the bran fraction, which was blended with semolina to produce a reconstituted WWF. Particle size, starch damage, and pasting properties were similar for direct finely ground WWF and multipass reconstituted durum flour/fine bran blend and for direct coarsely ground WWF and multipass reconstituted semolina/coarse bran blend. The semolina/fine bran blend had low starch damage and had desirable pasting properties for pasta cooking. WW spaghetti was better when made with WWF produced using the multipass than single‐pass milling system. Mechanical strength was greatest with spaghetti made from the semolina/fine bran or durum flour/fine bran blends. The semolina/fine bran and semolina/coarse bran blends made spaghetti with high cooked firmness and low cooking loss.  相似文献   

17.
A pool of selected lactic acid bacteria was used to ferment durum wheat semolina under liquid conditions. After fermentation, the dough was freeze-dried, mixed with buckwheat flour at a ratio of 3:7, and used to produce the "fusilli" type Italian pasta. Pasta without prefermentation was used as the control. Ingredients and pastas were characterized for compositional analysis. As shown by two-dimensional electrophoresis, 92 of the 130 durum wheat gliadin spots were hydrolyzed almost totally during fermentation by lactic acid bacteria. Mass spectrometry matrix-assisted laser desorption/ionization time-of-flight and reversed phase high-performance liquid chromatography analyses confirmed the hydrolysis of gliadins. As shown by immunological analysis by R5-Western blot, the concentration of gluten decreased from 6280 ppm in the control pasta to 1045 ppm in the pasta fermented with lactic acid bacteria. Gliadins were extracted from fermented and nonfermented durum wheat dough semolina and used to produce a peptic-tryptic (PT) digest for in vitro agglutination tests on cells of human origin. The whole PT digests did not cause agglutination. Affinity chromatography on Sepharose-6-B mannan column separated the PT digests in three fractions. Fraction C showed agglutination activity. The minimal agglutinating activity of fraction C from the PT digest of fermented durum wheat semolina was ca. 80 times higher than that of durum wheat semolina. Pasta was subjected to sensory analysis: The scores for stickiness and firmness were slightly lower than those found for the pasta control. Odor and flavor did not differ between the two types of pasta. These results showed that a pasta biotechnology that uses a prefermentation of durum wheat semolina by selected lactic acid bacteria and tolerated buckwheat flour could be considered as a novel tool to potentially decrease gluten intolerance and the risk of gluten contamination in gluten-free products.  相似文献   

18.
This article introduces a new method that uses a shearing device to study the effect of simple shear on the overall properties of pasta‐like products made from commercial wheat gluten‐starch (GS) blends. The shear‐processed GS samples had a lower cooking loss (CL) and a higher swelling index (SI) than unprocessed materials, suggesting the presence of a gluten phase surrounding starch granules. Pictures of dough micro‐structure by confocal scanning laser microscopy (CSLM) showed the distribution of proteins in the shear‐processed samples. This study revealed that simple shear processing could result in a product with relevant cooking properties as compared with those of commercial pasta. Increasing gluten content in GS mixtures led to a decrease in CL and an increase in maximum cutting stress of processed samples, whereas no clear correlation was found for SI values of sheared products. It was concluded that the new shearing device is unique in its capability to study the effect of pure shear deformation on dough development and properties at mechanical energy and shear stress levels relevant to industrial processing techniques like pasta extrusion.  相似文献   

19.
Guar gum, a nonionic galactomannan, is used as an economical thickener and stabilizer in the food industry and is often combined with xanthan, locust bean gum (LBG), or carboxymethylcellulose (CMC) to promote synergistic changes in viscosity or gelling behavior via intermolecular interactions; however, the adulteration of LBG with guar gum is a well-known industrial problem. The ability to identify the purity of gums and concentrations of individual gums in mixtures would be advantageous for quality control in the food industry. Fourier transform infrared spectroscopy (FTIR) methods are rapid and require minimum sample preparation. The objectives of this study were to evaluate the ability of FTIR techniques to (1) differentiate LBG with a variety of mannose/galactose (M/G) ratios, (2) differentiate guar, LBG, tara, and fenugreek gums, (3) differentiate pure guar gum from guar gum mixed with LBG, xanthan gum, or CMC, (4) quantify LBG, xanthan gum, and CMC in guar gum, and (5) quantify guar gum in LBG. Two FTIR methods were used: diffuse reflectance (DRIFT) on powdered gum samples added to KBr at 5%, w/w, and attenuated total reflectance (ATR) on 1%, w/w, gum solutions. Spectra were collected and then analyzed by multivariate statistical procedures (chemometrics). The DRIFT method provided better discrimination and quantitative results than the ATR method. Canonical variate analysis (CVA) of DRIFT spectra (1200-700 cm(-1)) was able to classify LBG with various M/G ratios, pure galactomannans, and pure versus mixtures of gums with 100% accuracy. Quantification of an individual gum in gum mixtures (0.5-15%, w/w) was possible using partial least-squares (PLS) analysis of DRIFT spectra with R2 > 0.93 and using this approach for quantifying guar gum added to LBG resulted in an R2 > 0.99, RMSEC = 0.29, and RMSEP = 3.31. Therefore, the DRIFT FTIR method could be a useful analytical tool for quality control of select gums and gum mixtures used in the food industry.  相似文献   

20.
A rapid shear‐based test using a GlutoPeak instrument was compared with tests commonly used by durum wheat breeders to assess the potential of this instrument to discriminate between samples. Thirty‐two durum wheat semolina samples were analyzed by mixograph, SDS sedimentation (SDSS), gluten index (GI), and GlutoPeak testing. A subset was also tested for pasta quality. GlutoPeak peak maximum time (PMT) was the best indicator of gluten strength and correlated well with the other tests except SDSS. Samples with higher levels of SDS‐unextractable glutenin (insoluble protein [IP]) had stronger dough and longer PMT, but the GlutoPeak test only correlated with pasta stickiness using a smaller set of samples. The range in mixogram profiles encountered in breeding material was related to the IP content, and the pasta made from the different types was of similar quality, differing more because of protein content rather than mixogram type. The GlutoPeak test is faster than GI and uses less sample, requires little technical skill, and is suitable for evaluating large numbers of breeder's lines. The GlutoPeak test is best suited to discriminating weak from strong dough samples and allows for testing with small samples, thus facilitating quality evaluations at early stages of a breeding program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号