首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regeneration of mature Norway spruce with European beech using the shelterwood silvicultural system is a good example of continuous cover forestry. In contrast, the regeneration may also start with clear-cut plots, which often occur after calamities like wind-throw or bark beetle attack. During regeneration the forest ecosystem becomes a highly dynamic system. Nutrient losses from the soil may occur as the element turnover is affected by the reduced nutrient uptake of forest trees as well as the enhanced mineralisation and nitrification due to higher soil temperature and soil moisture. Continuous cover forestry may help to reduce these nutrient losses. In order to test this, we investigated water and element fluxes of two chronosequences. The first investigated regeneration in the shelterwood system, while the second concerned itself with regeneration on clear-cut plots. In a shelterwood-cut about 30% of the mature spruce trees are removed and young beech trees are planted. Some 10 years later a secondary felling is carried out and at age 20 of the beech regeneration the final harvest of the mature trees occurs. Thus, the studied time steps were (a) the first 5 years after the initial cut and planting, (b) 10-year-old beech regeneration after the second shelterwood cut and (c) 20-year-old beech regeneration after the final harvest.Our results indicate that nutrient losses with seepage water – especially nitrogen, calcium and magnesium – occur during the first years after the clear cut and, to a lesser extent, after secondary felling on the selective-cut plot. This may temporarily affect seepage water quality due to elevated nitrate concentrations, which reached values of more than 100 mg l−1. In the time span between planting and an age 20 of the beech regeneration, total losses of nitrogen from the main rooting zone reach 230 kg ha−1 after clear cut. Preliminary estimates of the total nitrogen loss in the shelterwood system range between 150 and 230 kg ha−1 indicating either significantly lower or equal losses of nutrients. In the second case, however, element output is distributed more equally over the 20-year-period than after clear felling where 85% of the nitrate leaching occurs during the first 3 years.  相似文献   

2.
The chemical fertility of the forest soils in the Belgian Ardenne is threatened by acidifying and eutrophying deposition and by the nutrient removal due to timber harvesting. Experiments were launched to evaluate the ability of liming and fertilization to improve foliar nutrition, maintain or restore crown condition and promote tree growth. In 1995, 10 liming and fertilization trials were installed in even-aged stands of European beech (5) and Norway spruce (5) distributed throughout the Ardenne. In each stand, two treatments were tested: liming with 3,000 kg ha−1 of dolomitic limestone and liming plus fertilization with 0 to 800 kg ha−1 of rock phosphate and 0 to 350 kg ha−1 of K2SO4. Between 1995 and 2006, the foliar Ca and Mg status of spruce and beech trees improved in the limed stands, which limited significantly but did not prevent the decline in crown condition triggered by the summer drought in 2003. For spruce, liming also increased the increment in basal area. The additional fertilization increased the foliar nutrition in P but had no significant effects on soil chemistry and tree vitality.  相似文献   

3.
The ecological effects of planting exotic Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] in Central Europe are still poorly understood. The aim of this study was to answer the question of whether Douglas-fir affects tree specific arthropod communities in different mature forest types (Douglas-fir, spruce and beech dominated) in Southern Germany. Therefore, arthropod communities of stem and tree crown strata of Douglas-fir and spruce (Picea abies L.) were sampled in the years 1999–2001 using arboreal photo-eclectors and flight interception traps. Statistical analysis was conducted for all species and focused on conifer specialists at three levels: (1) species diversity, (2) guild structure and (3) community structure. Within the stem stratum, species diversity was significantly higher on spruce than on Douglas-fir independent of year and stand composition. This could not be explained by a single feeding guild, rather by species changing strata during the vegetation period. In contrast, species diversity in tree crowns was approximately the same for both conifer species. However, communities in Douglas-fir crowns were conspicuously different from those in spruce crowns, especially in the Douglas-fir dominated stand type. While zoophagous insects exhibited higher activity on Douglas-fir in 2000, xylophagous beetles were more abundant on spruce in 2001. In European beech stands with widely spaced Douglas-fir trees, the site specific and broad-leaved tree related fauna might be maintained. In addition, Douglas-fir with its resource of Adelges cooleyi and crowns that overtop the broad-leaved tree canopy, offer additional resources for several aphidophagous and thermophile species.  相似文献   

4.
–  • Existing growth and yield plots of pure and mixed stands of Norway spruce (Picea abies (L.) H. Karst.) and European beech (Fagus sylvatica L.) were aggregated in order to unify the somewhat scattered sources of information currently available, as well as to develop a sound working hypothesis about mixing effects. The database contains information from 23 long-term plots, covering an ecological gradient from nutrient poor and dry to nutrient rich and moist sites throughout Central Europe.  相似文献   

5.
Thinning intensity and growth of Norway spruce stands in Finland   总被引:4,自引:0,他引:4  
Makinen  Harri; Isomaki  Antti 《Forestry》2004,77(4):349-364
  相似文献   

6.
杉木生长快、产量高、材质好,是中国亚热带地区最重要的造林树种之一,在中国南方人工林经营中占有重要地位。对8、14和24年生杉木人工林生物量、凋落物及其养分流进行的研究结果表明:杉木人工林具有很高的生物生产力和50%-70%的树干生物量积累比例。杉木是低养分归还的针叶树种,凋落量少,而且针叶凋落前养分发生一定程度的转移,凋落物养分含量低,短轮伐期连栽收获制度造成的养分损失是导致杉木人工林地力衰退的原因之一。图1表7参22。  相似文献   

7.
The chemistry and wetting behaviour of surface densified wood were investigated using FT-IR spectroscopy and contact angle analyses. Furthermore, set-recovery of the surface under conditions of fluctuating humidity was measured and quantitative microscopy analyses were undertaken. FT-IR indicated that no significant chemical changes took place during the densification process. However, the wettability of the densified surfaces was significantly lower than unmodified surfaces. Following several high humidity-oven dry cycles, it was found that this densification process was almost completely reversible, i.e., there was full set-recovery.  相似文献   

8.
9.
The nutrient status of Norway spruce in pure and in mixed-species stands   总被引:1,自引:0,他引:1  
Atmospheric deposition of N and S appears to have caused nutrient imbalance in Norway spruce stands in southern Sweden. This calls for a change of forest management to procedures that promote nutrient balance. Studies have shown lower soil acidity in Norway spruce/deciduous mixed stands than in spruce monocultures, but the tree nutrient status in such mixtures has not been much investigated so far.

The nutrient status of Norway spruce foliage and top mineral soil chemistry in monocultures and in stands mixed with beech, birch, or oak was investigated through paired comparisons on 30 sites in southern Sweden (27 sites) and eastern Denmark (three sites). In total, 45 mixed stands and 34 pure stands were included in the study.

Spruce needles from mixed stands had higher concentrations and ratios to N of K, P, and Zn than needles from pure spruce stands. Among the mixed stands, the K status appeared to be positively correlated with the percentage of deciduous tree basal area. Soil samples from mixed stands had a higher Mg concentration, base saturation, and BC/Al ratio than soil samples from pure stands. The spruce needle nutrient status was comparable in pure stands on fertile sites and in mixed stands on poor sites. We did not detect any differences in spruce tree growth between pure and mixed stands.

This paper discusses possible reasons for a positive effect on the tree nutrient status in mixed-species stands and the possibility of using mixed-species stands as a forest management procedure to avoid nutrient imbalance.  相似文献   


10.
A common method to determine the vitality of fine root tissue is the measurement of respiratory activity with triphenyltetrazolium chloride (TTC). The colorless TTC is reduced to the red-colored triphenyl formazan (TF) as a result of the dehydrogenase activity of the mitochondrial respiratory chain. However, measurements with woody fine roots of adult Norway spruce and European beech trees showed that dead control roots had a high potential to react with TTC. High reactivity was found in boiled fine roots and the bark of coarse roots, but not in the boiled wood of coarse roots. By sequential extraction of dried and ground adult Norway spruce fine roots, reactivity with TTC was reduced by about 75% (water extraction), 93% (water/methanol extraction) and 94% (water/acetone extraction). The water extract reacted with TTC in the same way as polyphenols such as lignin, catechin and epicatechin. Boiling did not affect the extent to which fine roots of adult trees reduced TTC, whereas it greatly reduced TTC reduction by seedling roots. Application of the TTC test to roots of spruce seedlings subjected to increasing drought showed a progressive decrease in TTC reduction. The decrease in TTC reduction was paralleled by a reduction in O(2) consumption, thus supporting the conclusion that for roots with a low polyphenol content the TTC test provides a valid assessment of tissue vitality. Our results suggest, however, that the TTC test should not be applied to the fine roots of adult trees because of their high content of polyphenolic compounds whose reaction with TTC masks changes in TTC reduction due to changes in the respiratory capacity of the tissue.  相似文献   

11.
To investigate the effect of tree species on soil N dynamics in temperate forest ecosystems, total N (Nt), microbial N (Nmic), net N mineralization, net nitrification, and other soil chemical properties were comparatively examined in beech (64–68 years old) and Norway spruce (53–55 years old) on sites 1 and 2, and beech and Scots pine (45 years old) on site 3. The initial soil conditions of the two corresponding stands at each site were similar; soil types were dystric Planosol (site 1), stagnic Gleysols (site 2), and Podzols (site 3). In organic layers (LOf1, Of2, Oh), Nmic and Nmic/Nt, averaged over three sampling times (Aug., Nov., Apr.), were higher under the beech stands than under the corresponding coniferous ones. However, the Nmic in the organic layers under beech had a greater temporal variation. Incubation (10 weeks, 22 °C, samples from November) results showed that the net N mineralization rates in organic layers were relatively high with values of 8.1 to 24.8 mg N kg–1 d–1. Between the two corresponding stands, the differences in net N mineralization rates in most of the organic layers were very small. In contrast, initial net nitrification rates (0.2–17.1 mg N kg–1 day–1) were considerably lower in most of the organic layers under the conifer than under the beech. In the mineral soil (0–10 cm), Nmic values ranged from 4.1–72.7 mg kg–1, following a clear sequence: August>November>April. Nmic values under the beech stands were significantly higher than those under the corresponding coniferous stands for samples from August and April, but not from November. The net N mineralization rates were very low in all the mineral soils studied (0.05–0.33 mg N kg–1 day–1), and no significant difference appeared between the two contrasting tree species.  相似文献   

12.
An objective of mountain forest management is to increase the ability of forest stands to protect human activities against natural hazards such as rock-falls and snow avalanches in a sustainable way. The challenge is to find a compromise between efficient instantaneous protection, favoured by dense stands, and continuous renewal, minimizing time periods of low protection efficiency. We used a Norway spruce stand dynamics model to compare the respective advantages of individual tree and gap selection silviculture in this context. We simulated stand dynamics over 800 years with either individual tree or gap thinning every 20 years with several thinning intensities. At each time step, we evaluated stand resilience, protection efficiency against rock-falls, protection efficiency against avalanches, and structural complexity with four indicators based on stand structure. Every scenario produced short time periods with low stand resilience and protection efficiency. Such periods can be tolerated if they are sufficiently rare compared to the local disturbance regime. We characterized the permanence of resilience and protection of a forest stand as its ability to remain within boundary values of the different indicators, without going out of them during continuous time periods longer than fixed maximum durations. Permanence of resilience and permanence of protection decreased with thinning intensity. Efficient protection against rock-falls was obtained with gap thinning of intermediate intensity while protection against avalanches was obtained only for very low thinning intensities. For our ecological context, the best compromise between resilience and protection was obtained with three 10 m radius gaps per hectare every 20 years (9.5% of the area of a stand). This strategy led to uneven-aged stand structures with a high diversity of diameters classes. Our results suggest that small gap silviculture may be a good way to combine forest renewal and protection efficiency in mountain regions.  相似文献   

13.
Early management of the regenerated seedlings shapes the future stand properties. To address these issues, pre-commercial thinning (PCT) and control treatments were applied to planted Norway spruce (Picea abies L. Karst) and naturally regenerated birch (Betula pendula Roth., Betula pubescens Ehrh.) stands in forest experiments in southern Sweden (lat. 56–57?N) containing 1.1–5.5?m tall saplings. The treatments were retention of 1000 or 2000?stems?ha?1 of Norway spruce, with no birch or birch at 1000?stems?ha?1. Treatments were replicated with and without annual removal of birch sprouts from stumps. The periodic annual increment (PAI) over five years was calculated for total stand volume and individual trees. The mean PAI of dominant trees was significantly higher both following all PCT treatments than controls, and following low rather than high-density PCT. Birch retention did not affect growth of the dominant trees but PAI was lower in plots with uncontrolled sprouting. The PAI of birch was significantly higher in low-density Norway spruce plots than in control plots and the high-density plots. The treatment response was significant even in stands with initial heights of only 1–2?m.  相似文献   

14.
Fruiting of Heterobasidion on cull pieces and stumps of Norway spruce was investigated in cutting areas and mature spruce stands located in southern Finland. Cull pieces of variable size and showing butt rot were left on three clear‐cut areas and in one thinned stand. Additionally, a part of the cull pieces was transported to mature forest sites with closed canopy. During the succeeding 3–4 years the cull pieces were investigated annually for sporocarps of Heterobasidion, and the area of actively sporulating pore layer of each sporocarp was measured. Root bases of spruce stumps in the logging areas were excavated and sporocarps found on the stumps also measured. At the onset of the experiment, Heterobasidion spp. were isolated from 76% of the cull pieces showing butt rot; 85% of the isolates were identified as H. parviporum and 15% as H. annosum s.s. During the following 3–4 years sporocarps were found on 20% of the 1938 cull pieces where Heterobasidion butt rot was initially detected visually. Sporocarp formation was promoted by advancement of butt rot, increasing cull piece diameter and end‐to‐end ground contact, but restricted by the colonization of the cull piece by Stereum sanguinolentum. Between‐site differences were significant but could not be explained by differences in tree cover. At the end of the investigation period the average sporulating area of Heterobasidion sporocarp per metre of cull piece was higher than the average sporulating area per stump at three of four logging sites. Hence, leaving cull pieces containing Heterobasidion butt rot at logging areas in southern Finland can considerably increase local production of Heterobasidion spores.  相似文献   

15.
An individual tree, process‐based stand growth model is presented. It is based on the carbon balance, according to which tree growth depends on the activities of photosynthesis, respiration and senescence. A simple model is specified for each component of the carbon balance. Next, equations for the tree structure, in which e.g. pipe‐model theory is utilized, are presented. The growth model for dry‐weights of tree compartments based on the carbon balance is transformed using these equations to allow the expression of growth in terms of diameter and height. It is also possible to aggregate a number of physiological and biometrical coefficients into a small number of generalized coefficients of the dimensional growth model. Additional components, including the equations for recession of the crown base and tree survival that are necessary for a stand growth model, are specified. Comparison of the stand growth model with a yield table and a growth model for a sapling stand suggests that the model is capable of accounting for the basic features of stand growth. Furthermore, simulations with varying initial density and some of the model's coefficients indicate that the stand growth model is approximately consistent with the so‐called self‐thinning rule.  相似文献   

16.
Muller  K.H.; Wagner  S. 《Forestry》2003,76(2):149-158
  相似文献   

17.
The purpose of this study was to examine the effects of type and amount of ground vegetation and substrate on the germination and early survival of Norway spruce (Picea abies (L.) Karst) seedlings in uneven-aged stands on mineral soils in Southern Finland. The study was conducted on two permanent plots representing average site quality for spruce stands in the area. A gradient in selection cut intensity and residual stand density was imposed across each of the two permanent plots. Regeneration and vegetation surveys were repeated annually on a grid of unmanipulated microplots and on a set of soil treatment microplots. The results indicated that the number of spruce germinants per unit area was positively correlated with herb cover but negatively correlated with total plant cover. Germinant density was also related to vegetation-free seedbed conditions, high overstory competition index and presence of larger spruce seedlings. Regeneration microsites dominated by moss or with plants with a relatively high light demand were associated with low germinant numbers. Bare humus layer and decayed stumps seemed to promote germinant emergence. Exposure of mineral soil resulted in germination rates that were 4.3–6.9 times higher than in undisturbed conditions during the first growing season.  相似文献   

18.
The vertical distribution of the ectomycorrhizal (ECM) community was studied in four old high-mountain Norway spruce (Picea abies [L.] Karst.) stands in northern Italy. The aim was to verify if the variability in the community structure could be explained by characteristics of the organic and mineral soil horizons. The community structure was evaluated in terms of both fungal species and their ability to explore soil (exploration types). From the 128 humus profiles sampled over the two study periods, 31 ECM species were recorded. The study demonstrated that the number of both non-vital tips and vital non-mycorrhized tips decreases with soil depth, from organic to mineral horizons, while the number of ectomycorrhizal tips mainly increases with soil depth. A preference was found of some ECM species and exploration types for specific organic or mineral soil layers and their features, especially moisture and available nitrogen. These results can help in understanding how the functional role of the single consortia and the ecological features determining this “adaptive diversity” in ectomycorrhizal communities could be of major importance to assess the resilience in forest soil ecosystems.  相似文献   

19.
Soil properties were compared in adjacent 50-year-old Norway spruce, Scots pine and silver birch stands growing on similar soils in south-west Sweden. The effects of tree species were most apparent in the humus layer and decreased with soil depth. At 20-30 cm depth in the mineral soil, species differences in soil properties were small and mostly not significant. Soil C, N, K, Ca, Mg, and Na content, pH, base saturation and fine root biomass all significantly differed between humus layers of different species. Since the climate, parent material, land use history and soil type were similar, the differences can be ascribed to tree species. Spruce stands had the largest amounts of carbon stored down to 30 cm depth in mineral soil (7.3 kg C m−2), whereas birch stands, with the lowest production, smallest amount of litterfall and lowest C:N ratio in litter and humus, had the smallest carbon pool (4.1 kg C m−2), with pine intermediate (4.9 kg C m−2). Similarly, soil nitrogen pools amounted to 349, 269, and 240 g N m−2 for spruce, pine, and birch stands, respectively. The humus layer in birch stands was thin and mixed with mineral soil, and soil pH was highest in the birch stands. Spruce had the thickest humus layer with the lowest pH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号