首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this research were to gather hybridization information about crosses between tetraploid and synthetically derived octoploid lines of Avena and their reciprocals, and to study the cytology of the hybrids obtained. When the octoploid plants were used as females, only 2.6% of the pollinated florets set seed, while seed set increased to 39.0% in reciprocal crosses. However, germination was 95.7% for the first group of hybrids and only 18.2% for the reciprocals. These diverse results can be explained by the paternal: maternal endosperm genomic ratios and the hypothesis of polar nuclei activation. The tetraploid-octoploid hybrids did not always contain 42 chromosomes. Octoploid lines derived indirectly from tetraploid (AABB) × hexaploid (AACCDD) crosses were found to retain their A and B genome chromosomes. Univalents in the above hybrids averaged 15.44 in 1990 and 15.15 in 1991, indicating the presence of C and D genome chromosomes inherited from the octoploid lines. Directly synthesized octoploids from diploid (AcAc) × hexaploid (AACCDD) crosses were found to form 20.44 univalents, 5.30 bivalents, and 2.69 trivalents when crossed with AABB tetraploid species. The high number of univalents indicates that chromosomes from at least three genomes, i.e. B, C, and D, remain unpaired, while trivalents are the result of homology between the A and Ac genomes. Hybrids between tetraploid and octoploid lines can be obtained at low frequencies but, regardless of the direction of the cross, these hybrids are highly sterile.  相似文献   

2.
A. Comeau 《Euphytica》1984,33(1):49-55
Summary The barley yellow dwarf virus resistance level was evaluated in acessions of most species of the genus Avena. Highest levels of resistance were found in A. sterilis and A. occidentalis. High resistance levels were also found in A. barbata, A. fatua, A. hybrida, A. macrostachya, diploid A. nuda and A. strigosa. Results are discussed in relation to breeding for resistance.Contribution No. 229.  相似文献   

3.
Many interspecific hybrids between diploid, tetraploid and hexaploid Avena species were obtained without artificial embryo cultures. Most of the hybrids showed variable chromosome pairing with univalents, bivalents and multiple associations, even in PMC in the same hybrid, at first metaphase; making ii very difficult to understand the degree of genome affinity between parent species, and especially between different species. The basic or theoretical chromosome pairing consisting of bivalents and univalents is presented, in which the chromosome ratios (%) statistically agree with observations. In addition, the per cent frequency of chromosomes forming multivalents is calculated. On the bases of these numerical data, the genomic affinity relationships are discussed for present and previously reported interspecific hybrids or Avena.  相似文献   

4.
Jens Weibull 《Euphytica》1986,35(3):993-999
Summary Thirty-two accessions of Avena species and breeding lines were evaluated for resistance, primarily antibiosis, to the aphid Rhopalosiphum padi (L.) in greenhouse and growth room tests. The highest levels of resistance were found in A. barbata and in the perennial species A. macrostachya. One breeding line, Obee, was also found to have interesting resistance characters. Resistance in A. macrostachya is discussed in relation to perenniality. A different screening method for rapid testing of large collections of varieties is evaluated.  相似文献   

5.
6.
Summary F1 hybrids of triazine resistant Brassica napus and triazine susceptible B. oleracea were morphologically intermediate to the parent species. Of 49 hybrids examined, 44 had 28 chromosomes, two had 37, one had 38 and two had 56. The 38-chromosome plant was thought to be a matromorph, the others, A1C1C (28), A1C1CC (37) or A1A1C1C1CC (56) type hybrids. Pollen stainability averaged 9.0% in the sesquidiploid, 32.0% in the tetraploids and 89.5% in the hexaploids. All the interspecific hybrids were resistant to 1.0×10-4 mol L-1 atrazine. The sesquidiploid hybrids produced gametes with chromosome numbers ranging from 9 to 17 and the tetraploid hybrid gametes had chromosome numbers from 15 to 22. Most hybrids produced self-seed. The partial fertility of these hybrids may permit their backcrossing to one or both parents.  相似文献   

7.
G. Ladizinsky  D. Zohary 《Euphytica》1971,20(3):380-395
Summary On the combined evidence from morphology, ecology, and cytogenetics, seven species are recognized in the genus Avena L. 1. A. clauda Dur., 2. A. ventricosa Bal. 3. A. longiglumis Dur, 4. A. strigosa Schreb., 5. A. magna Murphy et Terr., 6. A. murphyi Ladiz. and 7. A. sativa L. The first three species are wild diploids. The fourth is a diploid-tetraploid complex of wild forms, weeds and cultivars. The fifth and sixth are wild tetraploids and the seventh constitutes a hexaploid aggregate of wild forms, weeds and cultivated forms. A short morphological and ecological characterization is given to each species.The cytogenetic, ecological and morphological evidence available on the evolutionary divergence and on the genetic affinities between the seven species is reviewed and discussed. The conclusion in drawn that in Avena there are two independent developments of polyploidy: 1. strigosa tetraploids, where the diploid background is well known; 2. the tetraploid-hexaploid of A. magna, A. murphyi and A. sativa (series Denticulatae). Here the first two species apparently represent the general tetraploid background from which hexaploid A. sativa evolved. It is also argued that it is impossible to explain the morphology, ecology and cytology of series Denticulatae in terms of the known diploid species of Avena, and a yet missing hypothetical diploid ancestor was extrapolated.  相似文献   

8.
Four parents [P. acutifolius var.acutifolius (A19), P. a.var. latifolius `Serowi' (A9),P. a. var. latifolius(A10), and P. vulgaris `Red Cloud' kidney (V1)] were used to create six interspecific recurrent and congruity backcross pedigrees (V1 × A9, A9 × V1, V1 × A10, A10 × V1, V1 × A19, A19 × V1) for evaluation of Rhizobium, Bradyrhizobium nodulation affinities and root peroxidase banding patterns. Most primary hybrids nodulated with all Rhizobium, Bradyrhizobium strains, while recurrent generations nodulated with strains of the recurrent parent, suggesting a number of independent loci and random assortment for strain-specific nodulation. A proximity matrix of nodulation phenotypes produced a cluster with V1, two recurrent and two congruity backcross hybrids with V1 as the cytoplasmic parent; a separate cluster with all primary interspecific and balanced, congruity backcross hybrids. A9 and A10were clustered the farthest away from V1. Root peroxidase zymograms of primary hybrids were the summation of the parents and controlled by independent loci. Advanced hybrids exhibited new root peroxidases, matching those found for otherPhaseolus spp., including ancestralP. coccineus. A proximity matrix of root peroxidase phenotypes produced a cluster with only A9 3V1F1, a cluster containing only A19 3V1 F2, and a large cluster with all P. acutifoliusparents and hybrids with P. acutifolius as the cytoplasmic parent in balanced hybrids or the majority parent in unbalanced hybrids. Estimation of genetic distances showed primary, interspecific hybrids to be more closely related with the cytoplasmic parent. Recurrent and congruity backcross generations varied in genetic distances between each respective parent. This is the first report of congruity backcrossing creating hybrids with biochemical traits of nonparental species. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
We trialled a two-step method of producing allohexaploid Brassica with three genomes (A, B, and C) derived from pair-wise crossing among three allotetraploid Brassica species. In the first step, the three allotetraploid Brassica species (Brassica juncea, AjAjBjBj; Brassica napus, AnAnCnCn; and Brassica carinata, BcBcCcCc) were intercrossed in pairs to produce unbalanced trigenomic hybrids: AjAnBjCn, BjBcAjCc and CnCcAnBc. In the second step, these hybrids were crossed with the complementary allotetraploid parent, that is, AjAnBjCn × BcBcCcCc (B. carinata), BjBcAjCc × AnAnCnCn (B. napus) and CnCcAnBc × AjAjBjBj (B. juncea). We hypothesised that the unbalanced trigenomic hybrids would produce high levels of unreduced gametes with the same genome composition as the hybrid. These unreduced gametes would unite with reduced gametes from the complementary allotetraploids to form allohexaploid Brassica progeny (AjAnBcBjCcCn). From 112 s generation interspecific progeny, two progeny were shown by locus-specific simple sequence repeat markers to be near-allohexaploids derived from an unreduced gamete from CnCcAnBc and a reduced gamete from B. juncea (AjBj). One of these plants was highly self-fertile, had 50 chromosomes, and inherited patterns of marker alleles (AjAnBcBjCcCn) that were predicted from first division restitution at meiosis in the CnCcAnBc parent. The second near-allohexaploid had 60 chromosomes, was sterile, and inherited patterns of marker alleles that indicated second division restitution in the CnCcAnBc parent. Trigenomic hybrid Brassica produced by these methods will be valuable bridges to move alleles between allotetraploid species, and may contribute useful meiotic stability alleles to a future allohexaploid species.  相似文献   

10.
C-banded karyotypes of somatic chromosomes and meiotic abnormalities were investigated in four crown rust resistant lines derived from interploidy crosses in Avena.C-banding revealed that line N770-165-2-1 contained a 6C/21translocation while line DCS1789 contained a pair of A. strigosa chromosomes substituted for A. sativachromosome 12. Line JR2-3-3-B contained both the 6C/21 translocation and the pair of substituted A. strigosachromosomes, but line MAM17-4 contained neither. Although meiotic irregularities, including mispositioned bivalents, occurred in all four lines and in their F1 hybrids with A. sativa, the percentages of normal meiosis ranged from 75.4 to 88.6%. This allowed for stability of line performance and for their use as breeding stocks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
In order to introgress the ‘glandless-seed and glanded-plant’ trait from Gossypium sturtianum Willis (2n= 2x= 26, C1 genome) into the cultivated upland cotton Gossypium hirsutum L. (2n= Ax= 52 (AD), genome), two trispecific hybrids have been created using either Gossypium thurberi Torado (2n= 2x= 26, D1 genome) or Gossypium raimondii Ulbrich (2n= 2x= 26, D5 genome) as bridge species. The cross of both trispecific hybrids by G. hirsutum produced the first backcross progenies (BCl). Cytogenetic analysis showed that the trispecific hybrids had 52 chromosomes, their chromosome configurations at metaphase I (Ml) being 15.071 + 15.3411 + 0.93III + 0.69IV + 0.26VI in G. thurberi×G. sturtianum×G. hirsutum (TSH) and 14.421 + 17.0311 + 0.82III + 0.15IV + 0.07VI in G. hirsutum × G. raimondii ×. G. sturtianum (HRS), respectively. Among six BCl plants analysed, the only plant expressing the ‘glandless-seed and glanded-plant’ trait had 52 chromosomes and a meiotic configuration of 5.261 + 20.61II + 0.69III + 0.77IV at MI. Pollen fertility was 2.90% in TSH, 8.97% in HRS, and ranged from 0% to 40.28% in the BCl progenies. The introgressed BCl plant is perennial in growth habit. It can be used in breeding programmes aiming at the introgression of the ‘glandless-seed and glanded-plant’ trait into a cultivar of upland cotton.  相似文献   

12.
Summary Atrazine resistant Brassica napus × B. oleracea F1 hybrids were backcrossed to both parental species. The backcrosses to B. napus produced seeds in both directions but results were much better when the F1 hybrid was the pollen parent. Backcrosses to B. oleracea failed completely but BC1s were rescued by embryo culture both from a tetraploid hybrid (2n = 4x = 37; A1C1CC) and sesquidiploid hybrids (2n = 3x = 8; A1C1C). Progeny of crosses between the tetraploid hybrid and B. oleracea had between 25 and 28 chromosomes. That of crosses between the sesquidiploid hybrid and B. oleracea had between 21 and 27. A few plants that had chromosome counts outside the expected range may have originated from either diploid parthenogenesis, unreduced gametes or spontaneous chromosome doubling during in vitro culture. Pollen stainability of the BC1s ranged from 0% to 91.5%. All the BC1s to B. oleracea were resistant to atrazine.  相似文献   

13.
The wild non-tuberous species Solanumetuberosum is resistant to biotic andabiotic stresses, but is very difficult tocross with cultivated potato. Therefore,interspecific somatic hybrids between adihaploid clone of potato S.tuberosum (2n=2x=24, AA genome) and thediploid species S. etuberosum(2n=2x=24, EE genome) were produced byprotoplast fusion. Among the 7 fertilefusion hybrids analysed by genomic insitu hybridisation (GISH), three groups ofplants were found with the genomicconstitution of AAEE, AAEEEE and AAAAEE.Four fusion hybrids had exactly theexpected chromosome composition, while eachof the three aneuploid hybrids had lost twochromosomes of S. etuberosum. Twobackcross progenies were developed, andGISH analysis was applied to analysetransmission of the parental chromosomesinto the sexual generations. BC1hybrids derived from the crosses of thehexaploid somatic hybrids with tetraploidpotato were pentaploid with thetheoretically expected genomic compositionor with slight deviation from thisexpectation. In the three BC2 hybridsanalysed by GISH seven to 12 chromosomes ofS. etuberosum were detected in thepredominant S. tuberosum background.No recombinant chromosomes in the hybridswere detected. Genome dosage affects tuberformation in hybrids and their progenies,but has less effect on resistance to potatovirus Y (PVY) in fusion hybrids. Severalgenotypes of the fusion hybrids andBC1 progeny did not show viralinfection even in the graftingexperiments.  相似文献   

14.
Intergeneric hybrids involving a wild crucifer, Diplotaxis siifolia (2n = 20; DsDs), and two crop Brassica species, namely Brassica rapa (2n = 20; AA) and B. juncea (2n = 36; AABB), were developed through sequential ovary/ovule culture. Hybridization was successful only when D. siifolia was used as the female parent, indicating unilateral cross incompatibility. Hybrids were intermediate between the parents for morphological characteristics but had low male as well as female fertility. Meiotic studies of hybrids revealed partial homoeology between Ds and A/B genomes.  相似文献   

15.
Salt (NaCl)‐induced regulation of some key physio‐biochemical characteristics in two okra (Abelmoschus esculentus L.) cultivars (Nirali and Posa Sawni) was examined under greenhouse conditions. Plants of both cultivars were subjected for 30 days to sand culture salinized with four salt levels [0 (control), 50, 100 and 150 mm NaCl] in Hoagland’s nutrient solution. Salt stress significantly reduced the shoot and root fresh weights, transpiration rate, chlorophyll b content, net CO2 assimilation (A), transpiration rate (E), while enhanced leaf and root Na+ and Cl concentrations in both cultivars. In contrast, chlorophyll a content, stomatal conductance (gs), leaf internal CO2 (Ci), Ci/Ca ratio, water‐use efficiency (A/E) and fluorescence characteristics such as photochemical quenching (qP), non‐photochemical quenching (NPQ), efficiency of PS‐II (Fv/Fm), proline contents, and leaf and root K+, Ca2 + and N contents remained almost unaffected in both lines due to salt stress. The efficiency of PSII (Fv/Fm), A, chlorophyll b, root fresh weight and root N were higher in relatively salt tolerant cv. Nirali, whereas leaf Na+ and root Cl were higher in cv. Posa Sawni. The relatively more reduction in growth in the cv. Posa Sawni was found to be associated with higher accumulation of Na+ in its leaves and Cl in roots.  相似文献   

16.
H. Thomas  D. A. Lawes 《Euphytica》1968,17(3):404-413
Summary Cytogenetic studies on species hybrids and synthetic amphiploids in the Avenae are discussed in relation to their use in transferring variation from wild species of different ploidy into cultivated hexaploid oats. Procedures for the introduction of alien variation into the cultivated oat are proposed, based on our present knowledge of the genetic relationships between species in Avena.  相似文献   

17.
This study aimed to evaluate the ability of Piriformospora indica to colonize the root of Chenopodium quinoa and to verify whether this endosymbiont can improve the growth, performance and drought resistance of this species. The study delivered, for the first time, evidence for successful colonization of P. indica in quinoa. Hence, pot experiment was conducted in the greenhouse, where inoculated and non‐inoculated plants were subjected to ample (40%–50% WHC) and deficit (15%–20%WHC) irrigation treatments. Drought adversely influenced the plant growth, leading to decline the total plant biomass by 74%. This was linked to an impaired photosynthetic activity (caused by lower gs and Ci/Ca ratio; stomatal limitation of photosynthesis) and a higher risk of ROS production (enhanced ETR/Agross ratio). P. indica colonization improved quinoa plant growth, with total biomass increased by 8% (controls) and 76% (drought‐stressed plants), confirming the growth‐promoting activity of P. indica. Fungal colonization seems to diminish drought‐induced growth hindrance, likely, through an improved water balance, reflected by the higher leaf ψw and gs. Additionally, stomatal limitation of photosynthesis was alleviated (indicated by enhanced Ci/Ca ratio and Anet), so that the threat of oxidative stress was minimized (decreased ETR/Agross). These results infer that symbiosis with P. indica could negate some of the detrimental effects of drought on quinoa growth, a highly desired feature, in particular at low water availability.  相似文献   

18.
Facing a steadily increasing world energy demand, jatropha, among other energy crops, has been reported to potentially contribute to biofuel production. A basic characterisation of plant responses to abiotic environmental factors is important for assessing the model‐assisted potential of this plant in view of the many agro‐ecological zones in which jatropha is presently cultivated. Two pot experiments and two field studies were used to record gas exchange parameters in response to light, nitrogen supply, atmospheric vapour pressure deficit (VPD), leaf age and time of measurements. Variation of N supply from 0 to 16 mm resulted in lower rates of photosynthesis (A) and stomatal conductance (gs) of treatment 0 mm N compared with other N levels, whereas the light compensation point (IC), quantum yield (QY) and dark respiration rates (Rd) were similar in all treatments. In the field, diurnal effects were evident with higher light‐saturated photosynthetic rate (Amax) and QY and lower IC and Rd in the morning than in the afternoon. Considering leaf age effects, fully expanded leaves had a lower Amax compared with expanding leaves and this variation in leaf gas exchange was not related to changes in the chlorophyll index value (SPAD) which steadily increased with leaf age. QY of field and greenhouse plants varied from 0.023 to 0.037 and was substantially lower than in C3 plants. A was positively correlated with gs in a hyperbolic function. A varied from 0.64 to 21.13 μmol m?2 s?1 and gs varied from 12 to 469 mmol m?2 s?1. With increasing VPD, gs decreased, but this response differed between the field experiments and the two pot experiments which contrasted each other distinctively. Applying the inverse logistic function of Webb (Ecological Modeling, 56 (1991), 81), the maximal stomatal conductance of jatropha was in the range of 382 mmol m?2 s?1 and gs is predicted to be close to zero at 5 kPa. These data altogether indicate that light absorption characteristics of single leaves and carbohydrate status parameters should be investigated further to explain the low QY and the pronounced diurnal variation.  相似文献   

19.
Summary Solanum polytrichon (2n = 48) is easily crossable withS. phureja (2n = 24). In the F1-progeny only triploids are found. The triploid hybrids are highly variable and pollensterile. Sterility and reduced vigour of some F1 plants are believed to be due to disharmony of the parental genomes and/or due to gene-cytoplasm interaction. The two genomes A4 and B ofS. polytrichon and the genome A1 ofS. phureja do not seem to be very much differentiated from each other. More than 70% of the hybrid plants showed resistance toPhytophthora race 1.3.4.7.8. Its easy cross ability,Phytophthora resistance and genomic constitution makeS. polytrichon a promising species for study in practical breeding.Guest worker of the Agronomy Department, Faculty of Agriculture, Cairo University, Cairo, U.A.R. (Egypt).  相似文献   

20.
Summary Sexual polyploidization via the action of 2n gametes (gametes with the sporophytic chromosome number) has been identified as the most important evolutionary mode of polyploidization among plant genera. This study was conducted to determine whether 2n gametes are present in the tetraploid level of the genus Avena (2n=4×=28) Twenty tetraploid Avena lines, representing four species and one interspecific hybrid, were screened for pollen grain size in order to differentiate between n and 2n pollen. Avena vaviloviana (Malz.) Mordv. line PI 412767 was observed to contain large pollen grains at a 1.0% frequency. Cytogenetic analyses of pollen mother cells of PI 412767 revealed cells with double the normal chromosome number (i.e., 56 chromosomes at metaphase I and anaphase I). The mode of chromosome doubling was found to be failure of cell wall formation during the last mitotic division that preceded meiosis. The resulting binucleate cells underwent normal meiotic divisions and formed pollen grains with 28 chromosomes. Based on the formation and function of 2n gametes, three models involving diploid and tetraploid oat lines are proposed to describe possible evolutionary pathways for hexaploid oats. If stable synthetic hexaploid oat lines could be developed by utilizing 2n gametes from diploid and tetraploid oat species through bilateral sexual polyploidization, the resulting hexaploids could be used in breeding programs for transferring genes from diploids and tetraploids to cultivated hexaploids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号