首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Malaria parasites must complete a complex developmental cycle in an Anopheles mosquito vector before transmission to a vertebrate host. Sexual development of the parasite in the midgut is initiated in the lumen immediately after the mosquito ingests infected blood, and the resulting ookinetes must traverse the surrounding epithelial layer before transforming into oocysts. The innate immune system of the mosquito is activated during midgut invasion, but to date, no evidence has been published identifying mosquito immune genes that affect parasite development. Here, we show by gene silencing that an Anopheles gambiae leucine rich-repeat protein acts as an antagonist and two C-type lectines act as protective agonists on the development of Plasmodium ookinetes to oocysts.  相似文献   

2.
Malaria parasite transmission depends on the successful transition of Plasmodium through discrete developmental stages in the lumen of the mosquito midgut. Like the human intestinal tract, the mosquito midgut contains a diverse microbial flora, which may compromise the ability of Plasmodium to establish infection. We have identified an Enterobacter bacterium isolated from wild mosquito populations in Zambia that renders the mosquito resistant to infection with the human malaria parasite Plasmodium falciparum by interfering with parasite development before invasion of the midgut epithelium. Phenotypic analyses showed that the anti-Plasmodium mechanism requires small populations of replicating bacteria and is mediated through a mosquito-independent interaction with the malaria parasite. We show that this anti-Plasmodium effect is largely caused by bacterial generation of reactive oxygen species.  相似文献   

3.
4.
The anopheline mosquito is the target in most malaria control programs, primarily through the use of residual insecticides. A mosquito was studied that is refractory to most species of malaria through a genetically controlled mechanism. A strain of Anopheles gambiae, which was selected for complete refractoriness to the simian malaria parasite Plasmodium cynomolgi, also has varying degrees of refractoriness to most other malaria species examined, including the human parasites P. falciparum, P. ovale, and P. vivax for which this mosquito is the principal African vector. Furthermore, the refractoriness extends to other subhuman primate malarias, to rodent malaria, and to avian malaria. Refractoriness is manifested by encapsulation of the malaria ookinete after it completes its passage through the mosquito midgut, approximately 16 to 24 hours after ingestion of an infective blood meal. Fully encapsulated ookinetes show no abnormalities in parasite organelles, suggesting that refractoriness is due to an enhanced ability of the host to recognize the living parasite rather than to a passive encapsulation of a dead or dying parasite. Production of fully refractory and fully susceptible mosquito strains was achieved through a short series of selective breeding steps. This result indicates a relatively simple genetic basis for refractoriness. In addition to the value these strains may serve in general studies of insect immune mechanisms, this finding encourages consideration of genetic manipulation of natural vector populations as a malaria control strategy.  相似文献   

5.
The African malaria mosquito, Anopheles gambiae, is specialized for rapid completion of development and reproduction. A vertebrate blood meal is required for egg production, and multiple feedings subsequently allow transmission of malaria parasites, Plasmodium spp. Regulatory peptides from 35 genes annotated from the A. gambiae genome likely coordinate these and other physiological processes. Plasmodium parasites may affect actions of newly identified insulin-like peptides, which coordinate growth and reproduction of its vector, A. gambiae, as in Drosophila melanogaster, Caenorhabditis elegans, and mammals. This genomic information provides a basis to expand understanding of hematophagy and pathogen transmission in this mosquito.  相似文献   

6.
To establish infection in the host, malaria parasites export remodeling and virulence proteins into the erythrocyte. These proteins can traverse a series of membranes, including the parasite membrane, the parasitophorous vacuole membrane, and the erythrocyte membrane. We show that a conserved pentameric sequence plays a central role in protein export into the host cell and predict the exported proteome in Plasmodium falciparum. We identified 400 putative erythrocyte-targeted proteins corresponding to approximately 8% of all predicted genes, with 225 virulence proteins and a further 160 proteins likely to be involved in remodeling of the host erythrocyte. The conservation of this signal across Plasmodium species has implications for the development of new antimalarials.  相似文献   

7.
Successful propagation of the malaria parasite Plasmodium falciparum within a susceptible mosquito vector is a prerequisite for the transmission of malaria. A field-based genetic analysis of the major human malaria vector, Anopheles gambiae, has revealed natural factors that reduce the transmission of P. falciparum. Differences in P. falciparum oocyst numbers between mosquito isofemale families fed on the same infected blood indicated a large genetic component affecting resistance to the parasite, and genome-wide scanning in pedigrees of wild mosquitoes detected segregating resistance alleles. The apparently high natural frequency of resistance alleles suggests that malaria parasites (or a similar pathogen) exert a significant selective pressure on vector populations.  相似文献   

8.
We surveyed an Anopheles gambiae population in a West African malaria transmission zone for naturally occurring genetic loci that control mosquito infection with the human malaria parasite, Plasmodium falciparum. The strongest Plasmodium resistance loci cluster in a small region of chromosome 2L and each locus explains at least 89% of parasite-free mosquitoes in independent pedigrees. Together, the clustered loci form a genomic Plasmodium-resistance island that explains most of the genetic variation for malaria parasite infection of mosquitoes in nature. Among the candidate genes in this chromosome region, RNA interference knockdown assays confirm a role in Plasmodium resistance for Anopheles Plasmodium-responsive leucine-rich repeat 1 (APL1), encoding a leucine-rich repeat protein that is similar to molecules involved in natural pathogen resistance mechanisms in plants and mammals.  相似文献   

9.
Extremely difficult to decipher, the genome of Plasmodium falciparum, the most virulent malaria parasite, is already providing targets for new drugs. Next project: the mosquito genome.  相似文献   

10.
11.
Apicomplexan parasites such as Toxoplasma gondii and Plasmodium species actively invade host cells through a moving junction (MJ) complex assembled at the parasite-host cell interface. MJ assembly is initiated by injection of parasite rhoptry neck proteins (RONs) into the host cell, where RON2 spans the membrane and functions as a receptor for apical membrane antigen 1 (AMA1) on the parasite. We have determined the structure of TgAMA1 complexed with a RON2 peptide at 1.95 angstrom resolution. A stepwise assembly mechanism results in an extensive buried surface area, enabling the MJ complex to resist the mechanical forces encountered during host cell invasion. Besides providing insights into host cell invasion by apicomplexan parasites, the structure offers a basis for designing therapeutics targeting these global pathogens.  相似文献   

12.
Genetic analysis of the human malaria parasite Plasmodium falciparum   总被引:48,自引:0,他引:48  
Malaria parasites are haploid for most of their life cycle, with zygote formation and meiosis occurring during the mosquito phase of development. The parasites can be analyzed genetically by transmitting mixtures of cloned parasites through mosquitoes to permit cross-fertilization of gametes to occur. A cross was made between two clones of Plasmodium falciparum differing in enzymes, drug sensitivity, antigens, and chromosome patterns. Parasites showing recombination between the parent clone markers were detected at a high frequency. Novel forms of certain chromosomes, detected by pulsed-field gradient gel electrophoresis, were produced readily, showing that extensive rearrangements occur in the parasite genome after cross-fertilization. Since patients are frequently infected with mixtures of genetically distinct parasites, mosquito transmission is likely to provide the principal mechanisms for generating parasites with novel genotypes.  相似文献   

13.
We report the genome sequence of Theileria parva, an apicomplexan pathogen causing economic losses to smallholder farmers in Africa. The parasite chromosomes exhibit limited conservation of gene synteny with Plasmodium falciparum, and its plastid-like genome represents the first example where all apicoplast genes are encoded on one DNA strand. We tentatively identify proteins that facilitate parasite segregation during host cell cytokinesis and contribute to persistent infection of transformed host cells. Several biosynthetic pathways are incomplete or absent, suggesting substantial metabolic dependence on the host cell. One protein family that may generate parasite antigenic diversity is not telomere-associated.  相似文献   

14.
Cysteine proteases of Plasmodium falciparum are required for survival of the malaria parasite, yet their specific cellular functions remain unclear. We used a chemical proteomic screen with a small-molecule probe to characterize the predominant cysteine proteases throughout the parasite life cycle. Only one protease, falcipain 1, was active during the invasive merozoite stage. Falcipain 1-specific inhibitors, identified by screening of chemical libraries, blocked parasite invasion of host erythrocytes, yet had no effect on normal parasite processes such as hemoglobin degradation. These results demonstrate a specific role for falcipain 1 in host cell invasion and establish a potential new target for antimalarial therapeutics.  相似文献   

15.
Quinacrine: mechanisms of antimalarial action   总被引:1,自引:0,他引:1  
Two new interesting modes of action of quinacrine have been discovered. The first concerns a dose-related inhibition of uptake of [8-(3)H] adenosine into host cells of parasitized blood. Second, the drug inhibits the incorporation of tritiated adenosine triphosphate primarily into RNA but also into DNA of the erythrocyte-free malarial parasite Plasmodium berghei.  相似文献   

16.
Intracellular bacteria and parasites typically invade host cells through the formation of an internalization vacuole around the invading pathogen. Plasmodium sporozoites, the infective stage of the malaria parasite transmitted by mosquitoes, have an alternative mechanism to enter cells. We observed breaching of the plasma membrane of the host cell followed by rapid repair. This mode of entry did not result in the formation of a vacuole around the sporozoite, and was followed by exit of the parasite from the host cell. Sporozoites traversed the cytosol of several cells before invading a hepatocyte by formation of a parasitophorous vacuole, in which they developed into the next infective stage. Sporozoite migration through several cells in the mammalian host appears to be essential for the completion of the life cycle.  相似文献   

17.
Malaria parasites adopt host cell superoxide dismutase   总被引:10,自引:0,他引:10  
Aerobic organisms depend on superoxide dismutase to suppress the formation of dangerous species of activated oxygen. Intraerythrocytic stages of the malaria parasite exist within a highly aerobic environment and cause the generation of increased amounts of activated oxygen. Plasmodium berghei in mice was found to derive a substantial amount of superoxide dismutase activity from the host cell cytoplasm. Plasmodia isolated from mouse red cells contained mouse superoxide dismutase, whereas rat-derived parasites contained the rat enzyme. This is believed to be the first example of the acquisition of a host cell enzyme by an intracellular parasite.  相似文献   

18.
A century ago, W. G. MacCallum identified distinct male and female forms in malaria parasites of both birds and humans. Since then, scientists have been puzzled by the high female-to-male ratios of parasites in Plasmodium infections and by the mechanism of sex determination. The sex ratio of malaria parasites was shown to become progressively more male as conditions that allow motility and subsequent fertilization by the male parasites become adverse. This resulted from an increased immune response against male gametes, which coincides with intense host erythropoietic activity. Natural and artificial induction of erythropoiesis in vertebrate hosts provoked a shift toward male parasite production. This change in parasite sex ratio led to reduced reproductive success in the parasite, which suggests that sex determination is adaptive and is regulated by the hematologic state of the host.  相似文献   

19.
The apicomplexan Cryptosporidium parvum is an intestinal parasite that affects healthy humans and animals, and causes an unrelenting infection in immunocompromised individuals such as AIDS patients. We report the complete genome sequence of C. parvum, type II isolate. Genome analysis identifies extremely streamlined metabolic pathways and a reliance on the host for nutrients. In contrast to Plasmodium and Toxoplasma, the parasite lacks an apicoplast and its genome, and possesses a degenerate mitochondrion that has lost its genome. Several novel classes of cell-surface and secreted proteins with a potential role in host interactions and pathogenesis were also detected. Elucidation of the core metabolism, including enzymes with high similarities to bacterial and plant counterparts, opens new avenues for drug development.  相似文献   

20.
After languishing for decades in the scientific backwaters, malaria research is suddenly being swept into the mainstream. Money is beginning to pour in from international finance and aid organizations, giving researchers who have been doggedly pursuing an intractable foe with limited resources the means to follow new leads. But on the ground, the disease is unyielding, and the current weapons are losing their effectiveness. In a series of related stories, Science explores the World Health Organization's crusade that aims to cut malaria mortality in half over the next 10 years, conditions on the front lines of clinical research in Africa, the challenges that have slowed development of a so-far elusive vaccine, renewed interest in a Chinese herbal remedy that could aid in the fight against drug-resistant malaria, progress in attacking the Plasmodium parasite through its genome, and the dream of building a malaria-proof mosquito.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号