共查询到20条相似文献,搜索用时 15 毫秒
1.
干湿交替对黄土崩解速度的影响 总被引:2,自引:1,他引:2
耕作土壤在降雨、灌水之后,其由翻耕后的疏松状态逐渐变得较为紧实,土粒之间会重新结合,土壤结构得到重组。土壤抵抗侵蚀能力发生了一定变化。通过土盒模拟土壤干湿交替过程,研究耕作土壤干湿交替过程中土壤容重和静水崩解变化。采用Richards模型对土壤崩解过程进行了模拟,分析干湿交替对土壤崩解速度的影响,结果表明:随土壤干湿交替次数的增加,土壤容重增长缓慢,土壤的固结从快变慢。随干湿交替次数的增加,土壤的崩解速度逐渐降低。其崩解过程可划分为缓慢崩解阶段、指数崩解阶段和崩解完成阶段。随干湿交替次数的增加,缓慢崩解阶段延长,指数崩解阶段推迟出现。经3次干湿交替后,土壤崩解速度显著降低,土壤抗蚀性增强。 相似文献
2.
土壤干湿交替对玉米生长速度及其耗水量的影响 总被引:12,自引:1,他引:12
在盆栽条件下研究了干湿交替对玉米生长速率、叶片水势、渗透势、气孔导度、相对生长速率和耗水量的影响。结果表明玉米在3~7叶期经历土壤水分缓慢亏缺,再进行复水的干湿交替后玉米叶片渗透调节能力明显增加,叶片生长表现出补偿效应,每次干湿交替后生长速率迅速下降的叶水势趋于下降,气孔导度对土壤水分变化非常敏感,并在干旱—复水过程中具有后效作用,蒸腾耗水量随干—湿交替而具有下降趋势,初步证明可在节水灌溉条件下人为控制不同生育时期的供水时间形成干湿交替,促进渗透调节能力增强和补偿生长来实现作物高产、高效、优质的目的 相似文献
3.
通过选取干热河谷区典型发育的3种原位土壤(燥红土、变性土和新积土)剖面平台,采用"浇水—曝晒"循环的方法模拟研究区干湿交替的气候条件,设置0,1,3,5次干湿交替频度,以探明不同干湿交替处理对干热河谷冲沟发育区3种典型土壤的崩解性差异及其影响因素。结果表明:(1)3种土壤的崩解过程有所差异,燥红土崩解速度较慢,崩解持续时间短,崩解残留土较多;变性土崩解速度极慢,崩解持续时间长,崩解残留土量最多;新积土崩解过程迅速,土壤崩解速度极快,几乎无残留土量。(2)3种土壤的崩解性差异明显,最大崩解指数从大到小依次为新积土(97.56%)变性土(38.67%)燥红土(12.92%);平均崩解速率表现出相似结果。(3)干湿交替对3种土壤崩解性均有一定增强作用,对燥红土和变性土崩解性增强作用主要表现为提高其最大崩解指数和增大其崩解速率2个方面,而对新积土崩解性的影响则主要表现为缩短其崩解完成所需时间。研究结果从干湿交替的角度为冲沟土壤的崩解性研究提供一定的理论参考,为认知该区水土作用过程及开展水土保持工作奠定理论基础。 相似文献
4.
Effects of temperature and drying and wetting alternation (DWA) on ammonium fixation in manured loessial soil were studied by means of Batch Equilibrium with varying concentration solutions of ammonium chloride.ammonium fixation time,and soil clay contents.The purpose of the research was to find out the pattern of ammonium fixation affected by the varying factors.The results showed a remarkable variation in ammonium fixation.Fixed ammonium increased with temperature and treatments of DWA.The ammonium fixation in manured loessial soil was characterized by the effect of temperature and DWA. 相似文献
5.
干湿交替对土壤性质影响的研究 总被引:7,自引:2,他引:7
开展干湿交替对土壤理化性质影响的研究,对于认识土壤侵蚀机理、缓解土壤侵蚀的发生具有重要意义。通过干湿交替的研究进展、干湿交替对土壤物理性质、土壤化学性质和土壤微生物特性的影响四个方面分析了干湿交替发展历程及其对土壤性质影响的过程和机理,相关研究表明:干湿交替的相关研究在各个时段有所侧重,干湿交替对土壤物理性质的影响与土壤容重、抗冲性、崩解速率和膨胀收缩率有关,对土壤化学性质的影响与土壤有机质分解、氮素矿化磷素吸附与释放等因素关系密切;干湿交替通过影响土壤呼吸和微生物生物量,使得土壤微生物特性发生改变。根据现有研究中存在的干湿处理量化指标不相一致、干湿处理方式局限于室内模拟及忽略干湿处理过程土壤相关性质动态变化过程等问题,提出定量化干湿处理指标、开展原位小区干湿处理试验、关注干湿交替过程中土壤形态发育情况和化学元素迁移差异及其微生物活性动态变化等研究展望,拟对土壤侵蚀和水土保持研究提供一定理论指导。 相似文献
6.
干湿交替对水稻土碳氮矿化的影响 总被引:8,自引:1,他引:8
通过室内培育试验,研究干湿交替条件下长期不同施肥处理水稻土微生物生物量和理化性状变化对土壤C、N矿化的影响机制.结果表明,与连续淹水(Cw)处理相比,干燥处理不仅显著地提高了所有施肥处理土壤有机C的矿化速率,其幅度为78%~204%,而且也提高了各处理土壤微生物生物量C和N,其幅度分别为55%~77%和57%~72%;干燥后淹水处理土壤有机C矿化速率的提高幅度为74%~95%,呈先降低再升高的趋势.土壤N的矿化在干湿交替过程的干燥处理中降低34%~78%:干燥后淹水过程仅使NPK处理的升高21%,而CK和NPKOM处理分别降低5%和13%.在培养过程中土壤Eh值仅在-60~60 mV范围时,与土壤微生物生物量C之间有显著的负相关关系.在干湿交替的干燥过程,随土壤pH值的升高土壤微生物生物量C有增加的趋势,在淹水条件下土壤pH值则仅与NPKOM处理土壤微生物生物量C之间有明显的负相关关系.干湿交替条件下土壤 pH和 Eh 值、微生物群落组成和数量与有机质的矿化之间的相互作用关系复杂,三者间的作用机理需进一步研究. 相似文献
7.
8.
为探究不同墒情需求的农田耕作层土壤含水率与超声波速度的变化关系,采用室外模拟降雨的方式,使土壤样本初始含水率分别为15%、20%、25%和30%,之后置于自然环境下干燥直到土壤含水率达到5%结束干燥,每种处理进行共4次干湿交替,利用超声波土壤含水率原位检测装置对土壤样本进行超声波速度测定。结果表明:土壤样本在各次干湿交替过程中随着土壤含水率的不断下降,土壤容重及超声波速度均呈非线性的增加。随着干湿交替次数的增加,土壤含水率变化对超声波速度的影响减弱,土壤样本初始含水率越高,干湿交替次数对超声波速度的影响越小。采用自适应加权数据融合算法将多次干湿交替过程中的土壤样本超声波速度加权融合,并利用非线性回归分析构建适用于经历多次干湿交替作用下的超声波速度-土壤含水率关系模型,预测误差在6%左右,表明该模型可用于描述不同墒情需求的农田耕作层土壤含水率与超声波速度的关系。研究结果可为利用超声波速度特性实现不同灌溉性质农田土壤含水率的持续监测及预测提供参考。 相似文献
9.
干湿交替作用对黑土养分淋失的影响 总被引:2,自引:0,他引:2
通过室内土柱模拟养分淋溶的方法,对干湿交替作用后,黑土中各种养分的淋失情况进行研究。结果表明:干湿交替作用明显提高了黑土淋溶液中各种养分的含量,其中钾含量提高最显著,高于对照6倍,硝态氮和铵态氮含量都比对照提高了2倍,而水溶性磷浓度无明显变化;黑土经干湿交替作用后明显加快了水分及养分向下运移的速度,并导致淋溶液中各种养分的累计含量显著增加,其中钾素增加最多,淋失累计含量达到对照的40倍以上;此外,干湿交替作用对不同养分淋失的影响效果也不同,对阳离子养分的影响比对阴离子的影响更为显著。以上研究结果说明,干湿交替作用提高了黑土中养分淋失的数量,同时也加大了地下水污染的风险。 相似文献
10.
为了探究我国西南地区干湿交替作用对土壤团聚体稳定性的影响,选取重庆缙云山典型黄壤为研究对象,在4个前期含水率(风干,10%,15%,20%)水平下,对4组不同粒级团聚体(1~2,2~3,3~5,5~7mm)分别进行7个不同干湿交替过程(1,2,3,5,7,10,15次)模拟。采用Le Bissonnais法,对干湿交替作用后的团聚体在不同破碎机制下的稳定性特征进行了探讨。结果表明:(1)快速湿润(FW)对团聚体稳定性的破坏程度最大,且与机械扰动(ST)和慢速湿润(SW)存在显著差异;(2)小粒径团聚体相较于大粒径团聚体稳定性更高;(3)干湿交替过程对团聚体存在明显的破坏作用,且在不同含水率变化范围下其破坏程度不同;(4)干湿交替作用主要通过影响团聚体破碎后2mm团聚体的百分比含量来影响团聚体的稳定性。该结果对于研究西南地区土壤侵蚀的发生机理具有一定的参考价值。 相似文献
11.
为了探究农业生产实践中经过人工夯实的田坎在自然营力作用下的垮塌变形机理,通过采集黄土区梯田土壤,对其进行室内击实、模拟干湿交替处理和剪切试验,探究了干湿交替过程对夯实土壤抗剪强度的影响。结果表明:在试验条件下,随着干湿交替次数的增加,土壤的粘聚力呈现逐渐增加的趋势。土壤的内摩擦角逐渐降低,并在第7次干湿交替时达到最小值。在100 kPa垂直压力作用下,土壤的抗剪强度受影响不明显;在200 kPa垂直压力作用下,土壤抗剪强度先增加然后趋于稳定;而在300,400 kPa垂直压力作用下,土壤的抗剪强度先增加然后逐渐降低,并趋于稳定,并在第2次干湿交替时达到最大值。此外,在相同干湿交替次数的情况下,随着垂直压力的增大,土壤的抗剪强度逐渐增大,说明垂直压力与土壤的抗剪强度呈正相关。经过显著性分析,干湿交替过程对土壤内摩擦角的影响大于相同条件下对粘聚力的影响。干湿交替过程对夯实土壤的抗剪强度有显著影响,随着干湿交替次数的增加,土壤的抗剪强度降低,其中土壤粘聚力增加,而内摩擦角下降。 相似文献
12.
干湿交替对土壤碳库和有机碳矿化的影响 总被引:15,自引:0,他引:15
水分是影响土壤活性碳库和惰性碳库周转过程的主导因子,而土壤有机碳的周转速率会对气候变化造成潜在的重要影响。以农田水稻土为供试土壤,通过培育试验研究了干湿交替过程对土壤有机碳矿化的影响,并利用两库叠加模型对土壤不同碳库及其降解动力学进行初步评估。结果表明:干湿交替激发了土壤呼吸,增加了土壤微生物代谢活性。三次湿润过程对土壤呼吸的激发量分别为119.3%、159.5%和87.3%,激发效应随干湿交替频率的增加先升高后降低。多次干湿交替后,土壤累积CO2释放量低于恒湿土壤,湿润所引起的激发的矿化量不足以弥补干旱期降低的矿化量。在湿润的数小时内,土壤溶解性有机碳含量先升高后降低。干湿交替提升了土壤活性碳库的降解速率,降低了惰性碳库的降解速率,湿润后土壤活性碳库显著增加。多次干湿交替降低了土壤真菌/细菌比,使土壤微生物群落结构发生变化,细菌成为优势种群。 相似文献
13.
干湿交替对土壤呼吸和土壤有机碳矿化的影响述评 总被引:2,自引:0,他引:2
土壤干湿交替循环对土壤呼吸的“激发效应”被证实在干旱、半干旱和地中海气候区普遍存在。土壤干湿交替被认为是影响土壤呼吸的重要因素。土壤物理、化学、生物性状会在干湿交替过程中发生一系列变化,引发土壤CO2排放量显著激增而引起“Birch效应”。随着未来气候变化下极端降水天气事件发生频率的增加,降雨强度和频率的改变将导致部分地区的土壤经受更广泛和频繁的干湿交替作用,加剧土壤干湿循环,影响土壤呼吸。重点论述了干湿交替对土壤碳素循环各个关键过程(尤其是土壤呼吸和SOC矿化)的影响效应,归纳总结了干湿交替对土壤碳素循环的影响机制,从土壤团聚体、根系呼吸、微生物呼吸等方面阐述了干湿交替对土壤呼吸和土壤有机碳(SOC)矿化激发效应的影响及其机理。综合生理学说与物理学说观点,认为干湿交替主要通过土壤结构、SOC的分解速率、土壤微生物群落的结构与稳定性等的改变来影响土壤呼吸和SOC矿化过程。目前,关于干湿交替对土壤碳素循环关键过程影响的研究结果还不尽一致,其影响机制尚不明晰,研究方法也还有一些不足之处。简要指出了目前研究过程中存在的一些不足,并对未来研究中值得深入研究的科学问题进行了探讨与展望。 相似文献
14.
水旱轮作条件下频繁的干湿交替显著影响了土壤氮素转化。为了明确干湿交替下氮肥施用对土壤有机氮库转化的影响,采用室内培养的方法,研究模拟淹水、干旱、水改旱、旱改水条件下,氮肥施用对土壤有机氮库动态变化的影响,以期为水旱轮作体系氮肥合理施用提供理论支撑。结果表明,氮肥施用能够显著提高土壤酸解态总氮含量,不同水分条件下土壤酸解态总氮含量无明显差异,但对酸解态总氮各组分含量产生显著影响。模拟淹水条件下酸解态氮主要以酸解铵态氮和未知态氮形式存在,分配比例分别为40.2%和33.7%,而模拟旱地条件下主要以氨基酸态氮和未知态氮形式存在,分配比例占到了40.7%和31.5%。经水分条件转换后,各种水分条件下土壤酸解铵态氮和氨基酸态氮含量均出现降低,水改旱条件下土壤氨基糖态氮含量显著提高,而旱改水条件下未知态氮含量显著提高。在整个培养阶段,土壤铵态氮与酸解铵态氮存在极显著的正相关,具有相似的变化规律。综上所述,氮肥施用到水田初期有利于提高土壤铵态氮和酸解铵态氮含量,随后这两种氮组分逐渐分解转化,而氨基糖态氮含量逐渐提升,氨基糖态氮是水旱轮作体系中肥料氮素的重要“中 相似文献
15.
模拟干湿交替对水稻土古菌群落结构的影响 总被引:2,自引:0,他引:2
干湿交替是自然界普遍存在的现象,但长期以来由于技术的限制,复杂土壤中微生物对水分变化的响应规律仍不清楚。针对我国江苏常熟湖泊底泥发育的典型水稻土,在室内开展湿润-风干以及风干-湿润各三次循环,每次循环中湿润、风干状态各维持7d,利用微生物核糖体rRNA的通用引物进行PCR扩增,通过高通量测序分析土壤古菌多样性变化,同时结合实时荧光定量PCR技术,在DNA和RNA水平研究古菌数量对干湿交替过程的响应规律。结果表明:水稻土湿润-风干过程中,在DNA水平土壤古菌数量降幅约为149倍~468倍,而在RNA水平降幅最高仅为2.06倍;水稻土风干-湿润过程中,在DNA水平古菌数量增幅在147倍~360倍之间,而在RNA水平增幅最高仅为2.95倍。表明在干湿交替过程中,DNA水平的古菌16S rRNA基因数量变化远高于RNA水平。基于高通量测序多样性的结果表明,在DNA和RNA水平,湿润土壤3次风干、以及风干土壤3次加水湿润7d恢复后,土壤古菌群落结构均发生统计显著性改变。在微生物门、纲、目、科和属的不同分类水平下,水稻土古菌主要包括3、10、13、14、10种不同的类群,在RNA和DNA水平的结果基本一致。干湿交替导致部分古菌类群发生显著变化,其中在微生物分类学目水平发生显著变化的古菌最高达到6种,主要包括产甲烷古菌和氨氧化古菌,如Methanobacteriales、Methanosarcinales、Methanomicrobiales和Nitrososphaerales等。这些研究结果表明,反复的干湿交替并未显著改变水稻土中古菌的主要类群组成,古菌类群的绝对数量和相对丰度发生了一定程度的变化,但这些变化与微生物生理作用的联系仍需进一步研究;风干土壤中古菌RNA序列极可能来自于完整的古菌细胞,暗示了这些古菌细胞能够较好地适应水稻土中水分的剧烈变化,风干状态的土壤在一定程度也可用于土壤古菌群落组成研究。 相似文献
16.
旱地农业与灌溉农业中作物经常面临的土壤干旱与湿润交替变化是实际田间环境[1]。作物在生长发育的不同时期可能会遇上各不相同的土壤缺水胁迫,这些不同胁迫会对作物诱导出适应性的生理反应和伤害性影响[2,3],对此进行研究和认识,可以在节水灌溉中控制作物生长发育不同阶段土壤水分来调节作物生理过程,避免伤害性变化的发生,而促进适应性变化的产生,以改善作物发育后期籽粒形成阶段根系和叶片的功能来提高作物产量、品质和水分利用效率,达到高效、优质的目的。本文主要研究玉米在土壤干湿交替过程中的耗水特性和叶水分状况的关系,探讨提高水分利用效率的机制,为节水农业提供优化供水模式。 相似文献
17.
稻田干湿交替对水稻氮素利用率的影响与调控研究进展 总被引:3,自引:2,他引:3
稻田干湿交替(alternate wetting and drying,AWD)是提高水稻水、氮利用率的重要水分管理措施。水稻品种、生态环境、氮肥运筹和土壤落干强度是影响AWD下水稻氮素利用率(nitrogen use efficiency,NUE)的主要因素。AWD通过改变土壤水-气环境而影响土壤中生物化学过程,进而影响土壤氮素营养的有效性。轻度AWD促进水稻根系的生长和活力,促进水稻氮素的吸收、同化和转移而提高NUE。轻度AWD不仅提高水稻光合作用,还促进干物质向籽粒的分配,从而提高水稻产量和氮素利用率。AWD还引起植物激素的变化,植物激素也可能参与了对水稻氮素利用的调控。该文从根际氮素营养与环境、根系形态功能、氮素同化和再转移,以及碳同化和分配、植物激素调控等方面综述了 AWD对水稻氮素利用率的影响与调控,并提出了一些值得深入探讨的问题。 相似文献
18.
干湿交替对红壤中锌-钢电偶腐蚀的影响 总被引:2,自引:0,他引:2
电偶腐蚀是指两种不同金属在腐蚀介质中相互接触时,由于各自的腐蚀电位不同,原腐蚀电位较负的金属将成为阳极,溶解速率增大,使其腐蚀加剧;而作为阴极的金属则受保护。 相似文献
19.
河道水位水文年内的动态变化使得河岸土体处于干湿交替的状态。为研究干湿交替对粘性岸滩土体力学性能及河岸稳定性的影响,以长江荆江段8个典型崩岸断面岸滩的粘性土体为研究对象。采用历史资料分析、实地勘察取样、室内土工试验、BSTEM模型模拟相结合的方法,分析了上、下荆江河岸土体组成及力学特性,并且定量研究了干湿交替条件下粘性岸滩土体力学性能的变化;运用BSTEM模型对荆61和北门口断面在2013水文年内的崩岸过程进行了模拟,并分析了干、湿条件下土体抗剪强度指标对河岸稳定性的影响。结果表明:随着土体含水率的增加,粘聚力先增大后减小,而内摩擦角呈指数关系减小,并得出含水率与粘聚力和内摩擦角的定量关系式;2个断面计算崩塌宽度与实际一致,误差分别为1.69%和3.74%;干湿交替情况下安全系数值主要受土体粘聚力值的影响,并分别得到了2个典型断面粘聚力和内摩擦角与安全系数的一元线性关系。这样已知河岸土体含水率时,就可以通过关系式计算得出土体的粘聚力和内摩擦角,从而得出安全系数,判断河岸稳定性。 相似文献
20.
干湿交替在自然界中普遍存在。受气候格局变化的影响,干湿交替频繁,对土壤水分、结构及其稳定性和抗蚀性产生深刻影响。土壤水分是干湿交替的直观表现,土壤水分因干湿交替的变化会经历落干和复湿两个过程。重点论述了干湿交替对土壤结构及其稳定性和抗蚀性的影响机制,并结合目前研究过程中存在的一些不足,指出了未来研究中值得深入研究的科学问题。 相似文献