首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direction-selective ganglion cells (DSGCs) in the retina respond strongly when stimulated by image motion in a preferred direction but are only weakly excited by image motion in the opposite null direction. Such coding represents an early manifestation of complex information processing in the visual system, but the cellular locus and the synaptic mechanisms have yet to be elucidated. We recorded the synaptic activity of DSGCs using strategies to observe the asymmetric inhibitory inputs that underlie the generation of direction selectivity. The critical nonlinear interactions between the excitatory and inhibitory inputs took place postsynaptically within the dendrites of the DSGCs.  相似文献   

2.
Synapses onto different morphological types of retinal ganglion cells   总被引:3,自引:0,他引:3  
The percentage of bipolar and amacrine synapses onto ganglion cell dendrites of the ground squirrel has been determined by electron microscopy of cells impregnated by the Golgi method. One group of ganglion cells has mainly amacrine input (approximately 97 percent); the other group has an approximately equal bipolar and amacrine input. Morphologically distinct types of ganglion cells usually have a consistent synaptic input, but exceptions may exist.  相似文献   

3.
Spontaneous impulse activity of rat retinal ganglion cells in prenatal life   总被引:17,自引:0,他引:17  
The existence of spontaneous neural activity in mammalian retinal ganglion cells during prenatal life has long been suspected. This activity could play a key role in the refinement of retinal projections during development. Recordings in vivo from the retinas of rat fetuses between embryonic day 17 and 21 found action potentials in spontaneously active ganglion cells at all the ages studied.  相似文献   

4.
Light synchronizes mammalian circadian rhythms with environmental time by modulating retinal input to the circadian pacemaker-the suprachiasmatic nucleus (SCN) of the hypothalamus. Such photic entrainment requires neither rods nor cones, the only known retinal photoreceptors. Here, we show that retinal ganglion cells innervating the SCN are intrinsically photosensitive. Unlike other ganglion cells, they depolarized in response to light even when all synaptic input from rods and cones was blocked. The sensitivity, spectral tuning, and slow kinetics of this light response matched those of the photic entrainment mechanism, suggesting that these ganglion cells may be the primary photoreceptors for this system.  相似文献   

5.
Action potentials of ganglion cells were recorded extracellularly from opened cat eyes. It was found that inhibition, as judged by discharge frequency, may depend upon rate of change of light intensity. Apparently the balance between excitatory and inhibitory inputs at the ganglion cell level depends upon rate of change of illumination. Visual purple bleaching or sensory adaptation taking place during the stimulation does not explain the results.  相似文献   

6.
Functional nicotinic cholinergic receptors are found on mammalian retinal ganglion cell neurons in culture. The neurotransmitter acetylcholine (ACh) can be detected in the medium of many of these retinal cultures, after release presumably from the choline acetyltransferase-positive amacrine cells. The postsynaptic effect of endogenous or applied ACh on the ganglion cells can be blocked with specific nicotinic antagonists. Here it is shown that within 24 hours of producing such a pharmacologic blockade, the retinal ganglion cells begin to sprout or regenerate neuronal processes. Thus, the growth-enhancing effect of nicotinic antagonists may be due to the removal of inhibition to growth by tonic levels of ACh present in the culture medium. Since there is a spontaneous leak of ACh in the intact retina, the effects of nicotinic cholinergic drugs on process outgrowth in culture may reflect a normal control mechanism for growth or regeneration of retinal ganglion cell processes that is exerted by ACh in vivo.  相似文献   

7.
The central nervous system (CNS) loses the ability to regenerate early during development, but it is not known why. The retina has long served as a simple model system for study of CNS regeneration. Here we show that amacrine cells signal neonatal rat retinal ganglion cells (RGCs) to undergo a profound and apparently irreversible loss of intrinsic axon growth ability. Concurrently, retinal maturation triggers RGCs to greatly increase their dendritic growth ability. These results suggest that adult CNS neurons fail to regenerate not only because of CNS glial inhibition but also because of a loss of intrinsic axon growth ability.  相似文献   

8.
Light adaptation in cat retinal rods   总被引:8,自引:0,他引:8  
It has long been an open question whether individual rod receptors in the mammalian retina show any light adaptation. The prevailing evidence so far has suggested that these cells, unlike those in lower vertebrates, adapt little if at all. The experiments on cat rods reported here, however, indicate that this is not really true. Since the cone system in the cat retina has a fairly high light threshold, the rods also need to adapt so that they do not saturate with light before the cones fully take over vision at higher light intensities. In similar experiments, adaptation was found in rods of other mammalian species, including primates.  相似文献   

9.
The primary circadian pacemaker, in the suprachiasmatic nucleus (SCN) of the mammalian brain, is photoentrained by light signals from the eyes through the retinohypothalamic tract. Retinal rod and cone cells are not required for photoentrainment. Recent evidence suggests that the entraining photoreceptors are retinal ganglion cells (RGCs) that project to the SCN. The visual pigment for this photoreceptor may be melanopsin, an opsin-like protein whose coding messenger RNA is found in a subset of mammalian RGCs. By cloning rat melanopsin and generating specific antibodies, we show that melanopsin is present in cell bodies, dendrites, and proximal axonal segments of a subset of rat RGCs. In mice heterozygous for tau-lacZ targeted to the melanopsin gene locus, beta-galactosidase-positive RGC axons projected to the SCN and other brain nuclei involved in circadian photoentrainment or the pupillary light reflex. Rat RGCs that exhibited intrinsic photosensitivity invariably expressed melanopsin. Hence, melanopsin is most likely the visual pigment of phototransducing RGCs that set the circadian clock and initiate other non-image-forming visual functions.  相似文献   

10.
Ganglion cells were dissociated from postnatal rat retinas, identified by specific fluorescent labels, and maintained in culture on a variety of substrates. Regeneration of processes by retinal ganglion cells was enhanced when the cells were plated on glass coated with a monoclonal antibody against the Thy-1 determinant. Plain glass and glass coated with polylysine, collagen, fibronectin, or other monoclonal antibodies supported the growth of neural processes, but were less effective than antibody to Thy-1.  相似文献   

11.
Formation of retinal ganglion cell topography during prenatal development   总被引:3,自引:0,他引:3  
A fundamental feature of the mammalian visual system is the nonuniform distribution of ganglion cells across the retinal surface. To understand the ontogenetic processes leading to the formation of retinal ganglion cell topography, changes in the regional density of these neurons were studied in relation to ganglion cell loss and the pattern of retinal growth in the fetal cat. Midway through the gestation period, the density of these neurons was only two to three times greater in the area centralis than in the peripheral retina, whereas shortly before birth this central-to-peripheral difference was nearly 20-fold. Age-related changes in the ganglion cell distribution were found not to correspond in time or magnitude to the massive loss of ganglion cells that occurs during prenatal development. Rather, the formation of ganglion cell density gradients can be accounted for by unequal expansion of the growing fetal retina-peripheral regions expand more than the central region, thereby diluting the peripheral density of ganglion cells to a greater degree. Nonuniform growth, in conjunction with differential periods of neurogenesis of the different types of retinal cells, appears to be a dominant factor regulating overall retinal topography. These results suggest that the differential regional expansion of the fetal retina underlies the formation of magnification factors in the developing visual system.  相似文献   

12.
Recordings were obtained from the retinal nerves and optic ganglia of intact squid, which were maintained in good condition by perfusing their mantles with sea water. Only "on" discharges were found in the nerves, whereas "on" and "off" discharges as well as spontaneous activity and tactile responses were obtained from the ganglia.  相似文献   

13.
The visual system is able to accurately represent the spatiotemporal relations among the elements of a changing visual scene as the image moves across the retinal surface. This precise spatiotemporal mapping occurs despite great variability in retinal position and conduction velocity even among retinal ganglion cells of the same physiological class-a variability that would seem to reduce the precision with which spatiotemporal information can be transmitted to central visual areas. There was a strong negative relation between the intraretinal and extraretinal conduction time for axons of individual ganglion cells of the X-cell class. The effect of this relation was to produce a nearly constant total transmission time between the soma of a retinal X cell and its central target site. Thus, the variation in the conduction velocities of retinal ganglion cell axons may ensure that, regardless of the constraints imposed by retinal topography, a precise spatiotemporal central representation of the retinal image is maintained.  相似文献   

14.
Unusual retinal cells in the dolphin eye   总被引:1,自引:0,他引:1  
By comparison to the cellular constituents of the retinas of certain other diving mammals, the elements of the dolphin retina include an unusually large number of specialized cells. Both cone and rod receptors may be identified. An unusual amacrine cell may be seen which produces a process that spans the cells between the inner plexiform and outer plexiform layers. Most unusual is a layer of giant ganglion cells which appears to serve most of the central retina. The giant ganglion cells support giant dendrites and optic nerve fibers which range up to 8 micrometers in diameter.  相似文献   

15.
Alarm pheromones (APs) are widely used throughout the plant and animal kingdoms. Species such as fish, insects, and mammals signal danger to conspecifics by releasing volatile alarm molecules. Thus far, neither the chemicals, their bodily source, nor the sensory system involved in their detection have been isolated or identified in mammals. We found that APs are recognized by the Grueneberg ganglion (GG), a recently discovered olfactory subsystem. We showed with electron microscopy that GG neurons bear primary cilia, with cell bodies ensheathed by glial cells. APs evoked calcium responses in GG neurons in vitro and induced freezing behavior in vivo, which completely disappeared when the GG degenerated after axotomy. We conclude that mice detect APs through the activation of olfactory GG neurons.  相似文献   

16.
TASAKI I  CHANG JJ 《Science (New York, N.Y.)》1958,128(3333):1209-1210
An experiment is described suggesting that the glia cells in the mammalian cerebral cortex are capable of developing electric responses to direct stimuli. When hyperfine microelectrodes were pushed into the cortex of a cat, slow, reversible potential variations were recorded which resembled the "electric responses" from the glia cells in tissue culture.  相似文献   

17.
Norepinephrine elicited a hyperpolarizing response, and acetylcholine (during nicotinic blockade) elicited a depolarizing one. Both responses showed no increase in membrane conductance. The norepinephrine response was suppressed by initial depolarization; the acetylcholine response (frog cells); by hyperpolarization. These neurotransmitters apparently can activate electrogenic mechanisms which do not involve movement of ions down their electrochemical gradients.  相似文献   

18.
All major retinal pathways in the Siamese cat are abnormal, with almost total crossing of the projections to the pretectum and superior colliculus. These projections represent a marked disruption in the customary neural substrate for binocular vision, which implies a consequent impairment in stereoscopic depth perception. Crossed eyes, commonly seen in the Siamese cat, may therefore arise from a neuroanatomical defect in the primary visual pathways.  相似文献   

19.
Synapses of horizontal cells in rabbit and cat retinas   总被引:1,自引:0,他引:1  
Horizontal cells in the retinas of cats and rabbits are morphologically similar; in both species, two types can be distinguished in Golgistained material. Horizontal cells and their processes are readily recognized in electron micrographs, and many of the horizontal cell processes appear to make synaptic contacts with dendrites and somata of bipolar cells, and probably with other horizontal cells. The synapses of the horizontal cell appear similar to chemical synaptic contacts described throughout the nervous system. With the finding of synaptic contacts, it seems clear that retinal horizontal cells should be classified as neurons.  相似文献   

20.
Opponent color cells in the cat lateral geniculate nucleus   总被引:1,自引:0,他引:1  
A microelectrode survey of the cat lateral geniculate has uncovered an infrequent new type of lateral geniculate cell in layer B with "on" center responses to short wavelengths and "off" center responses to long wavelengths. The short wavelength responses are mediated by cones with peak sensitivity at about 450 nanometers, and the long wavelength responses by cones with peak sensitivity at 556 nanometers. Two of double opponent color cells also had double opponent features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号