首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Enhanced water vapour diffusion under temperature gradients has been proposed as a mechanism to explain the discrepancies between measured and predicted water fluxes in soils. Because of the difficulties in measuring soil vapour diffusion directly, modelling approaches have been used to estimate the vapour enhancement factor (η) by matching theory to measurements. In the method proposed by Hiraiwa & Kasubuchi (2000) , soil thermal conductivity associated with conduction heat transfer (λc) is assumed to be equal to the apparent soil thermal conductivity (λ) measured at a low temperature, and η is significantly under‐estimated. In the present study, an improved approach for estimating η is used, in which λc is taken as the apparent soil thermal conductivity associated with infinite atmospheric pressure. The λ at infinite atmospheric pressure is estimated by extrapolating λ measurements made at finite air pressures. By subtracting λc from measured λ values at a given atmospheric pressure, the contribution of thermal vapour diffusion to heat transfer (λv) is obtained and then used to estimate η. In the case of a lysimeter sand, λv accounts for 4–25, 8–29 and 13–35% of λ at 3.5, 22.5 and 32.5°C, respectively, at soil water contents greater than 0.02 m3 m−3. Thus, the latent heat transfer through vapour diffusion is important even at temperatures as low as 3.5°C. The agreement between predictions from the new method and selected literature values suggests that the improved approach is able to provide accurate estimate of η. The results from this study show that the magnitude of latent heat transfer resulting from thermal vapour diffusion is strongly soil texture‐dependent. Thus, it is important to estimate η on specific soils rather than assuming η from literature values.  相似文献   

2.
To clarify the role of air molecules in coupled heat and mass transfer in soil, we measured the thermal conductivity of three kinds of soil (Ando soil, Red Yellow soil, and Toyoura sand) under reduced air pressure over a wide range of water content and temperature (10–75°C). The thermal conductivity increased sharply under reduced air pressure above a critical water content of the soil, becoming several times larger than that under normal pressure (101 kPa). The maximum thermal conductivity for each soil was obtained below 75°C and was similar to the thermal conductivity of some metals such as Mn, Hg and stainless steel. When the soil was drier than its critical water content, the thermal conductivity did not increase under reduced air pressure. The hydraulic diffusivity at the critical water content for each soil was of the order of 10?8 m2 s?1. This suggests that the latent heat transfer is enhanced by the circulation of the condensed water. However, very little is known about the effect of circulating water on the latent heat transfer under reduced air pressure. To make this clear, the thermal conductivity would need to be measured in the steady state under reduced air pressure.  相似文献   

3.
The coupled heat and mass transfer in soil can be analysed by examining the temperature dependence of thermal conductivity. We have measured the thermal conductivity of two kinds of soil (Ando soil and Red Yellow soil) as a function of both temperature (5–75°C) and water content by the twin heat probe method. From our results we concluded that the thermal conductivity resulting from the latent heat transfer can be separated from the apparent thermal conductivity by subtracting the thermal conductivity at a temperature near 0°C from that at a higher temperature. The relation between the phenomenological enhancement factor (β) and the volumetric air‐filled porosity was divided into two parts: β increases linearly as the volumetric air‐filled porosity increases from zero (that is, water saturation), to the point at which soil water potential corresponds to ?320 J kg?1; from that point to oven‐dry condition, β decreased logistically with the volumetric air‐filled porosity. From these results, we could generalize the behaviour of β.  相似文献   

4.
One of the best ways to evaluate the coupled heat and mass transfer in soil is to measure the heat flux and water distribution simultaneously. For this purpose, we developed an apparatus for measuring the one‐dimensional steady‐state heat flux and water distribution in unsaturated soil under reduced air pressure. The system was tested using four samples with known thermal conductivity (0.6–8.0 W m?1 K?1). We confirmed that the system could measure the one‐dimensional steady‐state heat flux under a fixed temperature difference between ends of the samples over a wide range of thermal conductivity values. Time domain reflectometry was used to measure the water distribution with a repeatability of less than ± 1.0%. We used the apparatus to measure the soil heat flux and distribution of water content and temperature under steady‐state conditions with reduced air pressure. The initial volumetric water content, θini, of the soil samples was set at 0.20 and 0.40 m3m?3. For a θini of 0.20, the heat flux was not significantly affected by air pressure, and the water content on the hot side decreased whilst that on the cold side increased, i.e. a pronounced water content gradient was formed. For a θini of 0.40, the heat flux increased sharply with reduced air pressure, and the water content did not change, i.e. a homogeneous water distribution was observed. The increase in the heat flux with air pressure reduction is caused by the vapour transfer in soil pores. We found that a large vapour transfer took place in the soil with the homogeneous water distribution, and that the vapour transfer was less in the soil with the pronounced water content gradient. These experimental facts were entirely different from the traditional knowledge of vapour transfer in soil under temperature gradients. A lack of data on heat flux must have resulted in the previously incorrect conclusions. The new apparatus will serve to clarify the intricate phenomena of thermally induced vapour transfer in unsaturated soil in further experiments.  相似文献   

5.
Simulation of heat transfer in soil under steady and unsteady situations requires reliable estimate of soil thermal conductivity (λ) at varying environmental conditions. In the current work several soil thermal conductivity predicting models including I) de Vries, II) Campbell, III) combined de Vries and Campbell and IV) de Vries-Nobre were evaluated for the four soils of coarse sand, sandy loam, loam and clay loam textured at varying in temperature and bulk density at low moisture range. Thermal conductivities measured by the cylindrical probe method served as the reference for models assessment. Results showed that approximately same thermal conductivities obtained by the five methods at low moisture range (θ ≤ 0.05 m3/m3). Also the de Vries and de Vries-Campbell models produced accurate than Campbell and de vries-Nobre models. The accuracy of the two models increased with soil compaction but decreased with temperature rise. Campbell model showed more reliability at higher (311.16 and 321.16 K) temperatures; but its accuracy declined with soil compaction in current work. It seems that assuming needle shape for the soil particles is far away from the reality whereas assuming spherical shapes may be more realistic and produced more satisfactory prediction of thermal conductivity. The compaction would alter particle arrangement and may increase the contact area of particles; and then make them behave more or less spherical shape.it seems thermal conductivity in solid particles increase via increasing in temperature. Since a modified mineral shape factor, gm, was developed as a combination between sphere and needle according to geometric mean particle diameter as well as bulk density and temperature as modifying factors. This factor increased the accuracy of de Vries-Nobre model up to 10.37%. Regarding nonlinear regression model, moisture content, bulk density, temperature and quartz content demonstrated significant effect on soil thermal conductivity in our investigation.  相似文献   

6.
Abstract

Sustainable agriculture needs appropriate management of water, chemicals and heat in soil. In this study, we focused on thermal conductivity, which is among the various soil physical properties that are crucial for the sustainable management of agricultural fields. To expand the Mochizuki model, which describes thermal conductivity as a function of water content and solution concentration, we considered the water content, solution concentration and temperature as independent variables. The thermal conductivity of Tottori dune sand was measured under conditions of various combinations of these three independent variables. We observed that the thermal conductivity increased linearly with increasing water content, 0.054–0.276 m3 m?3, for fixed temperature and solution concentration, and varied linearly with solution concentration for fixed temperature and water content. These results are consistent with the Mochizuki model. Using the Mochizuki model, the experimental parameters, which are dependent variables of water content and solution concentration, are shown as functions of water content. From regression analyses of the relationships between the experimental parameters and temperature, we expanded the Mochizuki model into a new practical formula that quantifies the soil thermal conductivity as a function of water content, solution concentration and temperature.  相似文献   

7.
不同温度下的土壤热导率模拟   总被引:13,自引:7,他引:6  
土壤热导率是研究陆地表层水热盐耦合运动的基本物理参数。由于水汽潜热传热在高温下的显著作用,高温下的土壤热导率显著高于常温值。该研究的目的是建立能够有效预测高温下土壤热导率的模型。在气体扩散定律的基础上,该文结合常温土壤热导率模型,提出了一个计算高温土壤热导率的新方法。并利用热脉冲技术实际测定了不同温度、不同含水率下的土壤热导率,对新模型进行了测试验证。结果表明,Cass等的水汽运移促进因子参数依赖于土壤质地,且存在较大的不确定性。经过对该参数修正后,建立的热导率模型均能够较好地模拟出高温下的土壤热导率。  相似文献   

8.
多针热脉冲技术测定土壤热导率误差分析   总被引:2,自引:1,他引:1  
土壤热导率是研究土壤热传输、水热耦合运移的基本物理参数。为了探知多针热脉冲技术的误差,该研究以能够准确测定热导率的单针法作为参比,在4种质地土壤上,对多针热脉冲技术在不同体积质量、含水率和气压条件下测定的热导率进行了分析。结果表明,多针热脉冲技术的热导率结果与单针法总体符合较好,其热导率测定值的平均误差为0.074 W/(m·K)。干土热导率随气压增大呈现对数增长,这是由于气体分子平均自由程下降的原因。多针热脉冲技术的测定误差主要出现在中等含水率区域,关键问题是加热针的温度升高偏大,促进了水汽潜热传输。另外,土壤与探针之间的热接触阻力、探针导致的土壤体积质量改变、温度梯度引起的液水流也影响测定结果的准确性。该研究可为农业水土工程中的土壤热导率模拟提供依据。  相似文献   

9.
There is no simple and general relationship between the thermal conductivity of a soil, λ, and its volumetric water content, θ, because the porosity, n, and the thermal conductivity of the solid fraction, λs, play a major part. Experimental data including measurements of all the variables are scarce. Using a numerical modelling approach, we have shown that the microscopic arrangement of water influences the relation between λ and θ. Simulated values for n ranging from 0.4 to 0.6, λs ranging from 2 to 5 W m?1 K?1 and θ from 0.1 to 0.4 can be fitted by a simple linear formula that takes into account n, λs and θ. The results given by this formula and by the quadratic parallel (QP) model widely used in physical property studies are in satisfactory agreement with published data both for saturated rocks and for unsaturated soils. Consequently, the linear formula and the QP model can be used as practical and efficient tools to investigate the effects of water content and porosity on the thermal conductivity of the soil and hence to optimize the design of thermal in situ techniques for monitoring water content.  相似文献   

10.
Drainage is often claimed to increase soil temperatures in early spring by decreasing the soil's heat capacity. Measurements of water table depth, soil water content and soil temperature were made during winter and spring on mole-pipe drained and undrained plots of a silt loam soil under pasture. Despite differences in water table depth and soil water content, drainage had no observable effect on soil temperature. Laboratory measurements of the thermal properties of soil cores at a matric potential of ?4kPa and then at saturation showed the volumetric heat capacity increased from 3.1 to 3.3 MJ m?3 K?1, with a proportional increase in the thermal conductivity from 1.1 to 1.2 W m?1 K?1. The thermal diffusivity remained unchanged. These values were used in a numerical simulation of the effects of drainage on the seasonal and diurnal oscillations in soil temperature. It is argued that the soil heat flux under pasture in spring is unaffected by drainage. The predicted temperature differences due to drainage are of the order of 0.2°C. As differences of this magnitude were observed between replicate thermometers in the field, it follows from the calculations above that any differences in soil temperature due to drainage would be too small to detect.  相似文献   

11.
Alteration of soil thermal properties by structure formation   总被引:2,自引:0,他引:2  
Temperatures were measured in a disturbed and a structured loess soil to study the influence of aggregation on thermal properties. The disturbance was done by mechanically destroying soil aggregates, and the structured soil was obtained by subjecting the disturbed soil to several irrigation and drying cycles. In all soils, five harmonics of a Fourier-series representation accounted for ≥99% of the variance of daily soil surface temperatures, and two to three harmonics did so below the soil surface. For soil water contents between 0.04 and 0.23 m3 m-3, the apparent thermal diffusivity, computed by the harmonic method, was higher in the structured soil than in the disturbed soil. The same was true for the apparent thermal conductivity, since the volumetric heat capacities of both the disturbed and structured soil were similar. The differences in the apparent thermal diffusivity and conductivity were attributed to increased heat conduction and water vapour transport in the structured soil.  相似文献   

12.
Abstract

Soil thermal conductivity is a key factor governing its thermal regime. In the present study, we measured the thermal conductivity of Toyoura sand and glass beads using a heat probe method to clarify the effects of gravimetric water content (w) and NaCl concentration (C) and to evaluate the estimation effectiveness of four models (Mochizuki, de Vries, Noborio and Kasubuchi). The de Vries and Kasubuchi models predict the effect of w on soil thermal conductivity, whereas the Noborio model describes the effects of solute concentration and the Mochizuki model describes both parameters. With or without NaCl, the thermal conductivity of both samples increased with increasing w, and the increase could be grouped into three ranges based on w. The upper and lower limits of each water content range were constant, even at varying NaCl concentrations, but the width of the range differed among the three ranges and between the sand and glass bead samples. Although soil thermal conductivity has previously been reported to generally decrease with increasing C, the thermal conductivities of some glass beads increased in the present study, particularly at moisture contents close to field capacity. The change in thermal conductivity as a function of C was linear in all cases. This trend was similar to that of a non-swelling clay in a previous study. The Mochizuki model, which regressed measured thermal conductivity on C and w, predicted the thermal conductivity of sand as well as previous models, but the calculations were easier and the method offers more flexibility for soils with different textures.  相似文献   

13.
(1)根据中国知网(CNKI)的《中国学术期刊影响因子年报(自然科学与工程技术.2010版)计量指标统计表》,《水土保持通报》综合统计源统计的总被引频次为3 446次(2009年版中为1 358次);复合影响因子为0.955;期刊综合影响因子为0.568(2008年为0.493),在所统计  相似文献   

14.
地表覆盖对土壤热参数变化的影响   总被引:2,自引:0,他引:2  
覆盖条件下土壤热性质的研究对于包气带水热运移及覆盖技术的应用均有重要意义。使用11针热脉冲探头对沙黄土不同深度(6 mm、18 mm、30 mm)的土壤热扩散率、热容量和热导率三个热参数进行测定,并进行地表覆盖(石子覆盖、秸秆覆盖)处理,旨在探究覆盖条件下表层土壤热性质动态变化过程及土壤热参数与水分的内在联系。结果表明:(1)相对于裸土,石子和秸秆覆盖条件下土壤热参数增大,且覆盖对于靠近表层土壤热参数的影响更加明显;(2)随降雨的发生,土壤热参数均增大,在两次降雨期间,土壤热参数逐渐减小,覆盖与裸土热参数差异逐渐增大;(3)三个热参数随降雨的发生,其动态变化过程表现不同,热容量对降雨的响应最为敏感,热导率次之,热扩散率开始减小的时间较热导率和热容量滞后,三个深度滞后时间均在48 h以上,而且覆盖以后热扩散开始减小的时间较裸土推迟(48 h以上)。土壤容重不变的情况下,在频繁干湿交替的过程中土壤水分为土壤热参数变化的最主要影响因素。覆盖条件下土壤热参数与土壤含水量关系研究表明:石子和秸秆覆盖条件下土壤热参数与土壤含水量的变化关系与裸土条件下一致,热导率与含水量呈幂函数增加的趋势,热容量随含水量线性增加,热扩散率随含水量增加先增后减,本研究所用沙黄土热扩散率峰值对应的含水量在0.20 cm3cm-3左右。由以上结果可以发现覆盖对近表层土壤热参数的动态变化有显著的影响,覆盖的保水效应直接影响土壤热参数的变化。  相似文献   

15.
In the range of volumetric water content, θ, from about 0.12 cm3 cm–3 to saturation the relation between bulk electrical conductivity, Cb, and bulk electrical permittivity, ε, of mineral soils was observed to be linear. The partial derivative ?Cb/?ε appeared independent of the moisture content and directly proportional to soil salinity. We found that the variable Xs = ?Cb/?ε determined from in situ measurements of Cb(θ > 0.2) and ε(θ > 0.2) can be considered as an index of soil salinity, and we call it the ‘salinity index’. Knowing the index and sand content for a given soil we could calculate the electrical conductivity of the soil water, Cw, which is a widely accepted measure of soil salinity. The two variables from which the salinity index can be calculated, i.e. Cb and ε, can be read simultaneously from the same sensor by time-domain reflectometry. Quantities and symbols a constant /dS m–1 b constant c constant /dS m–1 C b electrical conductivity of bulk soil /dS m–1 C b′ constant equal to 0.08 dS m–1 C s electrical conductivity of a solution used to moisten soil samples /dS m–1 C w electrical conductivity of soil water defined as the soil salinity /dS m–1 C wref reference salinity (that truly existing) resulting from the procedure of moistening samples, expressed as Cs + Cr/dS m–1 C r baseline value of Cs due to residual soluble salts present in the soil /dS m–1 d constant D dry soil bulk density /g cm–3 l slope r ratio S sand content /% by weight t time /s X s salinity index /dS m–1 X si initial salinity index when distilled water is used to moisten soil samples /dS m–1 Y a moisture-independent salinity-dependent variable /dS m–1 z coordinate along direction of flow of the soil solution ε′ constant equal to 6.2 ε relative bulk electrical permittivity (dielectric constant) of the soil θ volumetric water content determined thermogravimetrically using oven-drying /cm3 cm–3  相似文献   

16.
Knowledge of thermal conductivity of granular materials under reduced air pressure can be utilized for studying intricate mechanisms of heat transfer in two‐phase systems. We measured the thermal conductivity of three soils of varied texture and two sets of glass beads (GB) under reduced air pressure using a twin heat probe. We also predicted the thermal conductivity of a two‐phase system at reduced air pressure from the modified Woodside & Messmer equation based on the kinetic theory of gases. This equation includes a thermal separation of solid particles (d) defined by the heat conduction. We compared this separation with the geometrical mean separation of solid particles (D). The results showed a linear relation between d and D for the GB, and in all cases d was smaller than D. This suggests that conductive heat transfer in two‐phase GB takes place mainly through air spaces the dimension of which is smaller than D. The d of a Red Yellow soil and an Ando soil, however, were about 200–300 times larger than D. This result seems to be related to the soil aggregation. We showed that in soil aggregates the conduction of heat through the solid was the dominant mode of heat transfer, and the micropores in a soil aggregate had very little effect on the diminished thermal conductivity under reduced air pressure. The decrease in the thermal conductivity of two‐phase soil under reduced air pressure is probably caused by the air molecules confined in interaggregate pore spaces rather than those in the intra‐aggregate pore spaces. The d of soils can be used to represent the thermal separation of the interaggregate pore spaces, and soil aggregates can be treated as single‐grained particles in evaluating heat conduction.  相似文献   

17.
Impedance soil water probes enable frequent and non‐destructive determination of soil water status in situations where gravimetric soil sampling is too demanding of time and sampling space. The ThetaProbe is an impedance soil water probe requiring calibration for local soil conditions, because measurement accuracy can be affected by properties of the soil. Often, only a single calibration is performed for an experimental site. An experiment investigating the seedbed to 75‐mm depth across a field topography with variable soil properties was examined to determine which soil properties affected the calibration of the ThetaProbe, and if soil‐specific calibration was required to derive suitable estimates of the water status in the experiment. Experimental factors examined included hillslope aspect, hillslope position, crop residue and soil depth. Soil properties, other than volumetric water content, significantly affecting the probe measurements were bulk density, electrical conductivity and temperature. The probe underestimated soil water at very low water contents, and overestimated soil water at contents greater than 11 m3 m?3, compared with gravimetric measurements. A single calibration, not corrected for hillslope position at a water content of 20 m3 m?3, overestimated water content by 0.02 m3 m?3 in the summit hillslope position and underestimated water content by 0.04 m3 m?3 in the toeslope position. A single calibration, not corrected for soil depth at a water content of 20 m3 m?3, overestimated water content by 0.02 m3 m?3 in the 0‐ to 25‐mm soil layer and underestimated water content by 0.03 m3 m?3 in the 50‐ to 75‐mm layer. The complexity of microsites in a shallow seedbed requires soil‐specific calibration in field experiments containing heterogeneous soil properties.  相似文献   

18.
土壤电导率对时域反射仪测定土壤水分的影响   总被引:10,自引:1,他引:10       下载免费PDF全文
曹巧红  龚元石 《土壤学报》2001,38(4):483-490
试验通过往土壤中加入电介质溶液 ,以及在不同粘粒含量土壤上用时域反射仪 (TDR)测定土壤含水量 ,研究结果表明 :在较低含水量情况下 (砂土 <0 1 5cm3cm- 3,砂质壤土 <0 .1 8cm3cm- 3) ,电导率的增加不易引起TDR测定值的明显偏差 ;但在较高含水量下 ,当溶液电导率增加到 8dSm- 1 (砂质壤土 )和 1 1dSm- 1 (砂土 )时 ,TDR测得的含水量值明显高于实际值。在较高电导率 ( <1 6dSm- 1 )下 ,K0 .5a 与实际含水量仍呈较好的线性关系 ,但电导率引起的介电损失影响了K0 .5a ~θ线性关系的斜率和截距。本文给出了考虑电导率影响的K0 .5a ~θ线性关系的校正方程。土壤粘粒含量的增加也会引起TDR测定偏差 ,在低含水量时测定值偏低 ,在高含水量时测定值偏高。粘粒含量 <5 0 %时 ,测定偏差 <0 .0 2cm3cm- 3。  相似文献   

19.
A general approach to estimate soil water content from thermal inertia   总被引:1,自引:0,他引:1  
Remote sensing is a promising technique for obtaining information of the earth's surface. Remotely sensed thermal inertia has been suggested for mapping soil water content. However, a general relationship between soil thermal inertia and water content is required to estimate soil water content from remotely sensed thermal inertia. In this study, we propose a new model that relates soil thermal inertia as a function of water content. The model requires readily available soil characteristics such as soil texture and bulk density. Heat pulse measurements of thermal inertia as a function of water content on nine soils of different textures were made to generate a universal Kerstan function. Model validation was performed independently in both laboratory and field, and the retrieved soil water contents from the new model were compared with previous models. Laboratory evaluation on an Iowa silt loam showed that the RMSE of the new model was 0.029 m3 m−3, significantly less than [Murray, T., Verhoef, A., 2007. Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements. I. A universal approach to calculate thermal inertia. Agric. For. Meteorol. 147, 80–87] model (0.109 m3 m−3) and [Ma, A.N., Xue, Y., 1990. A study of remote sensing information model of soil moisture. In: Proceedings of the 11th Asian Conference on Remote Sensing. I. November 15-21. International Academic Publishers, Beijing, pp. P-11-1P-11-5.] model (0.105 m3 m−3). Similar results were obtained in a field test on a Chinese silt loam: the RMSE of the new model, [Murray, T., Verhoef, A., 2007. Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements. I. A universal approach to calculate thermal inertia. Agric. For. Meteorol. 147, 80–87] model, and [Ma, A.N., Xue, Y., 1990. A study of remote sensing information model of soil moisture. In: Proceedings of the 11th Asian Conference on Remote Sensing. I. November 15-21. International Academic Publishers, Beijing, pp. P-11-1P-11-5.] model were 0.018, 0.071, and 0.159 m3 m−3, respectively. Additionally the model was validated using literature data in which soil thermal properties were estimated from in situ temperature measurements. The mean errors of estimated water content were generally less than 0.02 m3 m−3. We concluded that the new model was able to provide accurate water content predictions from soil thermal inertia.  相似文献   

20.
浑水土壤入渗具有复杂的上边界变化过程,其上边界导水能力的变化规律是研究浑水土壤入渗特性的重要基础。为研究浑水入渗形成致密层过程中导水率的变化情况,该研究进行了17组(9组正交试验处理,8组用于模型验证)浑水饱和土柱入渗试验,通过对试验结果进行多元回归构建多因素(浑水含沙率、黏粒含量及入渗时间)影响下砂土导水率动态模型;并结合浑水饱和土柱入渗特性进行合理假设,分别建立浑水砂壤土和粉壤土饱和土柱导水率动态模型并进行验证。结果表明:浑水含沙率、黏粒含量及入渗时间对砂土导水率影响极显著(P<0.01),入渗时间为砂土影响导水率变化的主要因素,其次为含沙率和黏粒含量;建立的砂土导水率动态模型决定系数为0.853,均方根误差为0.004 cm/min,表明该模型可客观反映各因素与导水率之间的关系;模型验证试验结果中均方根误差小于0.01 cm/min,相对误差绝对值均值小于7%,说明该导水率动态模型可靠性较高;砂壤土和粉壤土导水率动态模型决定系数分别为0.912和0.930,均方根误差分别为2×10-3和5×10-5 cm/min;模型验证中均方根...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号