首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《CATENA》2004,58(1):77-100
This paper focuses on analysing tillage as a mechanism for the transformation of soil spatial variability, soil morphology, superficial soil properties and development of soil–landscape relationships in agricultural lands. A new theoretical two-dimensional model of soil catena evolution due to soil redistribution by tillage is presented. Soil profile truncation occurs through loss of soil mass on convexities and in the upper areas of the cultivated hillslopes; while the opposite effect takes place in concavities and the lower areas of the field where the original soil profile becomes buried. At sectors of rectilinear morphology in the hillslope (backslope positions), a null balance of soil translocation takes place, independent of the slope gradient and of the rate of downslope soil translocation. As a result, in those backslope areas, a substitution of soil material in the surface horizon with material coming from upslope areas takes place. This substituted material can produce an inversion of soil horizons in the original soil profile and sometimes, the formation of “false truncated soil”. In the Skogstad agricultural field (Cyrus, MN) spatial patterns of soil properties (soil calcium carbonate content) in the surface soil horizons and soil morphology along several slope transects were analyzed. These spatial patterns are compared with those estimated for soil redistribution (areas of erosion and deposition) due to tillage using the Soil Redistribution by Tillage (SORET) model and water erosion using the models Water Erosion Prediction Project (WEPP) and Universal Soil Loss Equation (Usle2D). Results show that tillage was the predominant process of soil redistribution in the studied agricultural field. Finally, some practical implications of the proposed model of soil landscape modification by tillage are discussed. Nomographs to calculated the intensity of the expansion process of the eroded soil units by tillage are proposed for three different patterns of tillage.  相似文献   

2.
The prevention of soil erosion is one of the most essential requirements for sustainable agriculture in developing countries. In recent years it is widely recognized that more site‐specific approaches are needed to assess variations in erosion susceptibility in order to select the most suitable land management methods for individual hillslope sections. This study quantifies the influence of different land management methods on soil erosion by modelling soil loss for individual soil‐landscape units on a hillslope in Southern Uganda. The research combines a soil erosion modelling approach using the physically based Water Erosion Prediction Project (WEPP)‐model with catenary soil development along hillslopes. Additionally, farmers' perceptions of soil erosion and sedimentation are considered in a hillslope mapping approach. The detailed soil survey confirmed a well‐developed catenary soil sequence along the hillslope and the participatory hillslope mapping exercise proved that farmers can distinguish natural soil property changes using their local knowledge. WEPP‐model simulations show that differences in soil properties, related to the topography along the hillslope, have a significant impact on total soil loss. Shoulder and backslope positions with steeper slope gradients were most sensitive to changes in land management. Furthermore, soil conservation techniques such as residue management and contouring could reduce soil erosion by up to 70 percent on erosion‐sensitive slope sections compared to that under tillage practices presently used at the study site. The calibrated model may be used as a tool to provide quantitative information to farmers regarding more site‐specific land management options. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
黑土区坡耕地横坡垄作措施防治土壤侵蚀的土槽试验   总被引:13,自引:3,他引:10  
为了研究黑土区坡耕地横坡垄作防治坡面土壤侵蚀的效应,该文利用8 m×1.5 m的试验土槽,设计3个降雨强度(50、75和100 mm/h)、1个典型坡度(5°)以及横坡垄作和无垄作(平坡裸地对照试验)的试验处理进行模拟降雨试验,研究东北黑土区横坡垄作坡面在不同降雨强度下的防治坡面侵蚀效应。结果表明:横坡垄作在50 mm/h降雨强度下坡面基本不发生土壤侵蚀,但在75和100 mm/h降雨强度下会发生断垄,造成防蚀效应急剧降低。横坡垄作坡面的径流和侵蚀过程均明显存在以断垄时间为界的突变,在3个降雨强度下,横坡垄作断垄前可使坡面径流量和侵蚀量分别减少97.7%和99.1%以上,坡面蓄渗率达到97.2%以上;而断垄后坡面径流量和侵蚀量分别增加23.3~25.9倍和136.8~171.5倍,蓄渗率下降至50%以下。试验研究表明横坡垄作在≤50 mm/h的降雨强度下具有很好的坡面防治侵蚀效应,但当遇到强降雨时易发生断垄,防蚀效应急剧降低。  相似文献   

4.
土壤侵蚀对坡耕地耕层质量退化作用及其评价趋势展望   总被引:11,自引:8,他引:3  
土壤侵蚀是导致坡耕地耕层质量退化和土壤生产力不稳定的关键驱动因素。该文从水蚀区坡耕地侵蚀控制和生产功能角度,在解析地块尺度土壤侵蚀、水土保持、农业活动对坡耕地耕层生态过程作用特征的基础上,系统分析了土壤侵蚀对坡耕地耕层质量退化作用、影响效应及作用途径。认为:1)坡耕地耕层质量变化由降雨侵蚀、耕作活动交互作用的生态过程决定,2种作用的时间、空间尺度不同;耕层土壤参数在坡耕地农业生产中作用分为保水、保土、保肥和增产潜力,由地块尺度农作物-耕层耦合效应决定土壤生产能力、坡耕地水土流失特征及耕层侵蚀性退化方向及程度。2)土壤侵蚀对坡耕地耕层质量退化作用表现为土壤性质恶化、土壤质量劣化、土地生产力衰退3个方面,耕层土壤物理性质变异程度大于化学性质变异,径流作用导致的土地生产力衰退大于土壤流失作用。3)坡耕地耕层质量评价指标体系应兼顾侵蚀下降、产量提升2个目标,地块尺度诊断指标有效土层厚度、耕层厚度、土壤容重、土壤抗剪强度、土壤有机质、土壤渗透性可作为合理耕层评价最小数据集;坡耕地合理耕层适宜性分为5级,其诊断指标分级标准宜与土壤侵蚀分级和耕地地力分级衔接。4)坡耕地合理耕层评价未来应密切关注耕层质量诊断指标最小数据集、坡耕地合理耕层阈值/适宜值分级标准、坡耕地水土流失阻控标准拟定3个主要方向。研究可为深入认识坡耕地侵蚀性退化机制,辨识坡耕地合理耕层调控途径以及坡耕地合理耕层构建技术参数提供依据。  相似文献   

5.
Fire in sagebrush rangelands significantly alters canopy cover, ground cover, and soil properties which influence runoff and erosion processes. Runoff can be generated more quickly and in larger volume following fire resulting in increased risk of severe erosion and downstream flooding. The Water Erosion Prediction Project (WEPP) model was developed to predict erosion on cropland, forest, and rangeland. WEPP is a tool that has potential to model the effect of fire on hillslope hydrological processes and help managers address erosion and runoff risks following fire. Experimental results on a steep (35 to 50% slope) sagebrush site suggest that rill erosion is the dominant erosion process following fire and the WEPP parameterization equations related to the rill erosion process need improvements. Rill detachment estimates could be improved by modifying regression-estimated values of rill erodibility. Also, the interactions of rill width and surface roughness on soil shear stress estimates may also need to be modified. In this paper we report the effects of prescribed fire on runoff, soil erosion, and rill hydraulics and compare WEPP estimated erosion for several modeling options with measured erosion.  相似文献   

6.
X.C. Zhang  M.A. Nearing 《CATENA》2005,61(2-3):185
The potential for global climate changes to increase the risk of soil erosion is clear, but the actual damage is not. The objectives of this study were to evaluate the potential impacts of climate change on soil erosion, surface runoff, and wheat productivity in central Oklahoma. Monthly projections were used from the Hadley Centre's general circulation model, HadCM3, using scenarios A2a, B2a, and GGa1 for the periods of 1950–1999 and 2070–2099. Projected changes in monthly precipitation and temperature distributions between the two periods were incorporated into daily weather series by means of a stochastic weather generator (CLIGEN) with its input parameters adjusted to each scenario. The Water Erosion Prediction Project (WEPP) model was run for four climate scenarios including a recent historical climate and three tillage systems (conventional tillage, conservation tillage, and no-till). HadCM3-projected mean annual precipitation during 2070–2099 at El Reno, Oklahoma decreased by 13.6%, 7.2%, and 6.2% for A2a, B2a, and GGa1, respectively; and mean annual temperature increased by 5.7, 4.0, and 4.7 °C, respectively. Predicted average annual soil loss in the tillage systems other than no-till, compared with historical climate (1950–1999), increased by 18–30% for A2a, remained similar for B2a, and increased by 67–82% for GGa1. Predicted soil loss in no-till did not increase in the three scenarios. Predicted mean annual runoff in all three tillage systems increased by 16–25% for A2a, remained similar for B2a, and increased by 6–19% for GGa1. The greater increases in soil loss and runoff in GGa1 were attributed to greater variability in monthly precipitation as projected by HadCM3. The increased variability led to increased frequency of large storms. Small changes in wheat yield, which ranged from a 5% decrease in B2a to a 5% increase in GGa1, were because the adverse effects of the temperature increase on winter wheat growth were largely offset by CO2 rise as well as the bulky decrease in precipitation occurred outside the growing season. The overall results indicate that no-till and conservation tillage systems will be effective in combating soil erosion under projected climates in central Oklahoma.  相似文献   

7.
Most of the erosion research in the Palouse region of eastern Washington State, USA has focused on quantifying the rates and patterns of water erosion for purposes of conservation planing. Tillage translocation, however, has largely been overlooked as a significant geomorphic process on Palouse hillslopes. Tillage translocation and tillage deposition together have resulted in severe soil degradation in many steep croplands of the Palouse region. Few controlled experiments have heretofore been conducted to model these important geomorphic processes on Palouse hillslopes. The overarching purpose of this investigation, therefore, was to model tillage translocation and deposition due to moldboard plowing in the Palouse region. Soil movement by moldboard plowing was measured using 480-steel flat washers. Washers were buried in silt loam soils on convex–convex shoulder, linear-convex backslope, and linear-concave footslope landform components, and then displaced from their original burial locations by a moldboard plow pulled by a wheel tractor traveling parallel to the contour at ca. 1.0 m s−1. Displaced washers were located using a metal detector, and the distance and azimuth of the resultant displacement of each washer from its original burial location was measured using compass and tape. Resultant displacement distances were then resolved into their component vectors of displacement parallel and perpendicular to the contour. A linear regression equation was developed expressing mean soil displacement distance as a function of slope gradient. Tillage translocation and deposition were modeled as diffusion-type geomorphic processes, and their rates were described in terms of the diffusion constant (k). A multivariate statistical model was developed expressing mean soil displacement distance as a function of gravimetric moisture content, soil bulk density, slope gradient, and direction of furrow slice displacement. Analysis of variance (ANOVA) revealed a weak correlation between soil displacement and both bulk density and moisture content. Soil displacement was, however, significantly correlated with direction of furrow slice displacement. Tillage translocation rates were expressed in terms of the diffusion constant (k) and ranged from 105 to 113 kg m−1 per tillage operation. Tillage deposition rates ranged from 54 to 148 kg m−1 per tillage operation. With respect to tillage deposition, the diffusion constant calculated from volumetric measurements of tillage deposits equals ca. 150 kg/m. The rates of tillage translocation and deposition are not completely in balance; however, these rates do suggest that soil tillage is a significant geomorphic process on Palouse hillslopes and could account for the some of the variations in soil physical properties and crop yield potential at the hillslope and farm-field scale in the Palouse region.  相似文献   

8.
为了研究耕作侵蚀对坡耕地土壤容重、有机质以及两者相互关系的影响,选择四川盆地中部的简阳县的坡耕地作为研究对象,采用模拟耕作的方法,通过对比模拟耕作前与5次、20次模拟耕作之后的土壤容重、有机质的水平以及垂直变化与分布规律,并探讨耕作侵蚀对两者关系变化的影响规律。研究结果表明:由于耕作侵蚀的搬运作用,5次和20次耕作之后坡顶位置的表层土壤被不断搬运至下坡位置,从而导致坡顶表层土壤容重增加;并且耕作过程中锄头的翻转作用改变了土壤容重在垂直方向的分布。耕作前土壤有机质在各坡面位置的垂直分布可用对数方程描述,然而5次和20次耕作之后其两者之间没有显示任何关系。耕作前土壤有机质含量与土壤容重呈现显著的负相关关系,5次和20次耕作之后,土壤有机质和土壤容重之间无相关关系。因此,耕作侵蚀改变土壤有机质和容重在水平和垂直方向的分布并且改变有机质和容重之间的关系。  相似文献   

9.
Soil quality is a concept that integrates soil biological, chemical and physical factors into a framework for soil resource evaluation. Conventional tillage practices can result in a loss of soil organic matter and decreased soil quality. The potential for soil quality degradation with tillage may vary depending upon landscape position and the spatial distribution of critical soil properties. Information on how to accurately integrate soil spatial information across fields, landscapes and watersheds is lacking in the literature. The primary objective of this study was to evaluate the long-term effect of conventional and ridge-tillage on soil quality in three small watersheds at the Deep Loess Research Station near the town of Treynor in southwest Iowa. Soil types included Monona silt loams in summit positions, Ida or Dow silt loams in backslope positions, and Napier or Kennebec silt loams in footslope positions. We removed surface soil cores from transects placed along topographic gradients in each watershed and quantified total soil organic C (SOC), total soil N (TN), particulate organic matter C (POM-C) and N (POM-N), microbial biomass C (MB-C), N mineralization potential (PMIN-N), nitrate N, extractable P and K, pH, water-stable macroaggregates (WSA), and bulk density (BD). We used terrain analysis methods to group the data into landform element classes to evaluate the effect of topographic position on soil quality. Results indicate that soil quality is higher under long-term ridge-tillage compared with conventional tillage. Soil quality differences were consistently documented among the three watersheds by: (1) quantification of soil indicator variables, (2) calculation of soil quality index values, and (3) comparison of indicator variable and index results with independent assessments of soil function endpoints (i.e. sediment loss, water partitioning at the soil surface, and crop yield). Soil quality differences under ridge-till were found specifically for the backslope and shoulder landform elements, suggesting that soil quality increases on these landform elements are responsible for higher watershed-scale soil quality in the ridge-tilled watershed.  相似文献   

10.
The rates of many biological processes vary across an agricultural landscape in response to the spatial patterns of water content in the tillage zone. Although, water content varies temporally through the growing season, the combined effects of soil properties, landscape attributes, tillage or position relative to the crop row on the temporal variation in the spatial pattern in soil water content are not well understood. We measured the soil water content (0–0.20 m) regularly through three growing seasons at 32 positions along each of two transects in a side-by-side comparison of corn under conventional tillage (plowing and secondary tillage) and no till in order to identify factors with the strongest influence on the spatial patterns in water content. The tillage comparison traversed a landscape in which the clay content (cl) varied from 5.8 to 37.4% and the organic carbon content (OC) varied from 0.9 to 3.9%. The spatial pattern in water contents during wetting and drying events were temporally stable, as reflected in R2>0.7 of correlation analysis of water contents on successive measurement dates. Multiple regression analyses indicated that the water contents, averaged over all measurement dates, were positively correlated with cl and ln(OC) and were smaller in the row than the inter-row position. The reduction in water content due to conventional tillage was diminished with increasing OC. However, application of multiple regression analyses to each set of water contents measured on a given day for each year indicated that the impact of soil properties, tillage and position relative to the row varied within and among seasons.  相似文献   

11.
The decision of where, when, and how to apply the most effective postfire erosion mitigation treatments requires land managers to assess the risk of damaging runoff and erosion events occurring after a fire. To meet this challenge, the Erosion Risk Management Tool (ERMiT) was developed. ERMiT is a web-based application that uses the Water Erosion Prediction Project (WEPP) technology to estimate erosion, in probabilistic terms, on burned and recovering forest, range, and chaparral lands with and without the application of mitigation treatments. User inputs are processed by ERMiT to combine rain event variability with spatial and temporal variabilities of hillslope burn severity and soil properties, which are then used as WEPP input parameter values. Based on 20 to 40 individual WEPP runs, ERMiT produces a distribution of rain event erosion rates with a probability of occurrence for each of five postfire years. In addition, rain event erosion rate distributions are generated for postfire hillslopes that have been treated with seeding, straw mulch, and erosion barriers such as contour-felled logs or straw wattles.  相似文献   

12.
WEPP细沟剥蚀率模型正确性的理论分析与实验验证   总被引:5,自引:1,他引:5       下载免费PDF全文
基于物理过程基础上的WEPP土壤水蚀预报模型将坡面侵蚀分为细沟侵蚀和细沟间侵蚀,建立了独立的细沟间模型和细沟模型.其中细沟侵蚀产沙方程从概念上可以预报细沟侵蚀过程,但没经实验或理论验证.该文经过理论分析表明,WEPP模型中的剥蚀率是水流含沙量的线性函数,并由给定的试验条件计算得到了函数中的参数.将理论分析结果和已有的实验结果进行了比较,验证了WEPP中的侵蚀产沙模型.同时将已得到的确定细沟剥蚀率的微分方程代入细沟侵蚀产沙方程并求解,从理论上得到了含沙量随沟长变化的函数关系.将理论分析结果和由实验所得的结果进行了对比,进一步验证了WEPP中的侵蚀产沙模型.该文从细沟剥蚀率和产沙量两方面对WEPP模型中细沟侵蚀产沙模型进行了验证.  相似文献   

13.
由降雨事件引起的坡面产流和土壤侵蚀的元胞自动机模拟   总被引:2,自引:0,他引:2  
A novel quantitative cellular automata (CA) model that simulates and predicts hillslope runoff and soil erosion caused by rainfall events was developed by integrating the local interaction rules and the hillslope surface hydraulic processes. In this CA model, the hillslope surface was subdivided into a series of discrete spatial cells with the same geometric features. At each time step, water and sediment were transported between two adjacent spatial cells. The flow direction was determined by a combination of water surface slope and stochastic assignment. The amounts of interchanged water and sediment were computed using the Chezy-Manning formula and the empirical sediment transport equation. The water and sediment discharged from the open boundary cells were considered as the runoff and the sediment yields over the entire hillslope surface. Two hillslope soil erosion experiments under simulated rainfall events were carried out. Cumulative runoff and sediment yields were measured, respectively. Then, the CA model was applied to simulate the water and soil erosion for these two experiments. Analysis of simulation results indicated that the size of the spatial cell, hydraulic parameters, and the setting of time step and iteration times had a large impact on the model accuracy. The comparison of the simulated and measured data suggested that the CA model was an applicable alternate for simulating the hillslope water flow and soil erosion.  相似文献   

14.
Knowledge of the long-term effects of tillage on soil organic carbon is important to our understanding of sustainable agricultural systems and global carbon cycles. In landscapes susceptible to erosion, tillage can exacerbate losses of soil and C by increasing erodibility and stimulating microbial respiration. We measured long-term changes in soil carbon and soil loss in three small watersheds located in southwest Iowa, USA. The following soil series were formed on deep loess hills: Ida and Dow (Typic Udorthents), Napier and Kennebec (Cumulic Hapludolls) and Monona (Typic Hapludolls). All watersheds were cropped to continuous corn (Zea mays L.) and two were moldboard plowed and disk tilled while the third was ridge-tilled. The ridge-tillage system had greater C contents in the surface soil than the disk tillage soils, but ridge-tillage was not different from the conventional tillage in carbon retention over time. The ridge-tillage system, however, was more effective in retaining soil within the watershed. Microbial respiration by soil microorganisms accounted for 97% of the carbon loss in the ridge-tilled watershed compared to carbon loss in eroded sediment (3%). Terrain analysis was used to segment the landscape into landform elements. Less total carbon was present in the soil profiles of backslope elements than in footslope or toeslope elements, reflecting the combined effects of soil erosion and deposition within the watersheds. Profile C content was also positively correlated with the wetness index, a compound topographic attribute, that identifies areas of the landscape where runoff water and sediment accumulate.  相似文献   

15.
Soil movement by tillage redistributes soil within the profile and throughout the landscape, resulting in soil removal from convex slope positions and soil accumulation in concave slope positions. Previous investigations of the spatial variability in surface soil properties and crop yield in a glacial till landscape in west central Minnesota indicated that wheat (Triticum aestivum) yields were decreased in upper hillslope positions affected by high soil erosion loss. In the present study, soil cores were collected and characterized to indicate the effects of long-term intensive tillage on soil properties as a function of depth and tillage erosion. This study provides quantitative measures of the chemical and physical properties of soil profiles in a landscape subject to prolonged tillage erosion, and compares the properties of soil profiles in areas of differing rates of tillage erosion and an uncultivated hillslope. These comparisons emphasize the influence of soil translocation within the landscape by tillage on soil profile characteristics. Soil profiles in areas subject to soil loss by tillage erosion >20 Mg ha−1 year−1 were characterized by truncated profiles, a shallow depth to the C horizon (mean upper boundary 75 cm from the soil surface), a calcic subsoil and a tilled layer containing 19 g kg−1 of inorganic carbon. In contrast, profiles in areas of soil accumulation by tillage >10 Mg ha−1 year−1 exhibited thick sola with low inorganic carbon content (mean 3 g kg−1) and a large depth to the C horizon (usually >1.5 m below the soil surface). When compared to areas of soil accumulation, organic carbon, total nitrogen and Olsen-extractable phosphorus contents measured lower, whereas inorganic carbon content, pH and soil strength measured higher throughout the profile in eroded landscape positions because of the reduced soil organic matter content and the influence of calcic subsoil material. The mean surface soil organic carbon and total nitrogen contents in cultivated areas (regardless of erosion status) were less than half that measured in an uncultivated area, indicating that intensive tillage and cropping has significantly depleted the surface soil organic matter in this landscape. Prolonged intensive tillage and cropping at this site has effectively removed at least 20 cm of soil from the upper hillslope positions.  相似文献   

16.
坡面版WEPP模型在川中丘陵区的应用研究   总被引:7,自引:0,他引:7  
利用WEPP模型对川中丘陵区盐亭站5个径流小区土壤侵蚀量的预测和土壤侵蚀空间分布的模拟发现:WEPP模型对次降雨土壤侵蚀的预测,相对误差在30%以内的占总样本86%以上;对年降雨土壤侵蚀预测的误差较稳定,且相对误差均在15%以内。说明WEPP模型对长时间尺度的土壤侵蚀预测更准确。WEPP模型对土壤侵蚀空间分布的预测,通过坡面侵蚀曲线可以明显分出侵蚀发育区、加速侵蚀区和主要侵蚀区;降雨量和平均雨强越大,加速侵蚀区越短,侵蚀量越大;坡长越长,加速侵蚀区越长,侵蚀量越大,最大侵蚀量也越大。  相似文献   

17.
针对黑土区坡面尺度上土壤水分在土地利用结构(从坡顶到坡脚,即沿着坡长方向,不同土地利用类型的排列方式)、土地利用类型(农地和林地)及地形要素的协同作用下的空间分异规律及影响机制尚不清楚的现状,以黑龙江省黑土区的农林混合利用典型坡面(克山县)为研究对象,应用植被数量生态学中的冗余分析方法(RDA)分析0~20、20~40、40~60 cm土壤水分剖面变异特征、不同土地利用结构下(农地-农地-农地-农地-农地,农地-农地-林地-林地-农地,农地-农地-林地-林地-林地,林地-林地-农地-林地-农地)坡面土壤水分异质性及其与环境因子的定量关系。结果表明:研究区坡面土壤含水率介于5.77%~45.57%,农地土壤含水率显著高于林地(P0.05),纵向上不同土地利用类型层间土壤含水率差异均不显著;土壤水分呈中等变异,纵向上农地各土层的变异系数(35.9%~39.6%)均高于林地(30.0%~36.5%),农林混合利用加强了土壤水分的空间变异程度;4种土地利用结构下,坡面土壤水分沿坡长方向呈不同的变化趋势,与土地利用镶嵌分布规律有关;冗余分析结果显示土地利用类型是影响黑土区坡面土壤水分异质性的主控因素,坡度次之,坡位和海拔高度对坡面土壤水分异质性也有影响。对于黑龙江黑土区坡面,需要结合土地利用结构配置等土地管理措施与不同的农业措施来防止坡面土壤侵蚀、提高东北区土壤肥力,实现经济效益、生态效益的协调统一。  相似文献   

18.
Detailed characterization of soils and their variation along different topography positions has not been investigated in depth for Mediterranean arid regions. There is a need to accurately understand the variation and the spatial distribution of soil properties within dry region of the Levant. Such understanding is required to optimize the use and management of scarce land and water resources. The objective of this study was to examine the effect of hillslope characteristics on the variation of selected soil chemical properties in an arid Mediterranean climate. At each of five selected transects four sites were chosen to represent four different topographic positions: summit, shoulder, backslope and toeslope. A soil profile was examined at each site and a representative sample from each horizon was withdrawn for chemical analyses. The analyses indicated that generally, the carbonate contents of the surface horizons decreased from higher to lower positions of the toposequence, the carbonate content increased with depth for profiles occupying the lower positions. This suggests more intense leaching within soil at lower positions. The effect of steepness and curvature on controlling the variation of soil properties was obvious at the summit and shoulder positions. Leaching process seems to hinder the effect of steepness and curvature for soils at lower positions. Lower positions receive runoff water and organic matter from upper positions, which complicate the relationship between landform shape and organic matter content. Continuous tillage resulted in lower organic matter contents for soils at lower positions. Higher pH values were reported for soils down along the transect due to the movement of soil material from upper hillslope positions. Electrical conductivity, exchangeable calcium and potassium contents decreased downslope due to higher moisture accumulation. However, no obvious relationship was found between the variation of pH or EC in one hand and the variation of steepness and curvature on the other. Potassium content was variable due to its greater mobility. The analyses indicated that variation in the soil CEC is governed by two factors: the leaching pattern, which is controlled by hillslope position, and the accumulation of Eolian carbonates at the soil surface. The distribution of iron oxides and types of clay minerals indicated more weathering in a descending direction and with soil depth, which is attributed to higher availability of soil moisture along the same direction. These relationships suggested systematic variation of chemical properties along toposequences in this arid environment.  相似文献   

19.
土壤侵蚀预报模型研究进展   总被引:28,自引:1,他引:28  
介绍了国内外土壤侵蚀预报模型的主要研究成果。所介绍的国外土壤侵蚀预报模型除众所周知的USL E/ RUSL E,WEPP,L ISEM和 EUROSEM外 ,还有浅沟侵蚀预报模型 (EGEM)和切沟侵蚀预报模型。国内的侵蚀预报模型主要有在 GIS支持下的陡坡地包括浅沟侵蚀的坡面侵蚀预报模型、有一定物理成因的坡面侵蚀预报模型和流域预报模型。在总结和评价国内外土壤侵蚀预报模型的基础上 ,提出了中国今后土壤侵蚀预报模型研究的设想。  相似文献   

20.
介绍了国内外土壤侵蚀预报模型的主要研究成果。所介绍的国外土壤侵蚀预报模型除众所周知的USLE/RUSLE,WEPP,LISEM和EUROSEM外,还有浅沟侵蚀预报模型(EGEM)和切沟侵蚀预报模型。国内的侵蚀预报模型主要有在GIS支持下的陡坡地包括浅沟侵蚀的坡面侵蚀预报模型、有一定物理成因的坡面侵蚀预报模型和流域预报模型。在总结和评价国内外土壤侵蚀预报模型的基础上,提出了中国今后土壤侵蚀预报模型研究的设想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号