首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The phloem‐sucking psyllid Cacopsylla picta plays an important role in transmitting the bacterium ‘Candidatus Phytoplasma mali’, the agent associated with apple proliferation disease. The psyllid can ingest ‘Ca. Phytoplasma mali’ from infected apple trees and spread the bacterium by subsequently feeding on uninfected trees. Until now, this has been the most important method of ‘Ca. Phytoplasma mali’ transmission. The aim of this study was to investigate whether infected C. picta are able to transmit ‘Ca. Phytoplasma mali’ directly to their progeny. This method of transmission would allow the bacteria to bypass a time‐consuming reproductive cycle in the host plant. Furthermore, this would cause a high number of infected F1 individuals in the vector population. To address this question, eggs, nymphs and adults derived from infected overwintering adults of C. picta were reared on non‐infected apple saplings and subsequently tested for the presence of ‘Ca. Phytoplasma mali’. In this study it was shown for the first time that infected C. picta individuals transmit ‘Ca. Phytoplasma mali’ to their eggs, nymphs and F1 adults, thus providing the basis for a more detailed understanding of ‘Ca. Phytoplasma mali’ transmission by C. picta.  相似文献   

4.
5.
《EPPO Bulletin》2017,47(3):513-523

Specific scope

This Standard describes a national regulatory control system for Bactericera cockerelli and the bacterial pathogen ‘Candidatus Liberibacter solanacearum’ the cause of zebra chip disease in potato. The scope is as follows:
  • Exclusion from the EPPO region of B. cockerelli an efficient vector of ‘Ca. L. solanacearum’ within solanaceous crops (e.g. potato, tomato)
  • Eradication of incursions of B. cockerelli
  • Exclusion from the EPPO region of ‘Ca. L. solanacearum’ haplotypes A and B. Although reference will only be made to haplotypes A and B, the Standard would also apply to new non‐European haplotypes of ‘Ca. L. solanacearum’ which may have different host ranges, or which may be vectored more efficiently by psyllids which are widespread in the region.
The reduction of the risk of spreading ‘Ca. L. solanacearum’ haplotypes C, D and E to potato production systems and potatoes being moved within the EPPO region may be recommended in future when more information is available but is not covered in this Standard.

Specific approval

First approved in 2017‐09.  相似文献   

6.
European stone fruit yellows (ESFY) is an EU‐listed I/AII disease affecting Prunus spp. caused by ‘Candidatus Phytoplasma prunorum’. This paper reports the results from a systematic literature review approach that sought to determine the geographic distribution of ‘Ca. Phytoplasma prunorum’ in European fruit‐growing areas. Evidence for the presence of the phytoplasma was found for 15 of the 27 EU countries. It is prevalent in the most important stone fruit production areas of Central and Southern Europe, where it causes substantial impact in apricots (Prunus armeniaca), Japanese plums (P. salicina) and peaches (P. persica). In Northern European areas where these hosts are not produced, it is occasionally found on tolerant species (P. domestica). However, because surveys of the disease status of tolerant hosts are not performed, it remains unclear whether the pathogen is absent in Northern Europe or survives in tolerant cultivated or wild hosts. No reports of ESFY were found from the southernmost part of Europe: Portugal, Spain (Andalucia, Castile–La Mancha), Italy (Sicily, Puglia), Greece (Crete), Cyprus and Malta. This may be explained by the absence of the favoured wild hosts of the vector. Moreover, it remains unclear if the vector finds suitable conditions for aestivation and overwintering in these regions.  相似文献   

7.
Peach orchards in the northeast of Spain were severely affected in 2012 by a previously unreported disease in this area. The symptoms included early reddening, leaf curling, decline, abnormal fruits, and in some cases death of the peach trees. All the infected peach samples were positive for ‘Candidatus Phytoplasma pyri’, but none were infected by the ‘Ca. Phytoplasma prunorum’. In this work, potential vectors able to transmit ‘Ca. Phytoplasma pyri’ from pear to peach and between peach trees were studied and their infective potential was analysed at different times of the year. Transmission trials of the phytoplasma with potential vectors to an artificial feeding medium for insects and to healthy peach trees were conducted. Additionally, isolated phytoplasmas were genetically characterized to determine which isolates were able to infect peach trees. Results showed that the only insect species captured inside peach plots that was a carrier of the ‘Ca. Phytoplasma pyri’ phytoplasma was Cacopsylla pyri. Other insect species captured and known to be phytoplasma transmitters were present in very low numbers, and were not infected with ‘Ca. Phytoplasma pyri’ phytoplasma. A total of 1928 individuals of C. pyri were captured in the peach orchards, of which around 49% were phytoplasma carriers. All the peach trees exposed to C. pyri in 2014, and 65% in 2015, were infected by ‘Ca. Phytoplasma pyri’ 1 year after exposure, showing that this species is able to transmit the phytoplasma to peach. Molecular characterization showed that some genotypes are preferentially determined in peach.  相似文献   

8.
9.
The presence of phytoplasmas in seven coniferous plant species (Abies procera, Pinus banksiana, P. mugo, P. nigra, P. sylvestris, P. tabuliformis and Tsuga canadensis) was demonstrated using nested PCR with the primer pairs P1/P7 followed by R16F2n/R16R2. The phytoplasmas were detected in pine trees with witches’ broom symptoms growing in natural forest ecosystems and also in plants propagated from witches’ brooms. Identification of phytoplasmas was done using restriction fragment length polymorphism analysis (RFLP) of the 16S rDNA gene fragment with AluI, MseI and RsaI endonucleases. All samples showed RFLP patterns similar to the theoretical pattern of ‘Candidatus Phytoplasma pini’, based on the sequence of the reference isolate Pin127S. Nested PCR‐amplified products, obtained with primers R16F2n/R16R2, were sequenced. Comparison of the 16S rDNAs obtained revealed high (99·8–100%) nucleotide sequence identity between the phytoplasma isolates. The isolates were also closely related to four other phytoplasma isolates found in pine trees previously. Based on the results of RFLP and sequence analyses, the phytoplasma isolates tested were classified as members of the ‘Candidatus Phytoplasma pini’, group 16SrXXI.  相似文献   

10.
11.
12.
13.
14.
Candidatus Phytoplasma prunorum’ is the causal agent of the European stone fruit yellows (ESFY) disease. This phytoplasma affects wild and cultivated species of Prunus to different degrees, depending on their susceptibility. ‘Candidatus Phytoplasma prunorum’ is present in the four regions of Spain surveyed in this study (Aragon, Catalonia, Extremadura and Valencia) with a variable incidence. Results showed that ‘Ca. Phytoplasma prunorum’ was detected in all of the cultivated Prunus species studied, except P. avium and P. dulcis, and was widespread in Spain. The most affected species was P. salicina, with symptoms including early bud break and blooming, leaf curling and yellowing, collapse, and a major decrease in production. In some plots in the Baix Llobregat area of Barcelona province (Catalonia), the incidence of ESFY on P. salicina was as high as 80%. The insect vector, Cacopsylla pruni, was present in all four of the regions studied, with the highest captures in yellow sticky traps in Catalonia on P. mahaleb and in Extremadura in peach orchards. In Baix Llobregat, large populations of C. pruni were present on infected P. mahaleb bushes, and with high infection rates. This was a key factor in the local pathogenic cycle that caused a major ESFY outbreak in the nearby P. salicina orchards. In the Ebro valley (Lleida and Aragon) and Valencia, the surveys showed very low incidences of the disease and low C. pruni populations.  相似文献   

15.
Symptoms of shoot proliferation characteristic of phytoplasma diseases were observed on nectarine (Prunus persica var. nucipersica) and peach (P. persica) trees in the Sarada plain, south of Lebanon. The presence of phytoplasmas in the two orchards visited was confirmed by nested polymerase chain reaction using universal primers. The amplified DNA fragments were cloned and sequenced. Blast analysis of over 1000 nucleotides demonstrated the presence of ‘Candidatus Phytoplasma phoenicium’ which is considered to be the causal agent of Almond witches’ broom. This phytoplasma which belongs to the pigeon pea witches’ broom group (16SrIX) can be devastating since Almond witches’ broom has killed thousands of almond trees in Lebanon and Iran. Previous reports indicated that Almond witches’ broom may be transmitted by grafting to peach and nectarine under experimental conditions. This is the first report of a natural and epidemic spread of ‘Ca. Phytoplasma phoenicium’ in peach and nectarine. Farmers in the region were advised to eradicate the infected trees immediately. Further studies on the epidemiology of ‘Ca. Phytoplasma phoenicium’ and its vector(s) are recommended in order to develop successful eradication or disease management programmes.  相似文献   

16.
The objectives of this work were (i) to determine the influence of temperature on infection of citrus by ‘Candidatus Liberibacter asiaticus’ and ‘Candidatus Liberibacter americanus’, the two bacterial species associated with citrus huanglongbing (HLB) in Brazil, and (ii) to determine the influence of temperature on citrus colonization by ‘Ca. L. asiaticus’, which has taken over from ‘Ca. L. americanus’ as the predominant species in Brazil since 2008. Two experiments were carried out with graft‐inoculated Valencia oranges on Rangpur lime rootstocks. Immediately after inoculation the plants were maintained for 423 days in growth chambers under the following night/day temperature conditions: 17/22, 22/27 or 27/32°C, with a dark/light photoperiod of 8/16 h. Infection and colonization of plants were determined using quantitative PCR (qPCR). ‘Candidatus Liberibacter americanus’ did not infect the plants maintained at 27/32°C; however, infection by ‘Ca. L. asiaticus’ occurred at all studied temperatures. Two months after inoculation, ‘Ca. L. asiaticus’ was distributed throughout the inoculated plants, with mean Ct values in the range of 30–31 for leaves and 25–28 for roots. Over time, ‘Ca. L. asiaticus’ reached the highest titres in mature leaves (mean Ct value = 26·7) of citrus plants maintained at 22/27°C. ‘Candidatus Liberibacter asiaticus’ colonization of citrus plants was negatively affected by the daily temperature regime of 27/32°C (mean Ct value in mature leaves = 33·6).  相似文献   

17.
18.
The immunodominant membrane protein Imp of several phytoplasmas within the ‘Candidatus Phytoplasma aurantifolia’ (16Sr‐II) group was investigated. Eighteen isolates from Iran (11), East Asia (5), Africa (1) and Australia (1) clustered into three phylogenetic subgroups (A, B and C) based on the 16S rDNA and imp genes, regardless of geographic origin. The imp gene sequences were variable, with more non‐synonymous than synonymous mutations (68 vs 20, respectively), even though many of the non‐synonymous ones (75%) produced conservative amino acid replacements. Eight codon sites on the extracellular region of the protein were under positive selection, with most of them (75%) coding for non‐conservative amino acid substitutions. Full‐length (21 kDa) and truncated (16 kDa) Imp proteins of two economically important Iranian phytoplasmas [lime witches’ broom (LWB) and alfalfa witches’ broom (AlWB‐F)] were expressed as His‐tagged recombinant proteins in Escherichia coli. An antiserum raised against full‐length recombinant LWB Imp reacted in western blots with membrane proteins extracted from LWB‐infected periwinkle and lime, indicating that Imp (19 kDa) is expressed in infected plants and is a membrane‐associated protein. The same polyclonal antibody also detected native Imp in proteins from periwinkles infected by phytoplasmas closely related to LWB (subgroup C) only, confirming phylogenetic clustering based on 16S rDNA and imp genes. Imp proteins of LWB and AlWB‐F isolates were also recognized by an antiserum raised against an enriched preparation of AlWB‐F phytoplasma cells, demonstrating the antigenic properties of this protein.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号