首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ear emergence time and response to vernalization were investigated in 12 alien substitution lines in which a pair of chromosomes 5A of recipient spring wheat cultivars was replaced by a pair of chromosomes 5R of Siberian spring rye ‘Onokhoiskaya’. The recipients were 12 spring cultivars of common wheat, each carrying different Vrn genes. Spring rye ‘Onokhoiskaya’ had the Sp1 (now called Vrn-R1) gene for spring growth habit located on chromosome 5R, but its expression was weaker. The Vrn-R1 gene had no effect on growth habit, ear emergence time and response to vernalization in wheat-rye substitution lines. Ears emerged significantly later in the 5R(5A) alien substitution lines than in the recipient wheat cultivars with the Vrn-A1/Vrn-B1/vrn-D1 or Vrn-A1/vrn-B1/Vrn-D1 genotypes. No difference in ear emergence time was found between most of the 5R(5A) alien substitution lines and the cultivars carrying the recessive vrn-A1 gene. The presence of the Vrn2a and Vrn2b alleles at the Vrn2 (now called Vrn-B1) locus located on wheat chromosome 5B was confirmed.The replacement of chromosome 5A by chromosome 5R in wheat cultivars ‘Rang’ and ‘Mironovskaya Krupnozernaya’, which carries the single dominant gene Vrn-A1, converted them to winter growth habit. In field studies near Novosibirsk the winter hardiness of 5R(5A) wheat–rye substitution lines of ‘Rang’ and ‘Mironovskaya Krupnozernaya’ was increased by 20–47% and 27–34%, respectively, over the recurrent parents.  相似文献   

2.
Translocated chromosomes T1BL⋅1RS and T1AL⋅1RS have been widely used in many wheat (Triticum aestivum L.) breeding programs to develop high yielding cultivars. The objective of this study was to evaluate the heterotic effects of T1BL⋅1RS + T1AL⋅1RS, T1BL⋅1RS, and T1AL⋅1RS on yield and yield components of hybrid wheat grown under adequate moisture regimes. Thirteen hybrid wheats and seven parents with different chromosome constitutions relative to T1AL⋅1RS and T1BL⋅1RS were evaluated in a randomized complete block design. Variable performance was observed among the hybrids tested. Two of the three hybrids with T1BL⋅1RS + T1AL⋅1RS, produced 25.26% and 44.64% more grain than the hybrids with only T1BL⋅1RS. This was due to increased biomass, harvest index (HI) and spike density. However, the combination of these two translocations resulted in reduced kernels/spike, spikelets/spike and spike length compared to the T1BL⋅1R Stranslocation alone. When comparing closely related parents, the parent with T1AL⋅1RS produced 23.51% more grain yield than the non-translocated parent. The presence of T1AL⋅1RS resulted in 10.37% heterotic advantage for yield due to increased biomass, KW, and spike density. When the two wheat-rye translocated chromosomes are present in the same hybrid, T1AL⋅1RS seems to have a positive effect on yield through spike density and HI, but masks the effects of T1BL⋅1RS for some agronomic traits. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Summary C-banding andin situ hybridization were used to determine the chromosomal constitution of the greenbug-resistant germplasm GRS 1204. The results showed that this line had the radiation-induced non-homoeologous wheat-rye translocation chromosomes T2AS-1RS·1RL and T2AL·2AS-1RS. C-banding analysis further revealed the presence of a wheat-Agropyron elongatum translocation chromosome T1BL·1BS-3Ae#1L in line GRS 1204, that was derived from Teewon. The greenbug resistance of line GRS 1204 is similar to that of line GRS 1201 that was earlier shown to have the greenbug resistance geneGb6 located on the 1RS arm of the wheat-rye translocation chromosome T1AL·1RS. BecauseGb6 in line GRS 1204 is present on one of the non-homoeologous translocation chromosomes, agronomically line GRS 1201 should be the better adapted source ofGb6 resistance and be used in cultivar improvement.  相似文献   

4.
Y. B. Wang  H. Hu  J. W. Snape 《Euphytica》1995,81(3):265-270
Summary Heptaploid hybrids between octoploid triticale and wheat were backcrossed as female parents with wheat to examine the rye chromosome distribution in the resultant progenies using genomic in situ hybridization (GISH). One hundred and one backcross (BC) seeds were examined and whole rye chromosome additions and substitutions, wheat/rye centric and noncentric translocations and rye telocentric chromosomes were detected. Dicentric wheat/rye translocated chromosomes were also observed. Comparisons were made with previous results on the rye chromosome distribution from male gametes of the same cross and differences were found, where in the female derived population a deficit of plants with more than two rye chromosomes was apparent relative to the anther derived population.  相似文献   

5.
Summary The Sr27 translocation in WRT238 was found to consist of chromosome arms 3RS of rye and 3AS of common wheat. An attempt was made to purposely produce compensating translocations having 3RS and a wheat homoeologous group 3L arm. To achieve this, plants, double monosomic for 3R and a wheat homoeologous group 3 chromosome, were irradiated (7.5 Gy gamma rays) or left untreated before being used to pollinate stem rust susceptible testers. Segregation for stem rust resistance was studied to identify F2 families with Sr27-carrying translocated chromosomes, these were confirmed by means of C-banding. Compensating translocations 3RS3AL and 3RS3BL) were obtained readily and at similar frequencies from untreated and irradiated plants (respectively, 7.2% and 9.3%). Both translocation types have impaired transmission and segregate approximately 3: 2 (present: absent) in the F2.  相似文献   

6.
A. C. Zeven 《Euphytica》1987,36(1):299-319
Summary Two lists are provided: List 1 contains the percentages of crossability with rye of some 1400 varieties and lines of bread wheat; List 2 contains varieties having a high crossability with rye. It is believed that the publication of these data will be helpful to those wishing to cross bread varieties with rye and other species.  相似文献   

7.
Summary The recessive of crossability allele kr1 was transferred from the spring wheat variety Chinese Spring (CS) into the winter wheat variety Martonvásári 9 (Mv9) by backcrossing the Mv9 × CS hybrids with Mv9. The Mv9 variety possesses dominant Kr1 alleles and is heterogeneous at the kr2 locus, so that some individual plants carry recessive kr2 alleles. The selection of plants possessing the recessive kr alleles from the (Mv9 × CS)Mv9 BC1 generation was carried out according to the seed set achieved when pollinated with rye (Secale cereale L. cv. Mercator). The partial dominance of the Kr alleles made it possible to differentiate between plants heterozygous at the Kr1 locus and Kr1Kr1 homozygous dominant plants. Two selfed consecutive progenies were tested by pollination with rye to select the homozygous recessive kr1kr1kr2kr2 plants and to check the result of the selection after each backcross.As a result of three backcrosses with Mv9 and two selfings after each backcross the selected progenies had 61.6% seed set with rye tested on sixty individual plants. These data confirm that after the third backcross the selected Mv9 kr1 line carries necessive crossability alleles Kr1 and Kr2, but the genotype is 93.75% Mv9.  相似文献   

8.
Summary Genetic variation among four winter wheat cultivars for response to treatment with triallate was examined. The cultivars showed differential tolerance based on stand count, however, differential tolerance was not seen for any of the other traits examined including visual score, and the mature plant traits, tiller count and yield. Significant effects due to increasing the rate of chemical were observed. An increase in yield was seen at the 0.5 and 1.0 kg/ha rates of triallate. This yield increase was paralleled by trends toward increasing seed number/head and tiller number/unit area. The results indicate that the effect of triallate on wheat has two components. The first component, toxicity, is seen on all cultivars, but the extent of damage varies significantly among cultivars. The second component is positive and leads to an increase in yield without interacting significantly with genotype.  相似文献   

9.
Summary Three populations of winter wheat were formed by crossing Avrora to Sage, TAM W-101, and Danne. Approximately 10% of the F2 plants from these crosses were selected for high and low levels of number of tillers per plant, number of kernels per spike, 1000-kernel weight, and grain yield. Forty-eight solid seeded F3 lines obtained from the selected F2 plants were then selected for high and low expressions of yield components and grain yield. Realized heritabilities were estimated. Indirect responses of yield to yield component selection and direct response to selection for grain yield were measured. Heritabilities were low for tiller number, number of kernels per spike and kernel weights but were high or intermediate for grain yield when selection occurred in the F2 generation. When selection was practiced in the F3 generation, heritabilities for tiller number and yield were low, but were intermediate to high for number of kernels per spike and kernel weight and high heritabilities were found for kernel weight. Selection for kernel weight often increased grain yield; however, direct selection for grain yields was usually as effective.Journal article no. J-4488 of the Oklahoma Agri. Exp. Stn., Stillwater, Oklahoma 74074.  相似文献   

10.
Role of chromosome 3A in stomatal resistance of winter wheat   总被引:2,自引:0,他引:2  
Summary Leaf stomatal resistance, through transpiration and photosynthesis control, constitutes a major factor of productivity and adaptation in wheat. The aim of the investigations reported here was to identify chromosomal effects on the expression of the maximum stomatal resistance, determined under optimum conditions of irradiance and water supply. Leaf stomatal resistance was measured, on wheat grown in pots under natural and well-watered conditions, using a LI-COR LI-6200 portable photosynthesis system under a saturating light>1400 mol m-1 s-2. Reciprocal sets of chromosome substitution lines between two hard red winter wheat cultivars, Wichita and Cheyenne, were used to identify the chromosomes involved in the expression of this trait. The two parental cultivars were significantly different for the parameter investigated. Chromosome 3A appeared to be involved in the expression of the stomatal resistance value under optimum conditions. Taking into account the relationships previously established between this parameter and some agronomic traits, chromosome 3A might be involved directly in productivity-determining processes or in the adaptation to water conditions, in wheat.  相似文献   

11.
D.G. Humphreys  J. Noll 《Euphytica》2002,126(1):61-65
Preharvest sprouting (PHS) can be a serious problem in western Canada resulting in economically important yield and grade losses for wheat producers. Improved PHS resistance is an important breeding objective and wheat breeders require effective and reliable methods to select for PHS resistance. The objective of this study was to evaluate whether differences exist between field and artificial weathering in the evaluation of PHS resistance in breeding lines and to determine whether sprouting scores are a good estimator of PHS resistance when compared to Hagberg falling numbers. Results suggest that both field and artificial weathering can be effectively used to screen for PHS resistance in wheat breeding lines. Although in this study, field weathering resulted in greater sprouting damage than artificial weathering, the ability to control conditions may make artificial weathering the more reliable test for PHS resistance in a breeding program. Mean sprouting scores greater than 7.5 consistently identified lines with low PHS resistance; hence, sprouting scores can be used to discard the most sprouting susceptible lines. However, falling numbers appear to be more reliable to evaluate the PHS resistance of advanced lines. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Summary The effect of the 1AL/1RS chromosome translocation on grain yield and other agronomic characteristics of 85 random F2-derived F6 bulks from three 1AL 1RS × 1A bread wheat crosses was determined under optimum and reduced irrigation conditions at CIANO, Yaqui Valley, Sonora, Mexico, during the 1991–1992 and 1992–1993 crop production cycles. Harvest plots of 5.0 m2 were arranged in an alpha lattice design with three replications. The 1AL/1RS translocation increased grain yield, above-ground biomass, spikes/m2, and test weight under both irrigated and dryland conditions. Homozygous chromosome 1A lines, on the other hand, possessed longer spikes with more grains. The 1AL/1RS cultivars had an advantage in 1000-grain weight, which was detected only under optimum irrigation. The translocation lines showed later maturity and longer grainfilling period than the 1A genotypes under one irrigation treatment. A significant relationship between grain yield and test weight was detected only among the 1AL/1RS genotypes, indicating that they possess heavier and plumper grains than the 1A genotypes. These results encourage the continued use of the 1AL/1RS translocation in wheat improvement.  相似文献   

13.
Ma Rui  D. S. Zheng  L. Fan 《Euphytica》1995,92(3):301-306
Summary Crossability of bread wheat (Triticum aestivum L.) from Japan with rye (Secale cereale L.) was investigated by controlled pollination. No normal seeds were produced, but numbers of shrivelled and small seeds with embryos were used to estimate crossability amongst the 96 accessions, viz: 0–10% (29), 10–30% (23), 30–50% (11), 50–90% (33). The investigation for the pedigrees of varieties with more than 50% crossability percentages showed that the kr alleles of some accessions derived from common ancestors.  相似文献   

14.
Hugh Wallwork 《Euphytica》1989,40(1-2):103-109
Summary Fifteen triticale and wheat-triticale hybrid lines were evaluated for resistance to the take-all fungus Gaeumannomyces graminis var. tritici and compared with five wheat and two rye lines in inoculated field and pot trials. The triticale and wheat-triticale hybrid lines varied in rye chromosome number and degree of resistance expressed. One line, Venus with seven pairs of rye chromosomes consistently showed levels of resistance intermediate between wheat and rye. A trend was observed where increasing rye chromosome content led to greater resistance but exceptions showed that variation within triticales could not be ascribed to rye chromosome content alone.  相似文献   

15.
Summary Crossability of 62 bread wheat accessions (14 landraces from Himachal Pradesh and 48 others) was examined with rye. The 3 rye cultivars did not differ in their relative crossability with 4 of the wheat accessions studied. On the other hand, the wheat cultivars differed greatly among themselves in their crossability with rye. Most of the wheat cultivars showed poor (<10%) crossability. Two of the 14 landraces from Himachal Pradesh were found to be free from the crossability inhibitors as they showed very high (>50%) crossability, whereas none of the other 48 cultivars studied was so.  相似文献   

16.
Z. X. Tang    S. L. Fu    Z. L. Ren    H. Q. Zhang    Z. J.Yang    B. J. Yan 《Plant Breeding》2009,128(5):524-527
The wheat-rye 1BL.1RS translocation chromosomes have been used widely around the world in commercial wheat ( Triticum aestivum L.) production because of the presence of several disease resistance genes and a yield enhancement factor on the rye ( Secale cereale L.) chromosome. However, the recent reports of the loss of complete effectiveness of the disease resistance genes on the most commonly used 1BL.1RS chromosome have highlighted the need to seek and deploy additional sources of disease resistance genes. Three new sibling wheat cultivars, 'CN12', 'CN17' and 'CN18', were developed carrying 1RS arms derived from the rye inbred line L155. Genomic in situ hybridization and C-banding analysis revealed that all the three cultivars contained the rye chromosome 1RS arm fused to the wheat 1BL wheat chromosome arm. The three cultivars displayed high yields and high resistance to local powdery mildew and stripe rust pathotypes. Fluorescence in situ hybridization analysis indicated the different structure of 1BL.1RS chromosome between 'CN18' and the other two cultivars. The present study provides a new 1RS resource for wheat improvement.  相似文献   

17.
M. C. Luo  C. Yen  J. L. Yang 《Euphytica》1993,70(1-2):127-129
Summary The crossability percentages of 282 accessions of wheat (Triticum aestivum L.) collected in Tibet, China with rye (Secale cereale L.) have been tested. Five collections have a similar to and 277 accessions have a lower crossability percentage than Chinese Spring or are non-crossable with rye. The accessions with high crossability percentage occur along the highway near Lhasa. No landraces with higher crossability than Chinese Spring and rare landraces with similar crossability to Chinese Spring indicated that the landraces in Tibet region are different from those in Sichuan, Shaanxi and Henan provinces in the distribution frequency of high crossability, and there is no distribution of recessive kr4 alleles.  相似文献   

18.
Summary The crossabilities of 177 landraces of wheat (Triticum aestivum L.) from Sichuan Basin and its adjacent mountain ranges with rye (Secale cereale L.) have been tested. 16 landraces possess a higher crossability than Chinese Spring, 34 landraces have a similar and 127 landraces have a lower crossability than Chinese Spring or are non-crossable with rye. Most landraces with high crossability occur in Qinling Mountain and Dabashan Mountain Ranges in north of Sichuan and the valleys of Minjiang River, Fujiang River and Jialinjiang River in Sichuan Basin.  相似文献   

19.
N. Jouve  F. Diaz 《Euphytica》1990,47(2):165-169
Summary The EST-6 leaf esterase phenotypes from euploid, nullisomic-tetrasomic and rye chromosome addition and substitution lines of common wheat were determined using polyacrylamide gel electrophoresis. Evidence is presented to demonstrate that Est-6 is a new set of genes, that are expressed in the leaf. The Est-6 gene set were clearly distinguished from the Est-5 genes which are expressed in the grain. The three homoeoallelic loci, Est-A6, Est-B6 and Est-D6, were located on chromosomes 3A, 3B and 3D. An Est-R6 gene was located on chromosome 6R is involved in rye. Some considerations concerning homoeology between homoeologous group 3 of wheat and the rye chromosome 6R are made.  相似文献   

20.
Summary Four methods for detecting 1BL. 1RS translocations in bread wheat have been compared winter wheat cultivars: N-banding of mitotic metaphase chromosomes, sodium lactate electrophoresis at pH 3.1, sodium dodecyl sulphate-polyacrylamide gel electrophorests under conditions, and a recently characterised protein, subtilisin inhibitor, separated by isoelectric N-banding was much the most labour intensive method, and, of the three electrophoretic recommend the use of subtilisin inhibitor, which is at least as easy to interpret as the other is often faster for screening purposes. The sources of the 1BL. 1RS translocation in this matenal Avrora. Kavkaz and Skorospelka 35, which have been extensively used as parents in breeding programmes. Out of 59 cultivars that include a line carrying the 1BL. 1RS pedigree. 23 of them did not carry the translocation; thus the effect on plant phenotype of insufficient to guarantee its selection during breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号