首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
农药是保障粮食安全的重要农业投入品,施用后部分农药会沉积在土壤中,甚至会被作物根部吸收,进入作物体内并累积于可食部位,从而导致潜在农产品质量安全问题。研究表明,土壤中的有机质含量、农药的辛醇-水分配系数和作物脂质含量是影响作物吸收非离子型农药的关键因素,作物各部位的脂质含量是影响该类农药累积的关键因素,借助蒸腾作用向上传递是作物根部吸收传导农药的主要动力。本文重点综述了农药被作物的根部吸收、传递和累积及其主要影响因素,结合植物吸收模型的发展及运用,展望了该领域未来发展方向,为农药归趋及应用风险研究提供参考。  相似文献   

3.
The paper assesses the usefulness of the concept of ‘concentration addition’ (CA) for describing the joint effect of pesticides on aquatic organisms, based on literature data from 1972 to 1998. For more than 90% of 202 mixtures in 26 studies, CA was found to predict effect concentrations correctly within a factor of two. Although from a theoretical point of view the assumption of CA may be invalid when dealing with mixtures of compounds with dissimilar modes of action, the experimental results have usually been indistinguishable from that predicted by CA. Deviations from CA did occur, but were mostly limited in extent. Upward and downward deviations from CA were of comparable magnitude and frequency, and tended to cancel each other out. The combinations identified as most frequently leading to deviations from CA were those of an organophosphorus ester or a carbamate with either another organophosphorus ester or a synthetic pyrethroid. © 2000 Society of Chemical Industry  相似文献   

4.
A HUSSNER 《Weed Research》2009,49(5):506-515
Crassula helmsii , Hydrocotyle ranunculoides , Ludwigia grandiflora and Myriophyllum aquaticum are four well known invasive aquatic plants in European waters. In this study, plant growth at different nutrient availabilities, regeneration capacity and photosynthesis were investigated. Results show high relative growth rates (RGR) of the species of up to 0.132 ± 0.008 g g−1 dry weight (dw) day−1 ( H. ranunculoides ) and a significant increase in RGR with increasing nutrient availability. All species show a high regeneration capacity and the ability to form new shoots from single nodes, even though it differs between the species. Ludwigia grandiflora and M. aquaticum also show regeneration from single leaves. Species differed in maximal amounts, and in temperature and light optima of net assimilation rates: H. ranunculoides leaves reach maximum photosynthetic rates of up to 3500 μmol CO2 × h−1 g−1 dw, L. grandiflora (leaves) up to 2200 μmol CO2 × h−1 g−1 dw, M. aquaticum (shoots) 400   μmol CO2 × h−1 g−1 dw and C. helmsii (shoots) up to 200 μmol CO2 × h−1 g−1 dw. Hydrocotyle ranunculoides , L. grandiflora and M. aquaticum preferred high light intensity and high temperatures, whilst C. helmsii was negatively affected by intense sunlight. Summarising, it can be assumed that at least H. ranunculoides , L. grandiflora and M. aquaticum can grow well under current and likely future central European climate conditions.  相似文献   

5.
6.
Registration schemes for plant-protection products require applicants to assess the potential ecological risk of their products using a tiered approach. Standard aquatic ecotoxicity tests are used at lower tiers and clearly defined methodologies are available for assessing the potential environmental risks. Safety factors are incorporated into the assessment process to account for the uncertainties associated with the use of lower-tier single-species ecotoxicity studies. If lower-tier assessments indicate that a substance may pose a risk to the environment, impacts can be assessed using more environmentally realistic conditions through the use of either pond mesocosms, artificial streams or field monitoring studies. Whilst these approaches provide more realistic assessments, the results are difficult to interpret and extrapolation to other systems is problematic. Recently it has been recognised that laboratory approaches that are intermediate between standard aquatic toxicity tests and field/mesocosm studies may provide useful data and help reduce the uncertainties associated with standard single-species tests. However, limited guidance is available on what tests are available and how they can be incorporated into the risk-assessment process. This paper reviews a number of these higher-tier laboratory techniques, including modified exposure studies, species sensitivity studies, population studies and tests with sensitive life stages. Recommendations are provided on how the approaches can be incorporated into the risk-assessment process.  相似文献   

7.
Molinate, a selective herbicide, is used for the control of annual and perennial weeds in rice paddy fields. This study was designed to assess the basis of the selective action of molinate between a susceptible broadleaf crop, tobacco, and a resistant graminaceous plant, rice. Experiments were conducted comparing plant growth under different concentrations of molinate, determining the absorption and translocation of the herbicide in the plant and identifying the metabolites in suspension cells. Rice showed greater tolerance to molinate than tobacco. Leaves of tobacco showed retarded and distorted growth at 10 mg liter-1 of molinate 14 days after treatment, but rice leaves were unaffected at this concentration. Higher concentrations of molinate accumulating in the root of tobacco seedlings may inhibit root development and represent a significant factor in the herbicide's selective action. Seven and eight metabolites were found in tobacco and rice cells, respectively, with molinate sulfoxide and molinate sulfone present in both species. © 1998 SCI  相似文献   

8.
Florasulam is a triazolopyrimidine sulfonanilide post-emergence broadleaf herbicide for use in wheat (Triticum aestivum L.). The selectivity of florasulam to wheat has been determined to be related primarily to a differential rate of metabolism between wheat with a half-life of 2.4 h and broadleaf weeds with half-lives ranging from 19 to >48 h. To a lesser extent, selectivity, at least for the broadleaf weed cleavers (Galium aparine L.), involves uptake differences. Rate of metabolism data were generated using greenhouse-grown plants injected with radiolabelled florasulam and subsequent extraction and processing by high-performance liquid chromatography (HPLC). Structures of metabolites were determined by isolation for nuclear magnetic resonance and liquid chromatography/mass spectrometry. Wheat plants metabolised florasulam by hydroxylation of the aniline ring para to the nitrogen, followed by conjugation to glucose. Metabolism by broadleaf weeds was so slow that isolation of metabolite was not possible, but comparison of HPLC data suggested hydroxylation as the major pathway.  相似文献   

9.
Translocation of the antiblast compound, carpropamid, was investigated in rice using [14C]carpropamid. When applied to the seed, carpropamid was not only readily absorbed but was translocated to different parts of the seedlings emerging from treated seeds. A substantial portion of fungicide appeared to be exuded onto the leaf surface. In 21‐day‐old plants grown from [14C]carpropamid‐treated seeds, 27.2% of the radioactivity isolated from leaves was present on the surface of lamina. This exuded fraction is probably responsible for its action as a fungal anti‐penetrant compound. Following 30‐min root dipping of 14‐day‐old seedlings, carpropamid was rapidly absorbed and translocated throughout the seedling. Its intra‐laminar distribution was uniform as determined by autoradiography. Only a small fraction (<2%) of fungicide applied to the foliage was translocated beyond the site of application within the treated leaf. Translocation was primarily apoplastic. Approximately 54% of the radioactivity recovered from leaves was in the form of carpropamid. At least seven radiolabelled metabolic products were observed by TLC. Only 8.3% of radioactivity applied through the seeds could be recovered from 21‐day‐old seedlings. © 2001 Society of Chemical Industry  相似文献   

10.
新型除草剂氟唑磺隆是磺酰脲类小麦田除草剂,为明确其在野燕麦植株中的内吸传导特性以及为合理使用氟唑磺隆防除杂草策略的制定提供科学依据,分别采用水培法和涂药法研究了氟唑磺隆在野燕麦Avena fatua植株中的传导特性。结果显示:采用水培法以50 mg/L的氟唑磺隆处理野燕麦根部,药后24 h野燕麦根、叶鞘和下部成熟叶中氟唑磺隆含量的占比分别为22%、74%和4%,心叶中未检测出;药后48 h野燕麦根、叶鞘、下部成熟叶和心叶中氟唑磺隆含量的占比分别为23%、58%、8%和11%。采用涂药法以50 mg/L氟唑磺隆处理野燕麦成熟叶片,药后24 h野燕麦下部成熟叶和心叶中氟唑磺隆的含量占比分别为57%和43%,根和叶鞘未检测出;药后48 h野燕麦根、叶鞘、下部成熟叶和心叶中氟唑磺隆的含量占比分别为1%、1%、68%和30%。结果表明,氟唑磺隆能被野燕麦的根吸收,具有优异的自下而上的内吸传导特性;同时氟唑磺隆能被野燕麦的叶片吸收,并可在叶间传导和向根传导。表明氟唑磺隆在野燕麦中具有双向传导的能力。  相似文献   

11.
12.
[14C]-Imazethapyr was applied as a seed treatment and at plant pre-emergence and post-emergence to peas ( Pisum sativum L.) parasitized by Orobanche crenata Forsk. Herbicide uptake increased with time regardless of the application method. Uptake reached about 98%, 89%, 81% and 94% of the total herbicide applied for the seed coating, seed soaking, pre-emergence and post-emergence treatments respectively. Herbicide translocation within the host plants consistently differed between O. crenata -infected and non-infected plants. High levels of 14C activity were accumulated by parasitic plants from the host. In non-infected pea plants, pods were stronger sinks for imazethapyr than the other parts of the plant, regardless of the application method. The herbicide distribution in the pea plant: O. crenata complex showed the same pattern regardless of the application methods. However, accumulation of radioactivity in the parasite was lower with pre-emergence and post-emergence application than with the seed treatments. In addition, radioactivity concentration in O. crenata plants was slightly higher when [14C]-imazethapyr was applied to pea seeds by coating than by soaking.  相似文献   

13.
Despite being lipophilic, morpholine fungicides are systemic in plants. Such transport may be explicable by their protonation (pKa∽7·5) at the pH of plant compartments to yield the more polar cation. This behaviour might be a useful attribute to be incorporated into other classes of lipophilic pesticides. To understand quantitatively the behaviour of the morpholine fungicides, the uptake by roots and transport to shoots in barley of two such 14C-labelled compounds, dodemorph and tridemorph, were investigated using bathing solutions of differing pH. At pH 5, uptake and transport were small, but increased by approximately two orders of magnitude at pH 8. Tridemorph, the more lipophilic of the two compounds, was highly accumulated by roots at pH 8 and moderately translocated to shoots. In contrast, dodemorph was translocated to shoots at pH 8 with remarkable efficiency, moving into the xylem across the endodermis at 23 times the efficiency of water, though accumulation in roots was less than that of tridemorph. Behaviour at 24 h was largely similar to that at 48 h for both compounds, indicating that uptake and translocation are equilibrium processes maintained over time. Transport to shoots for each compound was directly proportional to the concentrations accumulated in the roots, except at low pH where partitioning into root solids became proportionately more important with such material not being directly available for transport to the xylem across the endodermis. Uptake and transport of these basic fungicides are explained in terms of their partitioning and of their accumulation in acidic plant compartments by ion trapping as the protonated form; this behaviour is discussed in relation to the pKa and lipophilicity of these compounds. © 1998 Society of Chemical Industry  相似文献   

14.
为了探究吡虫啉在植物中的吸收转运规律,本研究选择生菜为研究对象,将其在含有1 mg/kg吡虫啉的水培液中持续暴露120 h,利用超高效液相色谱-三重四极杆质谱检测吡虫啉及其5种代谢物在生菜不同部位动态吸收变化和转运分布规律.结果表明,吡虫啉在叶部富集程度明显高于根部,当达到吸收稳定状态时,吡虫啉在叶部富集程度约为根部的...  相似文献   

15.
The neonicotinoid insecticide imidacloprid is the most important insecticide in hop cultivation in Germany. A laboratory study was undertaken to investigate its systemic properties and translaminar bioavailability in hop leaves. Radiolabelled [methylene-14C]imidacloprid was applied either alone or in combination with different additives onto leaves of several hop varieties. Uptake and translocation were evaluated 1 and 7 days after foliar application under greenhouse conditions. The uptake of imidacloprid into hop leaves was most pronounced in the first 24 h after application and only negligible amounts were taken up after this period. Significant differences in the quantitative uptake occurred when imidacloprid was combined with additives, such as Amulsol, Genapol C-100, Hasten and LI 700. The uptake of imidacloprid applied without additives was less than 10% 7 days after application, whereas the combination with LI 700 provided 70-80% uptake. Genapol C-100 and Amulsol induced considerable phytotoxicity at the application site. Comparing hop varieties revealed differences up to twofold in foliar penetration of imidacloprid. The translaminar and acropetal bioavailability of imidacloprid foliarly applied to hop leaves was determined by a laboratory bioassay using the damson hop aphid, Phorodon humuli (Schrank). Significantly higher mortality was observed with laboratory formulations containing imidacloprid and the additive LI 700. In contrast to these results from systemic tests, contact mortality at the application site was constantly high over the testing period of 7 days, highlighting the importance of this mode of entry for aphid intoxication.  相似文献   

16.
17.
18.
BACKGROUND: Aminocyclopyrachlor is a new herbicide proposed to control broadleaf weeds and shrubs in non‐crop and rangeland systems. To gain a better understanding of observed field efficacy, the uptake and translocation of foliar‐applied aminocyclopyrachlor (DPX‐MAT28) and aminocyclopyrachlor methyl ester (DPX‐KJM44) were evaluated in two annuals, prickly lettuce (Lactuca serriola L.) and yellow starthistle (Centaurea solstitialis L.), and one perennial, rush skeletonweed (Chondrilla juncea L.). RESULTS: Absorption and translocation varied between species. While absorption of DPX‐KJM44 was greater than absorption of DPX‐MAT28, rush skeletonweed absorbed the most, followed by yellow starthistle and prickly lettuce. Overall, the total translocation of either herbicide was highest in yellow starthistle, followed by rush skeletonweed and prickly lettuce. Proportional herbicide movement between species was similar, with the majority translocating to developing shoots. However, in rush skeletonweed, early translocation was directed to root tissue. In rush skeletonweed, no DPX‐MAT28 metabolism occurred, while DPX‐KJM44 was rapidly de‐esterified and translocated as DPX‐MAT28. CONCLUSION: Aminocyclopyrachlor absorption and translocation are dependent on active ingredient structure and species sensitivity. Highly sensitive species such as prickly lettuce absorb and translocate less material than relatively less sensitive species such as rush skeletonweed. De‐esterification of DPX‐KJM44 appears to delay translocation of the resulting acid in yellow starthistle and rush skeletonweed. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
The uptake by barley roots from nutrient solution and subsequent transport to shoots of two series of amine bases were measured over 6 to 72 h. The compounds were chosen to span systematically ranges of lipophilicity (assessed using 1-octanol/water partition coefficients, Kow) and pKa that would include commercial pesticide amines. In a series of six substituted phenethyl amines, strong bases with pKa∽9·5, all the compounds were strongly taken up by roots from solutions of pH 8·0; uptake declined substantially as the pH was lowered to 5·0, especially for the compounds of intermediate lipophilicity (log Kow 2 to 3). This uptake could be ascribed to three processes: (i) accumulation of the cation inside the root cells due to the negative charge on the plasmalemma, as given by the Nernst equation and important only for the polar compounds which have low permeation rates through membranes; (ii) accumulation into the vacuole by ion-trapping, which was the dominant process at high pH for all compounds and at all pH values for the compounds of intermediate lipophilicity; (iii) partitioning on to the root solids, substantial only for the most lipophilic compounds. Translocation to shoots was proportional to uptake by roots, this ratio being independent of external pH for each compound and being optimal for the compounds of intermediate lipophilicity. Such proportionality was also observed in a series of three weaker bases of intermediate lipophilicity, in which compounds of pKa 7·4 to 8·0 were also well taken up and translocated whereas the very weak base 4-ethylaniline (pKa 5·03) was much less so. Tests with quaternised pyridines confirmed that organic cations move only slowly through membranes. The observed behaviour of the amines could be modelled reasonably well assuming that transport within the plant was dominated by movement across membranes of the non-ionised species, and this appeared to be true even for the most lipophilic phenethylamine (log Kow 4·67) studied, though its long-distance movement would be as the protonated species. © 1998 Society of Chemical Industry  相似文献   

20.
An assessment of the invasive risk associated with the establishment and dispersal of plants available in the aquarium and ornamental pond industries in the Greater Toronto area (Canada) was made. In the risk model, sales volumes of individual taxa were used as a proxy for propagule pressure, to assess pathway risk potential. Organism risk potential, the ability to become established and disperse associated with a release, was assessed using an analysis of the biological traits of the species. Discriminant correspondence analysis was used to predict which biological traits were useful in discriminating native plants from alien invasive plants and alien non‐invasive plants. Importantly, a relatively small number of biological traits appear to be useful in predicting whether an alien aquatic plant had the characteristics that would support establishment and/or dispersal in new environments. Aquatic plants distributed by the industries that are cold tolerant, able to propagate by fragments and use a number of dispersal methods are of particular concern as potential invaders. The model identified 11 alien plants in the trade that have a high risk of becoming invasive, and an additional 52 with moderately high risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号