首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a comparative study of the performance of ferrate(VI), FeO 4 2? , and ferric, Fe(III), towards wastewater treatment. The ferrate(VI) was produced by electrochemical synthesis, using steel electrodes in a 16 M NaOH solution. Domestic wastewater collected from Hailsham North Wastewater Treatment Works was treated with ferrate(VI) and ferric sulphate (Fe(III)). Samples were analysed for suspended solids, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and P removal. Results for low doses of Fe(VI) were validated via a reproducibility study. Removal of phosphorous reached 40% with a Fe(VI) dose as low as 0.01 mg/L compared to 25% removal with 10 mg/L of Fe(III). For lower doses (<1 mg/L as Fe), Fe(VI) can achieve between 60% and 80% removals of SS and COD, but Fe(III) performed even not as well as the control sample where no iron chemical was dosed. The ferrate solution was found to be stable for a maximum of 50 min, beyond which Fe(VI) is reduced to less oxidant species. This provided the maximum allowed storage time of the electrochemically produced ferrate(VI) solution. Results demonstrated that low addition of ferrate(VI) leads to good removal of P, BOD, COD and suspended solids from wastewater compared to ferric addition and further studies could bring an optimisation of the dosage and treatment.  相似文献   

2.
The present research reproduces the chemical and microbiological reactions that occur naturally when a metal sulfide is discharged onto a natural soil, with special emphasis on iron cycle. The role of indigenous microbiota from an extremely acidic site on both weathering and attenuation processes related to the iron mobilization has been studied and the iron cycle has been reproduced at laboratory scale. In the first stage, the weathering phase, a residual sulfide mineral was bioleached using a mixed culture of iron-oxidizing bacteria isolated from the own substrate. The acid liquor obtained (pH 2), with a high metal concentration (160 mM in total iron), was filtered and neutralized. Solids obtained from the two sources (from the weathering process and after the neutralization stage) were characterized by X-ray and scanning electron microscope/energy dispersive X-ray spectroscopy, resulting ferric iron precipitates such as jarosites, goethites, and ferrihydrites with different crystalline properties. The contribution of ferric iron-reducing bacteria on the attenuation of high-content iron effluents was also studied. Mixed cultures of ferric iron-reducing bacteria, isolated from those acidic substrates, were active in reducing soluble ferric iron (60 mM in concentration), and a 66% of bioreduction was reached after 15 days. Dissimilatory ferric iron reduction has been achieved with adapted cultures at pH values from 7 to 4.  相似文献   

3.
Microbial ferric iron reduction, with organic carbon or hydrogen as the electron donor, is one of the most important biogeochemical processes in anoxic paddy soils; however, the diversity and community structure of hydrogen-dependent dissimilatory iron-reducers remain unknown. Potential H2-dependent Fe(III)-reducing bacteria in paddy soils were explored using enrichment cultures with ferrihydrite or goethite as the electron acceptor and hydrogen as the electron donor. Terminal restriction fragment length polymorphism (T-RFLP) analysis and cloning/sequencing were conducted to reveal bacterial community structure. Results showed that Geobacter and Clostridium were the dominant bacteria in the enrichment cultures. Fe(III) oxide mineral phases showed a strong effect on the community structure; Geobacter and Clostridium were dominant in the ferrihydrite treatment, while Clostridium spp. were dominant in the goethite treatment. These suggested that H2-dependent Fe(III)-reducing bacteria might be widely distributed in paddy soils and that besides Geobacter, Clostridium spp. might also be an important group of H2-dependent Fe(III)-reducing microorganisms.  相似文献   

4.
《Journal of plant nutrition》2013,36(10-11):2295-2305
Abstract

Five dry bean cultivars (Coco blanc, Striker, ARA14, SVM29‐21, and BAT477) were evaluated for their resistance to iron deficiency on the basis of chlorosis symptoms, plant growth, capacity to acidify the external medium and the root‐associated Fe3+‐reduction activity. Plants were grown in nutrient solution supplied or not with iron, 45 µM Fe(III)EDTA. For all cultivars, plants subjected to iron starvation exhibited Fe‐chlorosis. These symptoms were more severe and more precocious in BAT477 and Coco blanc than in the others cultivars. An important acidification of the culture medium was observed between the 4th and the 8th days of iron starvation in Striker, SVM29‐21 and, particularly, ARA14 plants. However, all Fe‐sufficient plants increased the nutrient solution pH. This capacity of acidification appeared more clearly when protons extrusion was measured in 10 mM KCl + 1 mM CaCl2. The above genotypic differences were maintained: ARA14 showed the higher acidification followed by Coco blanc and BAT477. Iron deficiency led also to an increase of the root‐associated Fe(III)‐reductase activity in all lines. However, genotypic differences were observed: Striker shows the highest capacity of iron reduction under Fe deficiency condition.  相似文献   

5.
To probe the effect of common coexist substances on the nitrate removal by polymeric resin supported nanoscale zero-valent iron composite (D201-nZVI), humic acid (HA) was added into the nitrate removal system to elaborate the different interactions between each two and among all in the system including HA, nitrate, and D201-nZVI. The results showed that the effect of HA on the reduction of nitrate by D201-nZVI was concentration-dependent. At low HA concentration (<?5 mg/L), HA coating formed by the HA adsorption on the surface of the nZVI particles enhanced the dispersion of the particles, which led to a more evenly distribution of nZVI particles in the solution, and thus a higher nitrate reduction activity. When HA concentration was increased to 5 mg/L or more, the competitive adsorption of HA and NO3? on the surfaces of the D201-nZVI dominated, and the nitrate removal rate and ammonia nitrogen production were decreased. When the HA concentration reached to a further high level (>?20 mg/L), HA acted as an electron shuttle to accelerate the reduction of Fe(III) to Fe(II) in the D201-nZVI, and thus the nitrate reduction rate was accordingly enhanced. The ammonia production increased by 24.8% at HA concentration of 40 mg/L as compared with that of the control (without addition of HA). This research elucidated the interaction of HA within different HA concentration in the complicate system of anions removal by organic support-nanoscale metal particle composite, which may shade some new light on the potential application of nanoscale zero-valent materials in the practical remediation of natural water.  相似文献   

6.

Purpose

The aims of this study were to isolate an alkaliphilic humus-reducing bacterium, investigate the fastest microbial reduction of humus analog as affected by different cultivation, and examine its ability for iron(III) oxide reduction and organochlorine pollutants (OCPs) degradation.

Materials and methods

A strain of pure culture, designated as HN01, was isolated from cassava dreg compost using anaerobic enrichment procedure with glucose as the electron donor and anthraquinone-2,6-disulphonate (AQDS) as the sole terminal electron acceptor. The isolate strain was identified using phenotypic and phylogenetic analysis. Iron(III) oxides and OCPs were chosen as potential electron acceptors. Strict anaerobic techniques and sterile conditions were applied throughout the incubation experiments, purged with O2-free N2 for 15 min. The concentration of reduced AQDS and Fe(II) was then quantified using a UV–vis spectrophotometer. The concentration of OCPs was analyzed by gas chromatography with a micro-electron capture detector. Cell number was determined by direct plate counting on aerobic Luria–Bertani medium agar medium at pH 9.

Results and discussion

(1) Strain HN01 was identified as Kocuria rosea, and the AQDS reduction by HN01 was observed in NaCl concentrations below 12 % (w/v) (optimum, 10 %) and pH ranges of 6.0–10.0 (optimum, 9.0) with sucrose as electron donor at 30 °C; (2) glucose, sucrose, methanol, ethanol, glycerol, and acetate were the favorable electron donors for AQDS reduction by strain HN01; (3) the strain had the ability of reducing iron(III) oxides in the presence of sucrose at pH 9.0 and its Fe(III)-reducing capacity ranked as goethite (α-FeOOH) > lepidocrocite (γ-FeOOH) > haematite(α-Fe2O3); and (4) the strain could effectively dechlorinate p,p′-DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane), and the dechlorination rate reached 71.3 %.

Conclusions

This is the first report of a strain of K. rosea capable of reducing AQDS, iron (III) oxides, and p,p′-DDT, which extends the diversity of the alkaliphilic and halotolerant humus/Fe(III)-reducing bacterium associated with dechlorination. The strain may have the potential to be used for bioremediation of an anoxic alkaline wastewater or site contaminated with OCPs.  相似文献   

7.
A greenhouse pot experiment was conducted with peanuts (Arachis hypogaea L., Fabceae) to evaluate iron compound fertilizers for improving within-plant iron content and correcting chlorosis caused by iron deficiency. Peanuts were planted in containers with calcareous soil fertilized with three different granular iron nitrogen, phosphorus and potassium (NPK) fertilizers (ferrous sulphate (FeSO4)–NPK, Fe–ethylendiamine di (o-hydroxyphenylacetic) (EDDHA)–NPK and Fe–citrate–NPK). Iron nutrition, plant biomass, seed yield and quality of peanuts were significantly affected by the application of Fe–citrate–NPK and Fe–EDDHA–NPK to the soil. Iron concentrations in tissues were significantly greater for plants grown with Fe–citrate–NPK and Fe–EDDHA–NPK. The active iron concentration in the youngest leaves of peanuts was linearly related to the leaf chlorophyll (via soil and plant analyzer development measurements) recorded 50 and 80 days after planting. However, no significant differences between Fe–citrate–NPK and Fe–EDDHA–NPK were observed. Despite the large amount of total iron bound and dry matter, FeSO4–NPK was less effective than Fe–citrate–NPK and Fe–EDDHA–NPK to improve iron uptake. The results showed that application of Fe–citrate–NPK was as effective as application of Fe–EDDHA–NPK in remediating leaf iron chlorosis in peanut pot-grown in calcareous soil. The study suggested that Fe–citrate–NPK should be considered as a potential tool for correcting peanut iron deficiency in calcareous soil.  相似文献   

8.
Chemical remediation of soil and groundwater containing hexavalent chromium (Cr(VI)) was carried out under batch and semi-batch conditions using different iron species: (Fe(II) (sulphate solution); Fe0 G (granulated elemental iron); ZVIne (non-stabilized zerovalent iron) and ZVIcol (colloidal zerovalent iron). ZVIcol was synthesized using different experimental conditions with carboxymethyl cellulose (CMC) and ultra-sound. Chemical analysis revealed that the contaminated soil (frank clay sandy texture) presented an average Cr(VI) concentration of 456?±?35 mg kg?1. Remediation studies carried out under batch conditions indicated that 1.00 g of ZVIcol leads to a chemical reduction of ~280 mg of Cr(VI). Considering the fractions of Cr(VI) present in soil (labile, exchangeable and insoluble), it was noted that after treatment with ZVIcol (semi-batch conditions and pH 5) only 2.5% of these species were not reduced. A comparative study using iron species was carried out in order to evaluate the reduction potentialities exhibited by ZVIcol. Results obtained under batch and semi-batch conditions indicate that application of ZVIcol for the “in situ” remediation of soil and groundwater containing Cr(VI) constitutes a promising technology.  相似文献   

9.
A method has been developed to consistently induce increases in root ferric chelate reductase activity in the fruit tree rootstock GF 677 (Prunus amygdalopersica) grown under iron (Fe) deficiency. Clonal GF 677 plants were grown hydroponically in a growth chamber with 0 or 90 μM Fe(III)‐EDTA. Root ferric chelate reductase activity was measured in vivo using BPDS. Plants grown without Fe developed visible symptoms of chlorosis and had lower root ferric chelate reductase activities than those grown with Fe. Root ferric chelate reductase activities were 0.1–1.9 and 0.6–5.3 nmol of Fe reduced per gram of fresh mass and minute, respectively, in Fe‐deficient and sufficient plants. However, when plants grown without Fe for several days were resupplied with 180 μM of Fe(III)‐EDTA, FC‐R activities increased within 1 day. The FC‐R values after Fe resupply were 20‐fold higher than those found in Fe‐deficient plants and 5‐fold higher than those found in the Fe‐sufficient controls. After three days of the Fe treatments the FC‐R activities had decreased again to the control values. The reduction of Fe was localized at the subapical root zone. In the conditions used we have found no decreases of the nutrient solution pH values, indicating that this type of response is not strong enough to be detected in peach tree rootstocks. Also, no major changes in root morphology have been found in response to Fe deficiency. This ferric chelate reductase induction protocol may be used in screening assays to select rootstock genotypes tolerant to Fe chlorosis.  相似文献   

10.
Salicylic acid (SA) and nitric oxide (NO), which are known as important signaling molecules in plants, could be promising compounds for the reduction in stress sensitivity. The aim of the present work was to study the physiological changes in peanut (Arachis hypogaea L.) seedlings grown in growth medium that contained 0.1 mM SA, 0.25 mM sodium nitroprusside (SNP, a NO donor), or in full (SA+SNP) or half [1/2 (SA+SNP)] combined strengths under iron (Fe) deficiency. After 21 days of treatment, Fe deficiency significantly inhibited peanut plant growth, destroyed photosynthetic system, and caused oxidative damages. Addition of SA, SNP, and 1/2 (SA+SNP), especially SA+SNP, alleviated the stress, increased the contents of chlorophylls, and promoted plant growth. They improved Fe uptake, transport, and availability in peanut plants by increasing the activities of H+-ATPase and ferric chelate reductase (FCR), and promoting Fe translocation from cell wall to cell organelle and soluble fraction in leaves. Furthermore, they also effectively mitigated oxidative damages by increasing the activities of antioxidant enzymes in peanut leaves and roots. The results from the present study indicate that application of SA, SNP, or 1/2 (SA+SNP) can overcome the adverse effect of Fe deficiency, but the combined application of SA+SNP is more effective in alleviating Fe deficiency stress.  相似文献   

11.
《Journal of plant nutrition》2013,36(8):1381-1393
Abstract

Root and leaf ferric chelate reductase (FCR) activity in Annona glabra L. (pond apple), native to subtropical wetland habitats and Annona muricata L. (soursop), native to nonwetland tropical habitats, was determined under iron (Fe)-sufficient and Fe-deficient conditions. One-year-old seedlings of each species were grown with 2, 22.5, or 45 µM Fe in a nutrient solution. The degree of tolerance of Fe deficiency was evaluated by determining root and leaf FCR activity, leaf chlorophyll index, Fe concentration in recently mature leaves, and plant growth. Root FCR activity was generally lower in soursop than in pond apple. Eighty days after plants were put in nutrient solutions, leaf FCR activity of each species was lower in plants grown with low Fe concentrations (2 µM) than in plants grown with high (22.5 or 45 µM) Fe concentrations in the nutrient solution. Leaves of pond apple grown without Fe became chlorotic within 6 weeks. The Fe level in the nutrient solution had no effect on fresh and dry weights of soursop. Lack of Fe decreased the leaf chlorophyll index and Fe concentration in recently matured leaves less in soursop than in pond apple. The rapid development of leaf chlorosis in low Fe conditions and low root and leaf FCR activities of pond apple are probably related to its native origin in wetland areas, where there is sufficient soluble Fe for adequate plant growth and development. The higher leaf FCR activity and slower growth rate of soursop compared to pond apple may explain why soursop did not exhibit leaf chlorosis even under low Fe conditions.  相似文献   

12.
Anaerobic benzene biodegradation was performed in batch experiments using Rhine River sediment as inoculum and amorphous Mn(IV) or Fe(III) as independent final electron acceptors. Benzene (4.5 μmol) was degraded in 80 and 710 days in batch experiments under Mn(IV) and Fe(III) reducing conditions, respectively. Highest benzene degradation rate, 0.07 μmol/day, was obtained under Mn (IV) reducing conditions, with soluble Mn(II) and CO2 recoveries of 71.5% and 93% regarding to the stoichiometric values, respectively. Likewise, benzene biodegradation was performed in a continuous column coupled to the reduction of Mn(IV). Efficiency of benzene biodegradation was up to 97% under steady state operation in a sediment column operated continuously for more than 160 days. The carbon dioxide and Mn(II) recoveries were 88% and 77%, respectively, of the theoretical ratio according to the stoichiometry for benzene biodegradation.  相似文献   

13.
Autotrophic microbial sulfate reduction was tested in a fixed-bed bench-scale column experiment to lower sulfate and iron loads in acid-mine-drainage-influenced groundwater. The microbial process was enhanced by injecting H2 gas as electron donor into the silicate bed. The experiments were performed at 2.5 atm and 10°C. Complete iron removal (3.8?±?0.3 mM) and partial sulfate removal from 17 to 9 mM were achieved at rates of about 0.004–0.019 mmol SO4 per liter per hour and at hydraulic retention times of 51.5–19.8 days. The tests showed that most microbial activity took place in immobile zones. These zones create stable environmental conditions for the microorganisms leading to constant reduction rate despite possibly unfavorable conditions prevailing in the mobile phase. Diffusion between mobile and the immobile zones was not found to be the limiting factor for sulfate reduction. Rather, low H2(aq) concentrations due to low H2 solubility combined with the inhomogeneous distribution of H2 gas in the pore space limited sulfate reduction. H2(aq) concentrations in some parts of the sediment body were insufficient to maintain H2(aq) concentrations in the immobile zones above the level of substrate limitation. Fe and S precipitated mostly as iron monosulfide and accumulated in regions with high H2(aq) availability. Calculations showed that the deposition of iron sulfide in the pore space does not affect the pore volume significantly.  相似文献   

14.

Purpose  

Microbial ferric iron reduction is an important biogeochemical process in nonsulfidogenic anoxic environments, yet the structure of microbial communities involved is poorly understood because of the lack of a functional gene marker. Here, with ferrihydrite as the iron source, we characterized the potential Fe(III)-reducing bacteria from the paddy soil in the presence of different short-chain fatty acids, formate, acetate, propionate, pyruvate, succinate, and citrate.  相似文献   

15.
The kinetics of Cr(Ⅵ) reduction by sulfide in soil suspensions with various pHs, soil compositions, and Fe(Ⅱ) concentrations was examined using batch anaeroblc experimental systems at constant temperature. The results showed that the reaction rate of Cr(Ⅵ) reduction was in the order of red soil 〈 yellow-brown soil 〈 chernozem and was proportional to the concentration of HCl-extractable iron in the soils. Dissolved and adsorbed iron in soil suspensions played an important role in accelerating Cr(Ⅵ) reduction. The reaction involved in the Cr(Ⅵ) reduction by Fe(Ⅱ) to produce Fe(ⅡI), which was reduced to Fe(Ⅱ) again by sulfide, could represent the catalytic pathway until about 70% of the initially present Cr(Ⅵ) was reduced. The catalysis occurred because the one-step reduction of Cr(Ⅵ) by sulfide was slower than the two-step process consisting of rapid Cr(Ⅵ) reduction by Fe(Ⅱ) followed by Fe(Ⅲ) reduction by sulfide. In essence, Fe(Ⅱ)/Fe(Ⅲ) species shuttle electrons from sulfide to Cr(Ⅵ), facilitating the reaction. The effect of iron, however, could be completely blocked by adding a strong Fe(Ⅱ)-complexing ligand, 1,10-phenanthroline, to the soil suspensions. In all the experiments, initial sulfide concentration was much higher than initial Cr(Ⅵ) concentration. The plots of In e[Cr(Ⅵ)] versus reaction time were linear up to approximately 70% of Cr(Ⅵ) reduction, suggesting a first-order reaction kinetics with respect to Cr(Ⅵ). Elemental sulfur, the product of sulfide oxidation, was found to accelerate Cr(Ⅵ) reduction at a later stage of the reaction, resulting in deviation from linearity for the In c[Cr(Ⅵ)] versus time plots.  相似文献   

16.
Productivity and sustainability of cacao (Theobroma cacao L.) in tropical soils are affected by levels of iron. Information is lacking on the cacao response to various sources of iron (Fe). A greenhouse experiment was conducted to evaluate the effects of five iron sources iron sulfate heptahydrate, ferric ethylenediamine-N,N’-bis(2-hydroxyphenylacetic acid), ferric diethylenetriaminepentaacetic acid, ferric ethylenediaminetetraacetic acid, fiesta herbicide (FeSO4 · 7H2O, FeEDDHA, FeDTPA, FeEDTA,) at 10 mg Fe kg?1 soil on growth, photosynthesis, content of photosynthetic pigments and starch and macro- and micronutrient nutrition of cacao. The various iron sources had significant effects on shoot and root dry biomass accumulation, leaf chlorophyll a and b content, carotenoid levels, SPAD index and PN. These parameters were significantly correlated with concentration, uptake, influx, and transport and use efficiency of Fe. In cacao net photosynthesis, stomatal conductance, internal carbon dioxide (CO2), and transpiration in leaf level responded differently to the sources of Fe. Invariably, macro and micronutrient uptake, influx, transport, and use efficiency showed differential responses to sources of iron but significant effects were only observed for copper (Cu), Fe, manganese (Mn), and zinc (Zn). Overall, FeDTPA, FeEDTA and FeHEDTA could be the best sources of Fe in improving, growth, photosynthesis and macro and micro nutrition of cacao.  相似文献   

17.
海绵铁缓解污水厌氧氨氧化反应器中硝酸盐积累的效果   总被引:1,自引:1,他引:0  
该文旨在通过向厌氧氨氧化反应器中投加海绵铁来减轻厌氧SBR(sequencingbatchreactoractivatedsludge process)反应器中的硝酸盐积累,试验研究了海绵铁与硝酸盐和亚硝酸盐在静态条件下的反应。在静态条件下,部分硝酸盐和亚硝酸盐被海绵铁还原成了氨。对比动态试验表明投加海绵铁可以将SBR出水硝酸盐质量浓度控制在25~30 mg/L左右。相同条件下不投加海绵铁出水硝酸盐质量浓度不断累积,直至超过55 mg/L。这可能是由于铁将硝酸盐还原为亚硝酸盐并与厌氧氨氧化进行了耦合。采用高通量测序发现投加海绵铁的反应器中厌氧氨氧化菌在微生物群落中所占的比例(22.55%)约为不投加反应器(8.85%)的3倍,表明投加海绵铁有利于反应器中厌氧氨氧化(ANAMMOX)菌的生长和厌氧氨氧化反应器的启动。  相似文献   

18.
《Journal of plant nutrition》2013,36(10-11):2243-2252
Abstract

A research was carried out to evaluate the leaves' ability to utilize Fe supplied as a complex with water‐extractable humic substances (WEHS) and the long‐distance transport of 59Fe applied to sections of fully expanded leaves of intact sunflower (Helianthus annuus L.) plants. Plants were grown in a nutrient solution containing 10 µM Fe(III)‐EDDHA (Fe‐sufficient plants), with the addition of 10 mM NaHCO3 to induce iron chlorosis (Fe‐deficient plants). Fe(III)‐WEHS could be reduced by sunflower leaf discs at levels comparable to those observed using Fe(III)‐EDTA, regardless of the Fe status. On the other hand, 59Fe uptake rate by leaf discs of green and chlorotic plants was significantly lower in Fe‐WEHS‐treated plants, possibly suggesting the effect of light on photochemical reduction of Fe‐EDTA. In the experiments with intact plants, 59Fe‐labeled Fe‐WEHS or Fe‐EDTA were applied onto a section of fully expanded leaves. Irrespective of Fe nutritional status, 59Fe uptake was significantly higher when the treatment was carried out with Fe‐EDTA. A significant difference was found in the amount of 59Fe translocated from treated leaf area between green and chlorotic plants. However, irrespective of the Fe nutritional status, no significant difference was observed in the absolute amount of 59Fe translocated to other plant parts when the micronutrient was supplied either as Fe‐EDTA or Fe‐WEHS. Results show that the utilization of Fe complexed to WEHS by sunflower leaves involves an Fe(III) reduction step in the apoplast prior to its uptake by the symplast of leaf cells and that Fe taken up from the Fe‐WEHS complexes can be translocated from fully expanded leaves towards the roots and other parts of the shoot.  相似文献   

19.
《Journal of plant nutrition》2013,36(10-11):1909-1926
Abstract

Phenolic substances in the soil–plant system can be oxidized by metal ions, inorganic components, molecular oxygen as well as by phenoloxidases, giving rise to the formation of products of low or high molecular weight. Interactions of these products with iron, in both reduced and oxidized form, can affect the iron mobility in soil and rhizosphere, and thus its availability to plants. Here we report the results of a study on the complexing and reducing activity of the oxidation products from caffeic acid (CAF), obtained via electrochemical means, towards Fe(III) and Fe(II) in aqueous solution in the 3.0–6.0 pH range. The HPLC analysis of the filtered solutions after the CAF oxidation showed the formation of two main groups of products: (i) CAF oligomers formed through radicalic reactions which do not involve the double bond of the CAF lateral chain and (ii) products where this bond is involved. These oxidation products (COP) were found to interact with both Fe(III) and Fe(II) with formation of soluble and insoluble Fe(III)‐, and Fe(II)‐COP complexes. The COP were found to be able to reduce Fe(III) to Fe(II) mainly at pH < 4.0. A low redox activity was observed at pH ≥ 4.5 due to Fe(III) hydrolysis reactions as well as to the decrease in the redox potential of the Fe(III)/Fe(II) couple. Formation of hydroxy Fe(III)‐COP polymers occurs at pH > 3.5.  相似文献   

20.
Lactic acid (LA) has been proposed to be an enhancer for dietary iron absorption, but contradictory results have also been reported. In the present study, fully differentiated Caco-2 cell monolayers were used to evaluate the effects of LA (1-50 mmol/L) on the cellular retention and transepithelial transport of soluble non-heme iron (as ferric nitrilotriacetate). Our data revealed a linear decline in Fe(III) retention with respect to the concentration of LA added. In the presence of 50 mmol/L LA, retention of Fe(III) and Fe(II) decreased 57% and 58%, respectively. In contrast, transfer of Fe(III) across the cell monolayer was doubled, while Fe(II) transfer across the cell monolayer decreased 35%. We conclude that LA reduces cellular retention and transepithelial transport of Fe(II) by Caco-2 cells in a dose-dependent manner. However, while LA also reduces retention of Fe(III) by Caco-2 cells, the transfer of Fe(III) across cell monolayers is enhanced, possibly due to effects on paracellular transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号