首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 308 毫秒
1.
Photochemical formation rates and sources of the hydroxyl (OH) radical were determined in dew water formed on the surface of Japanese red pine (Pinus densiflora) needles of declining (NO2 polluted area) and healthy pine stands at Mt. Gokurakuji located west of Hiroshima city in western Japan. The measured OH radical photoformation rates in dew water (n=10), which were normalized to the rate at midday on May 1 at 34°N, ranged from 0.67 to 5.18 µM h?1 (1M=1mol L?1). The mean value (2.69 µM h?1) was higher than that in dew water collected on a Teflon board and higher than the mean value in rain water published previously. Of the total OH radical formation rate observed in dew water on the pine needles, 16.4 % was estimated to originate from N (III) (NO2 ? and HNO2) and 24.6 % was estimated to originate from NO3 ?. There were other sources of OH radical photochemical formation in dew water on the pine needles besides photolysis of NO2 ? and NO3 ?.  相似文献   

2.

Purpose

Cover crop residue is generally applied to improve soil quality and crop productivity. Improved understanding of dynamics of soil extractable organic carbon (EOC) and nitrogen (EON) under cover crops is useful for developing effective agronomic management and nitrogen (N) fertilization strategies.

Materials and methods

Dynamics of soil extractable inorganic and organic carbon (C) and N pools were investigated under six cover crop treatments, which included two legume crops (capello woolly pod vetch and field pea), three non-legume crops (wheat, Saia oat and Indian mustard), and a nil-crop control (CK) in southeastern Australia. Cover crops at anthesis were crimp-rolled onto the soil surface in October 2009. Soil and crop residue samples were taken over the periods October?CDecember (2009) and March?CMay (2010), respectively, to examine remaining crop residue biomass, soil NH4 +?N and NO3 ??CN as well as EOC and EON concentrations using extraction methods of 2?M KCl and hot water. Additionally, soil net N mineralization rates were measured for soil samples collected in May 2010.

Results and discussion

The CK treatment had the highest soil inorganic N (NH4 +?N?+?NO3 ??CN) at the sampling time in December 2009 but decreased greatly with sampling time. The cover crop treatments had greater soil EOC and EON concentrations than the CK treatment. However, no significant differences in soil NH4 +?N, NO3 ??CN, EOC, EON, and ratios of EOC to EON were found between the legume and non-legume cover crop treatments across the sampling times, which were supported by the similar results of soil net N mineralization rates among the treatments. Stepwise multiple regression analyses indicated that soil EOC in the hot water extracts was mainly affected by soil total C (R 2?=?0.654, P?<?0.001), while the crop residue biomass determined soil EON in the hot water extracts (R 2?=?0.591, P?<?0.001).

Conclusions

The cover crop treatments had lower loss of soil inorganic N compared with the CK treatment across the sampling times. The legume and non-legume cover crop treatments did not significantly differ in soil EOC and EON pools across the sampling times. In addition, the decomposition of cover crop residues had more influence on soil EON than the decomposition of soil organic matter (SOM), which indicated less N fertilization under cover crop residues. On the other hand, the decomposition of SOM exerted more influence on soil EOC across the sampling times among the treatments, implying different C and N cycling under cover crops.  相似文献   

3.
Application of crop residues and its biochar produced through slow pyrolysis can potentially increase carbon (C) sequestration in agricultural production systems. The impact of crop residue and its biochar addition on greenhouse gas emission rates and the associated changes of soil gross N transformation rates in agricultural soils are poorly understood. We evaluated the effect of wheat straw and its biochar applied to a Black Chernozemic soil planted to barley, two growing seasons or 15 months (at the full-bloom stage of barley in the second growing season) after their field application, on CO2 and N2O emission rates, soil inorganic N and soil gross N transformation rates in a laboratory incubation experiment. Gross N transformation rates were studied using the 15N isotope pool dilution method. The field experiment included four treatments: control, addition of wheat straw (30 t ha?1), addition of biochar pyrolyzed from wheat straw (20 t ha?1), and addition of wheat straw plus its biochar (30 t ha?1 wheat straw + 20 t ha?1 biochar). Fifteen months after their application, wheat straw and its biochar addition increased soil total organic C concentrations (p?=?0.039 and <0.001, respectively) but did not affect soil dissolved organic C, total N and NH4 +-N concentrations, and soil pH. Biochar addition increased soil NO3 ?-N concentrations (p?=?0.004). Soil CO2 and N2O emission rates were increased by 40 (p?p?=?0.03), respectively, after wheat straw addition, but were not affected by biochar application. Straw and its biochar addition did not affect gross and net N mineralization rates or net nitrification rates. However, biochar addition doubled gross nitrification rates relative to the control (p?2 and N2O emissions and enhance soil C sequestration. However, the implications of the increased soil gross nitrification rate and NO3 ?-N in the biochar addition treatment for long-term NO3 ?-N dynamics and N2O emissions need to be further studied.  相似文献   

4.

Purpose

Nitrous oxide (N2O) production and reduction rates are dependent on the interactions with each other and it is therefore important to evaluate them within the context of simultaneously operating N2O emission and reduction. The objective of this study was to quantify the simultaneously occurring N2O emission and reduction across a range of subtropical soils in China, to gain a mechanistic understanding of potential N2O dynamics under the denitrification condition and their important drivers, and to evaluate the potential role of the subtropical soils as either sources or sinks of N2O through denitrification.

Materials and methods

Soils (45, from a range of different land uses and soil parent materials) were collected from the subtropical region of Jiangxi Province, China, and tested for their potential capacity for N2O emission and N2O reduction to N2 during denitrification. N2O emission and reduction were determined in a closed system under N2 headspace after the soils were treated with 200?mg?kg?1 NO 3 ? -N and incubation at 30?°C for 28?days. The soil physical and chemical properties, the temporal variations in headspace N2O concentration, and NO 3 ? -N and NH 4 + -N concentrations in the soil slurry were measured.

Results and discussion

Variations in N2O concentration (N) over incubation time (t) were consistent with an equation in which average R 2?=?0.84?±?0.11 (p?<?0.05): $ N = A \times \left( {1 - \exp \left( { - {k_1} \times t} \right)} \right) - B \times \exp \left( {{k_2} \times t} \right) $ , where A is the total N2O emission during the incubation, B is a constant, and k 1 and k 2 are the N2O emission constant and reduction constants, respectively. The results of the simulation showed that k 1 was greater than k 2. The reduced amount of NO 3 ? -N in the first 7?days of incubation and the N2O emission rate (the percentage of A value relative to the amount of NO 3 ? -N reduced during the 28-day incubation, R n) were able to explain 82.9?% (p?<?0.01) of the variation in total N2O emission (A) during the incubation for the soil samples studied, indicating that the total amount of N2O emitted was determined predominately by denitrification capacity. Soil organic carbon content and soil nitrogen mineralization are the key factors that determine differences in the amounts of reduced NO 3 ? -N among the soil samples. The R n value decreased with increasing k 2 (p?<?0.01), indicating that soils with higher N2O reduction capacity under these incubation conditions would emit less N2O per unit of denitrified NO 3 ? -N than the other soils. Results are valuable in the evaluation of net N2O emissions in the subtropical soils and the global N budget.

Conclusions

In a closed, anaerobic system, variations in N2O concentration in the headspace over the incubation time were found to be compatible with a nonlinear equation. Soil organic carbon and the amount of NH 4 + -N mineralized from the organic N during the first 7?days of incubation are the key factors that determine differences in the N2O emission constant (k 1), the N2O reduction constant (k 2), the total N2O emission during the incubation (A) and the N2O emission rate (R n).  相似文献   

5.
The efficiency of UV- and VUV-based processes (UV, VUV, UV/H2O2, and VUV/H2O2) for removal of sulfamethoxazole (SMX) in Milli-Q water and sewage treatment plant (STP) effluent was investigated at 20??C. The investigated factors included initial pH, variety of inorganic anions (NO 3 ? and HCO 3 ? ), and humic acid (HA). The results showed that the degradation of SMX in Milli-Q water at both two pH (5.5 and 7.0) followed the order of VUV/H2O2 > VUV > UV/H2O2 > UV. All the experimental data well fitted the pseudo-first order kinetic model and the rate constant (k) and half-life time (t 1/2) were determined accordingly. Indirect oxidation of SMX by generated ?OH was the main degradation mechanism in UV/H2O2 and VUV/H2O2, while direct photolysis predominated in UV processes. The quenching tests showed that some other reactive species along with ?OH radicals were responsible to the SMX degradation under VUV process. The addition of 20?mg?L?1 HA significantly inhibited SMX degradation, whereas, the inhibitive effects of NO 3 ? and HCO 3 ? (0.1?mol?L?1) were observed as well in all processes except in UV irradiation for NO 3 ? . The removal rate decreased 1.7?C3.6 times when applying these processes to STP effluent due to the complex constituents, suggesting that from the application point of view the constituents of these complexes in real STP effluent should be considered carefully prior to the use of UV-based processes for SMX degradation.  相似文献   

6.
The contribution of atmospheric acids to cation leaching from a podzolic soil under mature maple-birch forest in central Ontario was examined during 1983. The movement of base cations was associated largely with NO3 ?, SO4 2? and organic acid anions in surface soil horizons, with SO4 2? and NO3 ? below the effective rooting zone, and SO4 2? and HCO3 ? in streamflow. Mineral soil horizons could adsorb little additional SO4 2? or associated cations at current soil solution SO4 2? concentrations. Therefore it is concluded that the soil in situ lacks a strong affinity for SO4 2?. Current annual inputs to the forest of SO4 2? and NO3 ? in bulk precipitation (26.4 and 18.2 kg ha?1, equivalent to 8.8 kg S and 4.1 kg N ha?1 , respectively) contributed significantly to cation leaching from the soil. In order to maintain exchangeable cations in soil at current levels, a rate of weathering yielding 29.6, 5.0, 4.4 and 2.2 kg ha?1 yr?1 of Ca2+, Na+, Mg2+ and K+, respectively, would be required.  相似文献   

7.

Purpose

Soil respiration (R s) is controlled by abiotic soil parameters interacting with characteristics of the vegetation and the soil microbial community. Few studies have attempted a comprehensive approach that simultaneously addresses the roles of all the major factors known to influence R s. Our goal was to explore the links between heterogeneity in R s, aboveground plant biomass and belowground properties in three representative land-use types in a dry Mediterranean ecosystem: (1) a 150-year-old mixed Aleppo pine-kermes oak open forest, (2) an abandoned agricultural field, which was cultivated with cereal for several years until abandonment in 1980, when establishment of typical Mediterranean shrubland vegetation started and (3) a rain-fed olive grove, which has been cultivated for 100 years.

Materials and methods

We selected two distinctive sampling periods coinciding with annual minimum or near minimum (December) and maximum (April) rates of R s in this dry Mediterranean ecosystem. In each sampling period, R s, temperature and moisture, aboveground plant biomass, carbon (C) and nitrogen (N) contents in both light and heavy soil organic matter fractions, extractable dissolved organic C (EDOC), as well as microbial and fine root biomass were measured within each land-use type.

Results and discussion

Across sites, R s rates were significantly higher in April (3.07?±?0.1 μmol?m?2?s?1) than in December (1.30?±?0.1 μmol?m?2?s?1). The labile soil organic matter fractions (light fraction C and N contents, microbial biomass C and EDOC) were consistently and strongly related to one another, and to a lesser extent, to the C and N contents in the heavy fraction across sites and seasons. Linear models adequately explained a large proportion of the within-site variability in R s (R 2 values ranged from 41 to 91 % depending on land use and season) but major controls on R s differed considerably between sites and seasons. Primary controls on spatial patterns in R s were linked to recent plant-derived C inputs in both forest and olive grove sites. However, in the abandoned agricultural field site R s appeared to be mainly driven by microbial activity, which could be sustained by intermediate or recalcitrant C and N pools derived from previous land use.

Conclusions

Conversion of native woodland to agricultural land and subsequent land abandonment leads to profound changes in the relationships between R s, aboveground biomass and belowground properties in this dry Mediterranean ecosystem. While above- and belowground vegetation are the primary controls on spatial variability in labile soil C pools and R s in the open forest and olive grove sites, a complete lack of influence of current vegetation patterns on soil C pools and respiration rates in the abandoned agricultural field was observed.  相似文献   

8.
Alan Olness  B.W. Dewey 《Geoderma》1982,28(2):117-128
Fine-textured soil cores were saturated with KNO3 solutions, withdrawn at periodic in tervals and examined for mineral N forms. Reduction of NO3? was correlated with time using a first-order rate function. Instantaneous initial NO3?-N reduction rates were determined by taking derivatives of the rate function and setting t = 0. Duplicate experiments gave maximum NO3?-N reduction rates of 1.0 μ N/g soil/h or ? 100 kg NO3?-N/ha/day. Calculated NO3? reduction rates increased with depth down to 30 cm. Net NO3?-N reduction ceased between 48 and 96 h after which net NO3?-N production of 0.016 to 0.29 μg N/g soil/h (~1.5 kg N/ha/day/0 to 20 cm) occurred. Net NH4+-N mineralization ranged from about 0.03 to 0.05 μg N/g soil/h (3.5 to 4.0 kg N/ha/day/0 to 30 cm). Both instantaneous initial NO3?-N loss rates and N mineralization rates are similar to results of laboratory studies elsewhere on similar soil types. This procedure for estimating N-transformations may be useful where other techniques are either not adequate or not feasible for field use.  相似文献   

9.
Runoff from agricultural fields amended with animal manure or fertilizer is a source of phosphorus (P) pollution to surface waters, which can have harmful effects such as eutrophication. The objectives of this study were to evaluate the impact of soil P status and the P composition of manure sources on P in runoff and characterize the effects of manure sources on mass loss of dissolved reactive P, total dissolved P, and total P in runoff. Soil boxes set at 5% slopes received 7.5 cm h?1 of simulated rainfall for 30 min. Study soils included a Kenansville loamy sand (loamy siliceous subactive thermic Arenic Hapludults, a Coastal Plain soil) and a Davidson silt loam (kaolinitic thermic Rhodic Kandiudults, a Piedmont soil). Soil test P concentrations ranged from 16 to 283 mg P kg?1. Sources of P included broiler litter, breeder manure, and breeder manure treated with three rates of aluminum sulfate (Al2(SO4)3) 0, 3.9, and 7.8 kg m?2, di-ammonium phosphate (DAP), and an un-amended control. All manure sources were surface applied at 66 kg P ha?1 without incorporation. Water extractable P represented an average of 10 ± 6% total P in manure. Runoff samples were taken over a 30-min period. Piedmont soil contained greater amounts of clay, aluminum (Al), and iron (Fe) concentrations, and higher P sorption capacities that produced significantly lower dissolved reactive P, total dissolved P, and total P losses than the Coastal Plain soil. Runoff P loss did not differ significantly for low and high STP Coastal Plain soils. Water extractable P in manures accounted for all dissolved reactive P lost in runoff with dissolved reactive P correlating strongly with water extractable P concentration (r2 = 0.9961). Overall, manures containing the highest water extractable P concentrations contributed to the largest amounts of dissolved reactive P in runoff. Manure treated with 3.9 and 7.8 kg m?2 of Al2(SO4)3 (alum) decreased dissolved reactive P in runoff by 29%. While this soil box runoff study represents a worst-case scenario for P loss, highly significant effects of soil properties and manure sources were obtained. Management based on these results should help ameliorate harmful effects of P in runoff.  相似文献   

10.
A study was made of the formation of anaerobiosis in a waterlogged soil. A dilute soil suspension containing NO?3, Fe3+, sodium citrate, a limited amount of O2, and trace elements was used as a model of waterlogged soil. Polarography was used to detect dissolved O2, Fe3+ and Fe2+. The fates of the NO?3 and Fe3+ during and after O2 consumption by the microorganisms were studied in a specially designed vessel. A close correspondence was obtained between the reduction of NO?3, NO?2 and Fe3+ and the growth of denitrifying bacteria in the closed system employed. From the experimental results we presume that microorganisms which respire NO?3 are also capable of utilising Fe3+ in their respiration. The mechanisms of reduction of these chemical species by the microorganisms are also discussed, emphasising the possibility of the participation of chemical reduction of NO?2 by Fe2+ in the over-all reduction process.  相似文献   

11.
The soil nitrogen cycle was investigated for several watershed forests of which stream waters have distinctively different nitrate (NO3 ?) concentrations. In a watershed with stream water NO3 ? of more than 100 µM, soil NO3 ? content increased even beneath the rooting zone, revealing "nitrogen saturation" status. A laboratory soil experiment demonstrated that the proportion of net NO3 ? production to CO2 production was largely regulated by a soil C/N ratio, suggesting a key parameter for NO3 ? abundance. In the respective watershed soils, little nitrogen was actually present as NO3 ? above a soil C/N ratio of 20. The annual mean soil temperature recorded at the sites was correlated with a shift in the C/N ratio in watershed soils (a soil C/N ratio increase of 0.5 per 1°C decrease) along the stream NO3 ? gradient of 30 fold. The results suggest that soil microbial metabolisms affected by C/N ratio may be a direct agent regulating NO3 ? leaching from watersheds under the influence of an atmospheric nitrogen load and climate.  相似文献   

12.
Nitrogen dioxide (NO2) is one of the major atmospheric pollutants, and the concentration of NO2 is regarded as one of the indicators of air quality. In the past decades, China has experienced rapid economic growth and severe NO2 pollution to match. We evaluate the trends and spatiotemporal patterns of tropospheric NO2 over mainland China from 2005 to 2014 using vertical column density (VCD) datasets retrieved from the Ozone Monitoring Instrument (OMI). Results show that from 2005 to 2014, NO2 pollution regions have enlarged at the national scale, and high NO2 VCDs are mainly concentrated over highly populated regions in eastern China. The year 2011 is the turning point. Tropospheric NO2 VCDs first significantly increase by 0.19?×?1015 molec cm?2?year?1 (R 2?=?0.94, P?=?0.002) from 2005 to 2011, and then decrease by 0.21?×?1015 molec cm?2?year?1 (R 2?=?0.97, P?=?0.016) from 2011 to 2014. Since 2011, tropospheric NO2 VCDs over central-east China decrease remarkably. Tropospheric NO2 VCDs is higher in November (3.630?×?1015 molec/cm2), December (4.758?×?1015 molec/cm2), and January (4.863?×?1015 molec/cm2), while lower in July (1.684?×?1015 molec/cm2), August (1.627?×?1015 molec/cm2), and September (1.703?×?1015 molec/cm2), indicating that winter and spring are the most polluted seasons. Due to the huge gap in population density and industry development between western and eastern China, the spatial pattern of tropospheric NO2 VCDs shows large west-east difference.  相似文献   

13.
Scopoletin (hereafter SCO), an excellent candidate of acaricides, was discovered and developed in China. Photolysis kinetics of SCO in organic solvents and different aqueous media were investigated under 500W Xe lamp. Effects of five surfactants, nitrate (NO3?), nitrite (NO2?), and H2O2 on SCO photolysis and photodegradation pathways of SCO in aqueous were also studied. The results indicated that photolysis rate of SCO in organic solvents was in the sequence of acetone > ethyl acetate > methanol, and the corresponding half-lives were 9.63, 36.47, and 49.50 h, respectively. Photolysis rate of SCO in different aqueous media was in the sequence of pure water > river water > natural seawater, and the half-lives were 5.68, 6.66, and 7.79 h, respectively. The five kinds of surfactants, NO3?, and NO2? had significant photoquenching effects on photolysis of SCO, and H2O2 had photosensitization effects on photolysis of SCO. By separation and identification of photoproducts using LC/ESI-MS, it could be concluded that SCO was photolyzed through photorearrangement, photohydrolysis, and photooxidation of the molecule itself.  相似文献   

14.
Understanding the variables controlling biochemical oxygen demand (BOD) of effluents from agricultural systems is essential for predicting and managing the water quality risks associated with agricultural production. In this study, short- and long-term oxygen demand behaviors of waters from primarily agricultural sources and their relationships with other parameters were evaluated. A total of 46 water samples were generated from diverse organic sources commonly associated with agricultural activities and analyzed for BOD and other various water quality parameters. Short-term BOD (BOD2 and BOD5) were significantly correlated with total organic carbon (TOC), particulate organic carbon (POC), and dissolved organic carbon (DOC) (R 2?=?0.62–0.77, p?<?0.001), likewise to total nitrogen, total Kjeldahl nitrogen, and nitrite–nitrogen (NO2–N) (R 2?=?0.40–0.55, p?<?0.001). Long-term BOD (BOD60) was generally poorly correlated with these C and N fractions. Phosphate (PO4–P) exhibited a positive and linear relationship with both short- and long-term BOD, whereas chloride (Cl) tended to inhibit oxygen demand. Multivariate combinations of each of TOC, POC, and DOC with NO2–N, and Cl or PO4–P improved the predictions of both short- and long-term BOD. The ultimate BOD (BODu) derived from the first-order kinetics was highly correlated with BOD60 (R 2?=?0.81, p?<?0.001) whereas BOD60 was correlated with BOD5 (R 2?=?0.60, p?<?0.001). Overall the results indicated that C and N forms along with PO4–P and Cl were the dominant factors controlling the oxygen demand behaviors of agricultural effluents.  相似文献   

15.
We conducted a microcosm experiment with soil being sterilized, reinoculated with native microbial community and subsequently manipulated the bacterivorous nematodes, including three treatments: without (CK) or with introducing one species of the two bacterivores characterized with different body size but similar c-p (colonizer-persister) value (Rhabditis intermedia and Protorhabditis oxyuroides, accounted for 6 and 59% of bacterivores in initially undisturbed soil, respectively). We monitored the N2O and CO2 emissions, soil properties, and especially quantified gross N transformation rates using 15N tracing technique after the 50 days incubation. No significant differences were observed on soil NH4 + and NO3 ? concentrations between the CK and two bacterivores, but this was not the case for gross N transformation rates. In comparison to CK, R. intermedia did not affect soil N transformation rates, while P. oxyuroides significantly increased the rates of mineralization of organic N to NH4 +, oxidation of NH4 + to NO3 ?, immobilization of NO3 ? to organic N and dissimilatory NO3 ? reduction to NH4 +. Furthermore, the mean residence time of NH4 + and NO3 ? pool was greatly lowered by P. oxyuroides, suggesting it stimulated soil N turnover. Such stimulatory effect was unrelated to the changes in abundance of bacteria and ammonia-oxidizing bacteria (AOB). In contrast to CK, only P. oxyuroides significantly promoted soil N2O and CO2 emissions. Noticeably, bacterivores increased the mineralization of recalcitrant organic N but decreased soil δ13C-TOC and δ15N-TN values, in particular for P. oxyuroides. Combining trait-based approach and isotope-based analysis showed high potential in moving forward to a mechanistic understanding of bacterivore-mediated N cycling.  相似文献   

16.
Longitudinal and temporal variations in water chemistry were measured in several low-order, high-elevation streams in the Great Smoky Mountains to evaluate the processes responsible for the acid-base chemistry. The streams ranged in average base flow ANC from ?30 to 28 μeq L?1 and in pH from 4.54 to 6.40. Low-ANC streams had lower base cation concentrations and higher acid anion concentrations than did the high-ANC streams. NO3 ? and SO4 2? were the dominant acid anions. NO3 ? was derived from a combination of high leaching of nitrogen from old-growth forests and from high rates of atmospheric deposition. Streamwater SO4 2? was attributed to atmospheric deposition and an internal bedrock source of sulfur (pyrite). Although dissolved Al concentrations increased with decreasing pH in the study streams, the concentrations of inorganic monomeric Al did not follow the pattern expected from equilibrium with aluminum trihydroxide or aluminum silicate phases. During storm events, pH and ANC declined by as much as 0.5 units and 15 μeq L?1, respectively, at the downstream sites. The causes of the episodic acidification were increases in SO4 2? and DOC.  相似文献   

17.
Nitrogen dioxide gas was rapidly absorbed by soil. After a 15 min incubation at 25°C, soil at a moisture content of 16% absorbed 99% of the NO2 introduced into the gas-phase volume of a closed system. The presence of microorganisms hatl no influence on the rate of absorption of the gas by soil. The absorption of NO2 by sandy clay loam soil was not an oxygen- or temperature-dependent process nor did it depend upon the moisture content of the soil. These physical factors acquired significance only in determining the initial rate of absorption of the gas and the rate at which NO2 diffused through the soil. Exposure of soil to NO2 resulted in substantial increases in the levels of NO inf2 sup? N in the soil. Chemical oxidation of the NO inf2 sup? N resulted in an increase in NO inf3 sup? N levels. During a 14-day incubation, NO inf2 sup? N concentrations in sterile soil exposed to an atmosphere containing 100 μg ml?1 of NO2 decreased from 190 μg g?1 of soil to 105 μg g?1 with an accompanying increase in NO inf3 sup? N from 2 μg g? 1 to 63 μg g?1 of soil. Nitrogen dioxide severely inhibited the growth of both aerobic and anaerobic asymbiotic N2-fixing bacteria in soil. After a 48 h incubation at 25°C, soil aggregates exposed to an atmosphere containing 100 μg ml?1 of NO2 contained 88% and 98% fewer aerobic and anaerobic N2-fixing bacteria, respectively. C2H2-reduction measurements showed that nitrogenase synthesis and activity in artificial soil aggregates amended with 2% glucose were inhibited by 20% and 48%, respectively, when exposed to atmospheric concentrations of 35 and 3.5 μg ml?1 of NO2, respectively.  相似文献   

18.
In the present study, a three-dimensional Eulerian photochemical model was employed to estimate the impact that organic compounds have on tropospheric ozone formation in the Metropolitan Area of São Paulo (MASP). In the year 2000, base case simulations were conducted in two periods: August 22–24 and March 13–15. Based on the pollutant concentrations calculated by the model, the correlation coefficient relative to observations for ozone ranged from 0.91 to 0.93 in both periods. In the simulations employed to evaluate the ozone potential of individual VOCs, as well as the sensitivity of ozone to the VOC/NO x emission ratio, the variation in anthropogenic emissions was estimated at 15% (according to tests performed previously variations of 15% were stable). Although there were significant differences between the two periods, ozone concentrations were found to be much more sensitive to VOCs than to NO x in both periods and throughout the study domain. In addition, considering their individual rates of emission from vehicles, the species/classes that were most important for ozone formation were as follows: aromatics with a kOH?>?2?×?104 ppm?1 min?1; olefins with a kOH?<?7?×?104 ppm?1 min?1; olefins with a kOH?>?7?×?104 ppm?1 min?1; ethene; and formaldehyde, which are the principal species related to the production, transport, storage and combustion of fossil fuels.  相似文献   

19.
An intensive survey of mercury speciation was performed at a site on the Upper St. Lawrence River near Cornwall, Ontario, Canada with a history mercury contamination in sediments. Surface sediments were collected every 1.50 h. Total mercury (Hgtotal), methylmercury (MeHg), organic carbon, inorganic and organic sulphur were determined in the solid fraction. Dissolved Hgtotal, MeHg and dissolved organic carbon (DOC) were measured in pore waters. Concentrations of Hgtotal in the upper layers (first 5 cm) were high, ranging from 1.42 to 25.8 nmol g?1 in solids and from 125 to 449 pM in pore waters. MeHg levels were also high, ranging from 4.34 to 34.1 pmol g?1 in solids and from 40 to 96 pM in pore waters. This amounts to up to 1.4% of Hgtotal present as MeHg in solids and 64% in pore waters. A daily pattern for Hgtotal was observed in the solid fraction. The MeHg distribution in solids and pore waters was not correlated with Hgtotal or DOC, suggesting that the concentrations of MeHg are probably more influenced by the relative rates of methylation/demethylation reactions in the sediment–water interface. Acid volatile sulphide levels and DOC were inversely correlated with organic sulphur (Sorg) levels suggesting that both parameters are involved in the rapid production of Sorg. A positive correlation was also observed between Hgtotal and Sorg in solids (R?=?0.87, p?<?0.01) illustrating the importance of organic sulphur in the retention and distribution of Hg in the solid fraction of the sediments. The results suggest that variations of Hgtotal concentrations in Upper St. Lawrence River surface sediments were strongly influenced by the formation/deposition/retention of organic sulphur compounds in the sediment–water interface.  相似文献   

20.
The effect of organic amendments and irrigation management in the field were studied with respect to Eh, NO3?, and soluble organic C concentrations in the soil solution, and gaseous concentrations of N2O, CO2, and the ratio N2 to O2. Duplicate plots were treated with fresh bovine manure as follows: control 45t·ha?1, 180 t·ha?1 with a standard irrigation cycle (SI), and 180 t·ha?1 with a double irrigation (DI). Samples to 230cm were obtained at several depths in each profile during the 84-day study. The general order for treatment effects upon CO2 concentrations and soluble C was the same: SI > DI > 45 t·ha?1 > control. The order for N2/O2 was 180 t·ha?1 (SI and DI) > 45 t·ha?1 and control. The order for both N2O and NO?1 was the same: 45 t.ha?1 and DI > SI and control. The most important factor affecting N2O concentrations was the NO3? concentration; soil solution concentrations greater than 16 μN·ml?1 had much higher frequencies of high N2O concentrations. The sequential reduction of NO?13→ N2O → N2 was noted in all treatments by the following observations: (i) the concentrations of both NO?3 and N2O were highest at the beginning of the experiment; (ii) the concentrations of CO2 and N2/O2 were higher near the end: (iii) sub-ambient concentrations of N2O were more frequent near the end of the study. Use of N2O as an indicator of denitrification is cautioned since one of the highest manured treatments (SI) had N2O concentrations no different than the control, but had much higher CO2 and N2/O2 concentrations and more reduced (Eh) conditions. We conclude that use of a single irrigation method is far superior to the double irrigation method with respect to reducing losses of NO3? and N2O and for conserving organic N arid water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号