首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relationship between soil CO2 concentrations and forest-floor CO2 effluxes   总被引:3,自引:2,他引:3  
To better understand the biotic and abiotic factors that control soil CO2 efflux, we compared seasonal and diurnal variations in simultaneously measured forest-floor CO2 effluxes and soil CO2 concentration profiles in a 54-year-old Douglas fir forest on the east coast of Vancouver Island. We used small solid-state infrared CO2 sensors for long-term continuous real-time measurement of CO2 concentrations at different depths, and measured half-hourly soil CO2 effluxes with an automated non-steady-state chamber. We describe a simple steady-state method to measure CO2 diffusivity in undisturbed soil cores. The method accounts for the CO2 production in the soil and uses an analytical solution to the diffusion equation. The diffusivity was related to air-filled porosity by a power law function, which was independent of soil depth. CO2 concentration at all depths increased with increase in soil temperature, likely due to a rise in CO2 production, and with increase in soil water content due to decreased diffusivity or increased CO2 production or both. It also increased with soil depth reaching almost 10 mmol mol−1 at the 50-cm depth. Annually, soil CO2 efflux was best described by an exponential function of soil temperature at the 5-cm depth, with the reference efflux at 10 °C (F10) of 2.6 μmol m−2 s−1 and the Q10 of 3.7. No evidence of displacement of CO2-rich soil air with rain was observed.Effluxes calculated from soil CO2 concentration gradients near the surface closely agreed with the measured effluxes. Calculations indicated that more than 75% of the soil CO2 efflux originated in the top 20 cm soil. Calculated CO2 production varied with soil temperature, soil water content and season, and when scaled to 10 °C also showed some diurnal variation. Soil CO2 efflux and concentrations as well as soil temperature at the 5-cm depth varied in phase. Changes in CO2 storage in the 0–50 cm soil layer were an order of magnitude smaller than measured effluxes. Soil CO2 efflux was proportional to CO2 concentration at the 50-cm depth with the slope determined by soil water content, which was consistent with a simple steady-state analytical model of diffusive transport of CO2 in the soil. The latter proved successful in calculating effluxes during 2004.  相似文献   

2.
Analyses of the spatial and temporal variations in the natural abundance of 13C are frequently employed to study transformations of plant residues and soil organic matter turnover on sites where long continued vegetation with the C3-type photosynthesis pathway has been replaced with a C4-type vegetation (or vice versa). One controversial issue associated with such analyses is the significance of isotopic fractionation during the microbial turnovers of C in complex substrates. To evaluate this issue, C3-soil and quartz sand were amended with maize residues and with faeces from sheep feed exclusively on maize silage. The samples were incubated at 15 °C for 117 days (maize residues) or 224 days (sheep faeces). CO2 evolved during incubation was trapped in NaOH and analysed for C isotopic contents. At the end of incubation, 63 and 50% of the maize C was evolved as CO2 in the soil and sand, respectively, while 32% of the faeces C incubated with soil and with sand was recovered as CO2. Maize and faeces showed a similar decomposition pattern but maize decomposed twice as fast as faeces. The δ13C of faeces was 0.3‰ lower than that of the maize residue (δ13C −13.4‰), while the δ13C of the C3-soil used for incubation was −31.6‰. The δ13C value of the CO2 recovered from unamended C3-soil was similar or slightly lower (up to −1.5‰) than that of the C3-soil itself except for an initial flush of 13C enriched CO2. The δ13C values of the CO2 from sand-based incubations typically ranged −15‰ to −17‰, i.e. around −3‰ lower than the δ13C measured for maize and faeces. Our study clearly demonstrates that the decomposition of complex substrates is associated with isotopic fractionation, causing evolved CO2 to be depleted in 13C relative to substrates. Consequently the microbial products retained in the soil must be enriched in 13C.  相似文献   

3.
A new principle for measuring soil CO2 efflux at constant ambient concentration is introduced. The measuring principle relies on the continuous absorption of CO2 within the system to achieve a constant CO2 concentration inside the soil chamber at ambient level, thus balancing the amount of CO2 entering the soil chamber by diffusion from the soil. We report results that show reliable soil CO2 efflux measurements with the new system. The novel measuring principle does not disturb the natural gradient of CO2 within the soil, while allowing for continuous capture of the CO2 released from the soil. It therefore holds great potential for application in simultaneous measurements of soil CO2 efflux and its δ13C, since both variables show sensitivity to a distortion of the soil CO2 profile commonly found in conventional chamber techniques.  相似文献   

4.
Soil compaction and soil moisture are important factors influencing denitrification and N2O emission from fertilized soils. We analyzed the combined effects of these factors on the emission of N2O, N2 and CO2 from undisturbed soil cores fertilized with (150 kg N ha−1) in a laboratory experiment. The soil cores were collected from differently compacted areas in a potato field, i.e. the ridges (ρD=1.03 g cm−3), the interrow area (ρD=1.24 g cm−3), and the tractor compacted interrow area (ρD=1.64 g cm−3), and adjusted to constant soil moisture levels between 40 and 98% water-filled pore space (WFPS).High N2O emissions were a result of denitrification and occurred at a WFPS≥70% in all compaction treatments. N2 production occurred only at the highest soil moisture level (≥90% WFPS) but it was considerably smaller than the N2O-N emission in most cases. There was no soil moisture effect on CO2 emission from the differently compacted soils with the exception of the highest soil moisture level (98% WFPS) of the tractor-compacted soil in which soil respiration was significantly reduced. The maximum N2O emission rates from all treatments occurred after rewetting of dry soil. This rewetting effect increased with the amount of water added. The results show the importance of increased carbon availability and associated respiratory O2 consumption induced by soil drying and rewetting for the emissions of N2O.  相似文献   

5.
The effects of enriched CO2 atmosphere on partitioning of recently assimilated carbon were investigated in a plant-soil-microorganism system in which Lolium perenne seedlings were planted into cores inserted into the resident soil within a sward that had been treated with elevated CO2 for 9 consecutive years, under two N fertilisation levels (Swiss FACE experiment). The planted cores were excavated from the ambient (35 Pa pCO2) and enriched (60 Pa pCO2) rings at two dates, in spring and autumn, during the growing season. The cores were brought back to the laboratory for 14C labelling of shoots in order to trace the transfer of recently assimilated C both within the plant and to the soil and microbial biomass. At the spring sampling, high N supply stimulated shoot and total dry matter production. Consistently, high N enhanced the allocation of recently fixed C to shoots, and reduced it to belowground compartments. Elevated CO2 had no consequences for DM or the pattern of C allocation. At the autumn sampling, at high N plot, yield of L. perenne was stimulated by elevated CO2. Consistently, 14C was preferentially allocated aboveground and, consequently belowground recent C allocation was depressed and rhizodeposition reduced. At both experimental periods, total soil C content was similar in all treatments, providing no evidence for soil carbon sequestration in the Swiss Free Air CO2 Enrichment experiment (FACE) after 9 years of enrichment. Recently assimilated C and soil C were mineralised faster in soils from enriched rings, suggesting a CO2-induced shift in the microbial biomass characteristics (structure, diversity, activity) and/or in the quality of the root-released organic compounds.  相似文献   

6.
Sources of CO2 efflux from soil and review of partitioning methods   总被引:7,自引:0,他引:7  
Five main biogenic sources of CO2 efflux from soils have been distinguished and described according to their turnover rates and the mean residence time of carbon. They are root respiration, rhizomicrobial respiration, decomposition of plant residues, the priming effect induced by root exudation or by addition of plant residues, and basal respiration by microbial decomposition of soil organic matter (SOM). These sources can be grouped in several combinations to summarize CO2 efflux from the soil including: root-derived CO2, plant-derived CO2, SOM-derived CO2, rhizosphere respiration, heterotrophic microbial respiration (respiration by heterotrophs), and respiration by autotrophs. These distinctions are important because without separation of SOM-derived CO2 from plant-derived CO2, measurements of total soil respiration have very limited value for evaluation of the soil as a source or sink of atmospheric CO2 and for interpreting the sources of CO2 and the fate of carbon within soils and ecosystems. Additionally, the processes linked to the five sources of CO2 efflux from soil have various responses to environmental variables and consequently to global warming. This review describes the basic principles and assumptions of the following methods which allow SOM-derived and root-derived CO2 efflux to be separated under laboratory and field conditions: root exclusion techniques, shading and clipping, tree girdling, regression, component integration, excised roots and insitu root respiration; continuous and pulse labeling, 13C natural abundance and FACE, and radiocarbon dating and bomb-14C. A short sections cover the separation of the respiration of autotrophs and that of heterotrophs, i.e. the separation of actual root respiration from microbial respiration, as well as methods allowing the amount of CO2 evolved by decomposition of plant residues and by priming effects to be estimated. All these methods have been evaluated according to their inherent disturbance of the ecosystem and C fluxes, and their versatility under various conditions. The shortfalls of existing approaches and the need for further development and standardization of methods are highlighted.  相似文献   

7.
To determine the sum of ‘direct’ and ‘indirect’ effects of climatic change on enchytraeid activity and C fluxes from an organic soil we assessed the influence of temperature (4, 10 and 15 °C incubations) on enchytraeid populations and soil CO2 and CH4 fluxes over 116 days. Moisture was maintained at 60% of soil dry weight during the experimental period and measurements of enchytraeid biomass and numbers, and CO2 and CH4 fluxes were made after 3, 16, 33, 44, 65, 86 and 116 days. Enchytraeid population numbers and biomass increased in all temperature treatments with the greatest increase produced at 15 °C (to over threefold initial values by day 86). Results also showed that enchytraeid activity increased CO2 fluxes by 10.7±4.5, 3.4±4.0 and 26.8±2.6% in 4, 10 and 15 °C treatments, respectively, with the greatest CO2 production observed at 15 °C for the entire 116 day incubation period (P<0.05). The soil respiratory quotient analyses at lower temperatures (i.e. 4-10 °C) gave a Q10 of 1.7 and 1.9 with and without enchytraeids, respectively. At temperatures above 10 °C (i.e. 10-15 °C) Q10 significantly increased (P<0.01) and was 25% greater in the presence of enchytraeids (Q10=3.4) than without (Q10=2.6). In contrast to CO2 production, no significant relationships were observed between net CH4 fluxes and temperature and only time showed a significant effect on CH4 production (P<0.01).Total soil CO2 production was positively linked with enchytraeid biomass and mean soil CO2-C production was 77.01±6.05 CO2-C μg mg enchytraeid tissue−1 day−1 irrespective of temperature treatment. This positive relationship was used to build a two step regression model to estimate the effects of temperature on enchytraeid biomass and soil CO2 respiration in the field. Predictions of potential CO2 production were made using enchytraeid biomass data obtained in the field from two upland grassland sites (Sourhope and Great Dun Fell at the Moor House Nature Reserve, both in the UK). The findings of this work suggest that a 5 °C increase in atmospheric temperature above mean ambient temperature could have the potential to produce a significant increase in enchytraeid biomass resulting in a near twofold increase in soil CO2 release from both soil types. The interaction between temperature and soil biology will clearly be an important determinant of soil respiration responses to global warming.  相似文献   

8.
Soil respiration represents the integrated response of plant roots and soil organisms to environmental conditions and the availability of C in the soil. A multi-year study was conducted in outdoor sun-lit controlled-environment chambers containing a reconstructed ponderosa pine/soil-litter system. The study used a 2×2 factorial design with two levels of CO2 and two levels of O3 and three replicates of each treatment. The objectives of our study were to assess the effects of long-term exposure to elevated CO2 and O3, singly and in combination, on soil respiration, fine root growth and soil organisms. Fine root growth and soil organisms were included in the study as indicators of the autotrophic and heterotrophic components of soil respiration. The study evaluated three hypotheses: (1) elevated CO2 will increase C assimilation and allocation belowground increasing soil respiration; (2) elevated O3 will decrease C assimilation and allocation belowground decreasing soil respiration and (3) as elevated CO2 and O3 have opposing effects on C assimilation and allocation, elevated CO2 will eliminate or reduce the negative effects of elevated O3 on soil respiration. A mixed-model covariance analysis was used to remove the influences of soil temperature, soil moisture and days from planting when testing for the effects of CO2 and O3 on soil respiration. The covariance analysis showed that elevated CO2 significantly reduced the soil respiration while elevated O3 had no significant effect. Despite the lack of a direct CO2 stimulation of soil respiration, there were significant interactions between CO2 and soil temperature, soil moisture and days from planting indicating that elevated CO2 altered soil respiration indirectly. In elevated CO2, soil respiration was more sensitive to soil temperature changes and less sensitive to soil moisture changes than in ambient CO2. Soil respiration increased more with days from planting in elevated than in ambient CO2. Elevated CO2 had no effect on fine root biomass but increased abundance of culturable bacteria and fungi suggesting that these increases were associated with increased C allocation belowground. Elevated CO2 had no significant effect on microarthropod and nematode abundance. Elevated O3 had no significant effects on any parameter except it reduced the sensitivity of soil respiration to changes in temperature.  相似文献   

9.
A Lagrangian experiment was conducted over Iowa during the daytime (9:00–17:30 LT) on June 19, 2007 as part of the North American Carbon Program's Mid-Continent Intensive using a light-weight and operationally flexible aircraft to measure a net drawdown of CO2 concentration within the boundary layer. The drawdown can be related to net ecosystem exchange when anthropogenic emissions are estimated using a combination of the Vulcan fossil fuel emissions inventory coupled with a source contribution analysis using HYSPLIT. Results show a temporally and spatially averaged net CO2 flux of −9.0 ± 2.4 μmol m−2 s−1 measured from the aircraft data. The average flux from anthropogenic emissions over the measurement area was 0.3 ± 0.1 μmol CO2 m−2 s−1. Large-scale subsidence occurred during the experiment, entraining 1.0 ± 0.2 μmol CO2 m−2 s−1 into the boundary layer. Thus, the CO2 flux attributable to the vegetation and soils is −10.3 ± 2.4 μmol m−2 s−1. The magnitude of the calculated daytime biospheric flux is consistent with tower-based eddy covariance fluxes over corn and soybeans given existing land-use estimates for this agricultural region. Flux values are relatively insensitive to the choice of integration height above the boundary layer and emission footprint area. Flux uncertainties are relatively small compared to the biospheric fluxes, though the measurements were conducted at the height of the growing season.  相似文献   

10.
研究表明黄土区土壤CO2释放具有一定特殊性。从当日清晨至次日晨土壤CO2释放量呈由高至低再变高的规律,其变化趋势大体与温度变化一致,但时间上有一定滞后性。土壤CO2释放量有明显季节变化,夏季日释放量最高,秋季次之,冬季最低。不同覆被土壤CO2释放量存在差异,裸地释放量较高。CO2释放量对土质变化敏感,致密土壤则释放量小。  相似文献   

11.
The closed-jar incubation method is widely used to estimate the mineralization of soil organic C. There are two C pools (i.e., organic and inorganic C) in calcareous soil. To evaluate the effect of additional carbonates on CO2 emission from calcareous soil during closed-jar incubation, three incubation experiments were conducted by adding different types (CaCO3 and MgCO3 ) and amounts of carbonate to the soil. The addition of carbonates significantly increased CO2 emission from the soil; the increase ranged from 12.0% in the CaCO3 amended soil to 460% in the MgCO3 amended soil during a 100-d incubation. Cumulative CO2 production at the end of the incubation was three times greater in the MgCO3 amended soil compared to the CaCO3 amended one. The CO2 emission increased with the amount of CaCO3 added to the soil. In contrast, CO2 emission decreased as the amount of MgCO3 added to the soil increased. Our results confirmed that the closed-jar incubation method could lead to an overestimate of organic C mineralization in calcareous soils. Because of its effect on soil pH and the dissolution of carbonates, HgCl2 should not be used to sterilize calcareous soil if the experiment includes the measurement of soil CO2 production.  相似文献   

12.
The effects of compaction on soil porosity and soil water relations are likely to influence substrate availability and microbial activity under fluctuating soil moisture conditions. We conducted a short laboratory incubation to investigate the effects of soil compaction on substrate availability and biogenic gas (CO2 and N2O) production during the drying and rewetting of a fine-loamy soil. Prior to initiating the drying and wetting treatments, CO2 production (−10 kPa soil water content) from uncompacted soil was 2.3 times that of compacted soil and corresponded with higher concentrations of microbial biomass C (MBC) and dissolved organic C (DOC). In contrast, N2O production was 67 times higher in compacted than uncompacted soil at field capacity. Soil aeration rather than substrate availability (e.g. NO3 and DOC) appeared to be the most important factor affecting N2O production during this phase. The drying of compacted soil resulted in an initial increase in CO2 production and a nearly two-fold higher average rate of C mineralization at maximum dryness (owing to a higher water-filled pore space [WFPS]) compared to uncompacted soil. During the drying phase, N2O production was markedly reduced (by 93-96%) in both soils, though total N2O production remained slightly higher in compacted than uncompacted soil. The increase in CO2 production during the first 24 h following rewetting of dry soil was about 2.5 times higher in uncompacted soil and corresponded with a much greater release of DOC than in compacted soil. MBC appeared to be the source of the DOC released from uncompacted soil but not from compacted soil. The production of N2O during the first 24 h following rewetting of dry soil was nearly 20 times higher in compacted than uncompacted soil. Our results suggest that N2O production from compacted soil was primarily the result of denitrification, which was limited by substrates (especially NO3) made available during drying and rewetting and occurred rapidly after the onset of anoxic conditions during the rewetting phase. In contrast, N2O production from uncompacted soil appeared to be primarily the product of nitrification that was largely associated with an accumulation of NO3 following rewetting of dry soil. Irrespective of compaction, the response to drying and rewetting was greater for N2O production than for CO2 production.  相似文献   

13.
Tillage and wind effects on soil CO2 concentrations in muck soils   总被引:1,自引:0,他引:1  
Rising atmospheric carbon dioxide (CO2) concentrations from agricultural activities prompted the need to quantify greenhouse gas emissions to better understand carbon (C) cycling and its role in environmental quality. The specific objective of this work was to determine the effect of no-tillage, deep plowing and wind speeds on the soil CO2 concentration in muck (organic) soils of the Florida Everglades. Miniature infrared gas analyzers were installed at 30 cm and recorded every 15 min in muck soil plowed with the Harrell Switch Plow (HSP) to 41 cm and in soil Not Tilled (NT), i.e., not plowed in last 9 months. The soil CO2 concentration exhibited temporal dynamics independent of barometric pressure fluctuations. Loosening the soil resulted in a very rapid decline in CO2 concentration as a result of “wind-induced” gas exchange from the soil surface. Higher wind speeds during mid-day resulted in a more rapid loss of CO2 from the HSP than from the NT plots. The subtle trend in the NT plots was similar, but lower in magnitude. Tillage-induced change in soil air porosity enabled wind speed to affect the gas exchange and soil CO2 concentration at 30 cm, literally drawing the CO2 out of the soil resulting in a rapid decline in the CO2 concentration, indicating more rapid soil carbon loss with tillage. At the end of the study, CO2 concentrations in the NT plots averaged about 3.3% while that in the plowed plots was about 1.4%. Wind and associated aerodynamic pressure fluctuations affect gas exchange from soils, especially tilled muck soils with low bulk densities and high soil air porosity following tillage.  相似文献   

14.
CO2 treatment level control and CO2 use are reported for free-air carbon dioxide enrichment (FACE) facility operations at the University of Arizona's Maricopa Agricultural Center in 1990 and 1991. These are required for evaluation of the validity of biological experiments conducted in four replicates of paired experimental and control plots in a large cotton field and the cost-effectiveness of the plant fumigation facility. Gas concentration was controlled to 550 γmol mol-1 at the center of each experimental plot, just above the canopy. In both years, season-long (April–September) average CO2 levels during treatment hours (05:00–19:00 h Mountain Standard Time) were 550 γmol mol−1 measured at treatment plot centers when the facility was operating. Including downtime, the season average was 548 γmol mol−1 in 1991. In 1990, the season averages for the four elevated CO2 treatments varied from 522 to 544 γmol mol−1, owing to extended periods of downtime after lightning damage. Ambient CO2 concentration during treatment was 370 γmol mol−1. Instantaneous measurements of CO2 concentration were within 10% of the target concentration of 550 γmol mol−1 more than 65% of the time when the facility was operating, and 1 min averages were within 10% of the target concentration for 90% of the time. The long-term average of CO2 concentration measured over the 20 m diameter experimental area of one array at the height of the canopy was in the range 550–580 γmol mol−1 during July 1991, with the higher values near the edges. In 1991, CO2 demand averaged 1250 kg per array per 14 h treatment day, or 4 kg m−2 of fumigated plant canopy. The FACE facility provided good temporal and spatial control of CO2 concentration and was a cost-effective method for large-scale field evaluations of the biological effects of CO2.  相似文献   

15.
【目的】以向日葵为研究材料,探讨其在CO2浓度升高条件下修复铜(Cu)污染土壤的效率以及对比CO2与螯合剂联合诱导下向日葵对铜污染土壤修复效率的差异,并筛选出对CO2浓度升高响应显著的品种,以期为利用植物修复铜污染土壤提供数据支撑。【方法】 在设置两个CO2浓度的人工气候室内(正常浓度370 mol/mol和升高浓度800 mol/mol),采用完全随机设计的盆栽土培试验,通过5个不同品种的向日葵,向铜污染水平为100mg/kg的土壤上施加不同浓度EDTA和DTPA,研究CO2浓度与螯合剂联合施用对向日葵修复铜污染土壤效率的影响。【结果】 1)不同螯合剂用量对铜污染土壤的浸提效果显著不同,根据螯合剂浸提土壤铜的高含量低毒性效应,选取EDTA 3 mmol/kg土和DTPA 5 mmol/kg土作为螯合剂的施加剂量。2)施入螯合剂后,CO2浓度升高一定程度上缓解了向日葵的失绿、 失水,增加了食葵3号和阿尔泰2号的总生物量,但降低了食葵4号和阿尔泰1号的总生物量。3)在相同CO2浓度下,加入螯合剂后明显提高土壤pH值,且DTPA处理的增幅明显高于EDTA处理。CO2浓度升高处理虽对土壤pH值有影响,但CO2施肥与不施肥处理间五个品种的土壤pH值无显著差异。4)试验选用的5个品种中,食葵4号、 阿尔泰1号在CO2浓度升高后,向日葵地上部蓄铜量明显降低;食葵3号、 油生引2号在CO2浓度升高后,向日葵地上部蓄铜量略有升高;阿尔泰2号在二氧化碳浓度升高后,向日葵地上部蓄铜量明显升高。CO2与DTPA 5 mmol/kg土联合施用, 5个品种向日葵茎叶内铜含量较对照增加239%~646%;铜蓄积量较对照增加230%~362%。二氧化碳与EDTA 3 mmol/kg 联合施用时,EDTA的活化作用未达到最佳效果,对5个品种向日葵茎、 叶内铜含量的影响不一致。【结论】CO2浓度升高一定程度上可以增强向日葵的抗性。在100 mg/kg铜污染土壤上,阿尔泰2号对二氧化碳浓度升高的反应最敏感,同时二氧化碳与螯合剂联合施用时,螯合剂可能是影响土壤pH值变化的主要因子。在铜污染水平为100 mg/kg的土壤上,与EDTA施用量为3 mmol/kg土相比,5 mmol/kg土的DTPA与CO2联合施用的修复效果更好。  相似文献   

16.
The response of terrestrial ecosystems to elevated atmospheric CO2 is related to the availability of other nutrients and in particular to nitrogen (N). Here we present results on soil N transformation dynamics from a N-limited temperate grassland that had been under Free Air CO2 Enrichment (FACE) for six years. A 15N labelling laboratory study (i.e. in absence of plant N uptake) was carried out to identify the effect of elevated CO2 on gross soil N transformations. The simultaneous gross N transformation rates in the soil were analyzed with a 15N tracing model which considered mineralization of two soil organic matter (SOM) pools, included nitrification from NH4+ and from organic-N to NO3 and analysed the rate of dissimilatory NO3 reduction to NH4+ (DNRA). Results indicate that the mineralization of labile organic-N became more important under elevated CO2. At the same time the gross rate of NH4+ immobilization increased by 20%, while NH4+ oxidation to NO3 was reduced by 25% under elevated CO2. The NO3 dynamics under elevated CO2 were characterized by a 52% increase in NO3 immobilization and a 141% increase in the DNRA rate, while NO3 production via heterotrophic nitrification was reduced to almost zero. The increased turnover of the NH4+ pool, combined with the increased DNRA rate provided an indication that the available N in the grassland soil may gradually shift towards NH4+ under elevated CO2. The advantage of such a shift is that NH4+ is less prone to N losses, which may increase the N retention and N use efficiency in the grassland ecosystem under elevated CO2.  相似文献   

17.
针对中国FACE(Free Air CO2 Enrichment)平台的镇籼96、扬稻8号、II优084和扬两优6号四种水稻品种,采用新一代高通量测序技术,研究了水稻根系内生菌的整体微生物群落对未来大气CO2浓度升高的响应。结果表明,水稻内生菌群落中γ-变形菌纲的肠杆菌科相对丰度最高,占整体微生物群落的30.8%~59.8%。对于镇籼96、扬稻8号和II优084三种水稻品种,大气CO2浓度升高可能抑制了数量上占优势的微生物菌群(优势菌群)生长,而促进了数量上不占优势的微生物菌群(稀少菌群)繁殖。例如,对于II优084品种,相对丰度高于14.6%的4种水稻内生菌为肠杆菌科、假单胞菌科、黄单胞菌科和气单胞菌科,大气CO2浓度升高,这些优势菌群的相对丰度由74.8%降为67.2%;相反,稀少菌群主要由鞘脂杆菌科、丛毛单胞菌科、黄杆菌科及草酸杆菌科组成,其相对丰度则由4.13%增至16.9%,其中,与对照处理相比,鞘脂杆菌科相对丰度增加比例高达344倍,是大气CO2浓度升高的最敏感微生物类群。但对于水稻品种扬两优6号,根系内生菌对大气CO2浓度升高的响应模式与其他它三种品种不完全一致。这些研究结果表明,微生物的相对丰度可能是影响水稻根系内生菌对大气CO2浓度升高响应的重要因素,为研究全球变化下整体微生物结构与功能的演变规律提供了一定的依据。  相似文献   

18.
Fixation of N by biological soil crusts and free-living heterotrophic soil microbes provides a significant proportion of ecosystem N in arid lands. To gain a better understanding of how elevated CO2 may affect N2-fixation in aridland ecosystems, we measured C2H2 reduction as a proxy for nitrogenase activity in biological soil crusts for 2 yr, and in soils either with or without dextrose-C additions for 1 yr, in an intact Mojave Desert ecosystem exposed to elevated CO2. We also measured crust and soil δ15N and total N to assess changes in N sources, and δ13C of crusts to determine a functional shift in crust species, with elevated CO2. The mean rate of C2H2 reduction by biological soil crusts was 76.9±5.6 μmol C2H4 m−2 h−1. There was no significant CO2 effect, but crusts from plant interspaces showed high variability in nitrogenase activity with elevated CO2. Additions of dextrose-C had a positive effect on rates of C2H2 reduction in soil. There was no elevated CO2 effect on soil nitrogenase activity. Plant cover affected soil response to C addition, with the largest response in plant interspaces. The mean rate of C2H2 reduction in soils either with or without C additions were 8.5±3.6 μmol C2H4 m−2 h−1 and 4.8±2.1 μmol m−2 h−1, respectively. Crust and soil δ15N and δ13C values were not affected by CO2 treatment, but did show an effect of cover type. Crust and soil samples in plant interspaces had the lowest values for both measurements. Analysis of soil and crust [N] and δ15N data with the Rayleigh distillation model suggests that any plant community changes with elevated CO2 and concomitant changes in litter composition likely will overwhelm any physiological changes in N2-fixation.  相似文献   

19.
Peatlands play an important role in emissions of the greenhouse gases CO2, CH4 and N2O, which are produced during mineralization of the peat organic matter. To examine the influence of soil type (fen, bog soil) and environmental factors (temperature, groundwater level), emission of CO2, CH4 and N2O and soil temperature and groundwater level were measured weekly or biweekly in loco over a one-year period at four sites located in Ljubljana Marsh, Slovenia using the static chamber technique. The study involved two fen and two bog soils differing in organic carbon and nitrogen content, pH, bulk density, water holding capacity and groundwater level. The lowest CO2 fluxes occurred during the winter, fluxes of N2O were highest during summer and early spring (February, March) and fluxes of CH4 were highest during autumn. The temporal variation in CO2 fluxes could be explained by seasonal temperature variations, whereas CH4 and N2O fluxes could be correlated to groundwater level and soil carbon content. The experimental sites were net sources of measured greenhouse gases except for the drained bog site, which was a net sink of CH4. The mean fluxes of CO2 ranged between 139 mg m−2 h−1 in the undrained bog and 206 mg m−2 h−1 in the drained fen; mean fluxes of CH4 were between −0.04 mg m−2 h−1 in the drained bog and 0.05 mg m−2 h−1 in the drained fen; and mean fluxes of N2O were between 0.43 mg m−2 h−1 in the drained fen and 1.03 mg m−2 h−1 in the drained bog. These results indicate that the examined peatlands emit similar amounts of CO2 and CH4 to peatlands in Central and Northern Europe and significantly higher amounts of N2O.  相似文献   

20.
间伐对杉木林土壤CO2通量的影响   总被引:1,自引:0,他引:1  
Forest management is expected to influence soil CO2 efflux (FCO2) as a result of changes in microenvironmental conditions, soil microclimate, and root dynamics. Soil FCO2 rate was measured during the growing season of 2006 in both thinning and non-thinning locations within stands ranging from 0 to 8 years after the most recent thinning in Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantations in Huitong Ecosystem Research Station, Hunan, China. Soil temperature and moisture were also measured to examine relationships between FCO2 and soil properties. Forest thinning resulted in huge changes in FCO2 that varied with time since cutting. Immediately following harvest (year 0) FCO2 in thinning area increased by about 30%, declined to 20%-27% below pre-cutting levels during years 4-6, and recovered to pre-cutting levels at 8 years post-cutting. A similar temporal pattern, but with smaller changes, was found in non-thinning locations. The initial increase in FCO2 could be attributed to a combination of root decay, soil disturbance, and increased soil temperature in gaps, while the subsequent decrease and recovery to the death and gradual regrowth of active roots. Strong effects of soil temperature and soil water content on FCO2 were found. Forest thinning mainly influenced FCO2 through changes in tree root respiration, and the net result was a decrease in integrated FCO2 flux through the entire felling cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号