首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Twenty-eight primiparous sows were used to determine the effect of litter size on the growth of mammary glands and nursing pigs during lactation. Litter size was set to 6, 7, 8, 9, 10, 11, or 12 pigs by cross-fostering immediately after birth. Four sows were allotted to each litter-size group. Sows were allowed to consume a daily maximum of 13.6 Mcal ME and 46.3 g of lysine during lactation. Sows were slaughtered on d 21 (20.6+/-1.1) of lactation. Mammary glands were collected at slaughter and trimmed of skin and the extraneous fat pad. Each gland was separated, weighed, and ground for chemical analysis. Dry matter, dry fat-free tissue (DFFT), crude protein, ash, and DNA contents were measured. Only glands known to have been nursed were included in the data set. Wet and dry weights and the amounts of DFFT, protein, DNA, ash, and fat in individual nursed mammary glands linearly decreased (P<.05) as litter size increased. Percentages of DFFT, protein, and DNA were quadratically affected (P<.05) by litter size on d 21 of lactation. Total mammary wet and dry weights and total DFFT, protein, DNA, fat, and ash amount of all nursed mammary glands of each sow were increased as litter size increased (P<.05). Changing litter size from 6 to 12 pigs resulted in 2,098, 432, 253, 227, 4.4, 178, and 20 g increases in the amounts of total mammary wet weight, dry weight, DFFT, protein, DNA, fat, and ash, respectively, on d 21 of lactation. Litter weight gain was 18.1 kg greater in sows with 12 pigs than in sows with 6 pigs. Sows with a larger litter size had a greater increase in total mass of mammary gland tissue and litter weight but had lower growth of individual nursed mammary glands and individual pigs than sows with the smaller litter size. The need for nutrients to support additional mammary gland and litter growth as litter size increases should be considered when estimating nutrient requirements for lactating sows. Sows need an additional .96 g lysine per day to account for mammary gland growth for each pig added to a litter.  相似文献   

2.
During lactation in the sow, mammary glands that are not regularly suckled undergo regression. This study characterizes the regression of unsuckled mammary glands and how that regression is affected by dietary nutrients and litter size. Sixty-nine primiparous sows were fed one of four diets containing combinations of two protein levels (32 or 65 g lysine/d) and two energy levels (12 or 17.5 Mcal ME/d) during lactation. Litter size was adjusted to 10. Sows were killed on d 0, 5, 10, 14, 21, or 28 of lactation. In another experiment, twenty-eight primiparous sows were allotted to have different litter sizes and were killed on d 21 of lactation. The day before slaughter, teat order of each litter was observed. After death, mammary glands were removed and dissected. Skin and extraneous fat pads were removed from the mammary glands and individual glands were separated. Each gland was weighed, cut in half to measure cross-sectional area, and ground for chemical analysis. The amounts of dry tissue, protein, fat, ash, and DNA were measured. Only glands observed to be unsuckled were included in the results. Regression of unsuckled mammary glands occurred rapidly during the first 7 to 10 d of lactation, as indicated by a decline in wet weight, dry weight, protein, fat, DNA, and cross-sectional area. The rate of regression was slowed after the early lactation period. The rate of regression of unsuckled glands was affected by dietary nutrient levels. Dietary energy level affected (P < 0.05) the decline in wet and dry weights, protein, fat and DNA content, and cross-sectional area, whereas dietary protein level affected (P < 0.05) the decline in dry weight and fat content. At d 5 of lactation, the wet weight of unsuckled mammary glands in sows fed the high-energy high-protein diet was 91% greater (P < 0.05) than in sows fed the low-energy low-protein diet. Effects of litter size on size and composition of unsuckled glands were not significant by d 21 of lactation. Unsuckled mammary glands regress rapidly during early lactation, and the rate of regression is affected by dietary nutrient intake.  相似文献   

3.
This study was conducted to determine the effect of reduced lactation length and supplemental milk replacer (MR) during high ambient temperatures. Thirty nine primiparous and 100 multiparous sows (PIC, Franklin, KY, C-22) were used in a 2 x 2 x 2 factorial arrangement of treatments. Treatments consisted of two lactation room temperatures (21 degrees C [TN] and 32 degrees C [HOT]), two lactation lengths (14 or 19 d), and two parity groups (primiparous, multiparous). Pigs were either: 1) sow-reared to 19 d or 2) sow-reared to 14 d, and then reared to 19 d with MR after sow removal. All sows were fed the same diet (1.07% lysine, 3,366 kcal of ME/kg). Sows were weighed and ultrasound for backfat thickness (BF) and longissimus muscle area (LMA) within 6 h after farrowing and at the time of sow removal (d 14 or 19). Pigs were individually weighed at weaning (d 19) and after a 47-d nursery period (d 66). Heat stress increased sow weight loss (-13.35 kg, P < 0.01) and decreased sow feed intake (4.63 kg/d, P < 0.01) during lactation compared with sows in TN (+4.5 kg and 7.5 kg/d, respectively). Early weaning (d 14) during heat stress decreased maternal weight loss (-10.1 vs. -16.6 kg, P < 0.01). Primiparous sows lost more BF in both environments (-2.60 vs. -1.56 mm, P < 0.05), and both parity groups lost more BF (-3.35 vs. -2.3 mm, P < 0.10) and LMA (-1.82 vs. -0.77 cm2, P < 0.05) when lactating for 19 d in the HOT environment than those lactating for 14 d. Pigs nursing primiparous and multiparous sows in the HOT environment and provided MR had heavier individual 19-d weights (7.37 and 8.12 kg/ pig, respectively) than those nursing to 19 d (5.57 and 6.04 kg/pig, P < 0.01). Milk replacer decreased the difference normally observed in 19-d weights between primiparous and multiparous sow-reared pigs in TN. Pigs fed MR in both environments and nursing multiparous sows had improved weight gains in the nursery compared with pigs nursing sows to 19 d (428 vs. 406 g/d, respectively; P < 0.01), or reared by primiparous sows (444 vs. 390 g/d , respectively; P < 0.01). Sow weaning on d 14 in the HOT environment decreased the wean-to-estrus interval in primiparous sows (22.8 vs. 9.2 d, P < 0.10). This study shows the benefit of early weaning in combination with milk replacer to preserve the sow and to restore pig weaning weights and nursery end weights under heat stress.  相似文献   

4.
Ninety-one primiparous and multiparous sows and their pigs were used to evaluate the effects of a novel carbohydrate- and protein-based feed ingredient (Nutri-Pal, NP) on sow and litter performance during lactation. Nutri-Pal is a feed supplement for sows that consists of a blend of milk chocolate, brewer's yeast, whey products, and glucooligosaccharides. The dietary treatments consisted of a corn-soybean meal control and a corn-soybean meal plus 5% NP fed from d 110 of gestation to weaning. The diets were formulated to be equal in total Lys and ME. Sows were allotted to treatment based on parity, body weight, and the date of d 110 of gestation. There were 46 and 45 sows per treatment over four farrowing groups. Litters were standardized to 10 pigs and weighed within 1 d of farrowing, and all sows weaned at least 8 pigs at an average age of 21 d. Sows were weighed on d 110 of gestation, d 1 postfarrowing, and at weaning. Sows were fed three times daily during lactation. Sows were checked twice daily after weaning for signs of estrus. The weaning weight of sows fed NP was increased (P < 0.10) compared with those fed the control diet. Sows fed the control diet tended (P = 0.11) to lose more weight per day from d 110 of gestation to weaning than the sows fed NP. Otherwise, sow response variables (sow weight on d 110 of gestation and d 1 postfarrowing, d 110 of gestation to d 1 postfarrowing and lactation weight change per day, d 110 of gestation to d 1 postfarrowing, lactation, and total feed intake, days to estrus, pigs born alive or dead, and litter and average pig birth weight) were not affected (P > 0.10) by diet. There were no effects (P > 0.10) of diet on litter performance response variables (pigs weaned, litter and average pig weaning weight and gain, and survival percent). The NP feed ingredient had minor effects on sow productivity, but it did not affect litter productivity indices.  相似文献   

5.
Twenty-four primiparous sows were used to determine the extent of mammary gland growth during lactation. Litter size was set to nine or 10 pigs immediately after birth. Sows were slaughtered in groups representing d 0 (within 12 h after farrowing), 5, 10, 14, 21, and 28 of lactation. Sows were provided 17.5 Mcal ME and 65 g of lysine per day during lactation. Mammary glands were collected at slaughter and trimmed of skin and extraneous fat pad. Each gland was weighed, cut in half to measure cross-sectional area, and ground for chemical analysis. Dry matter content, dry fat-free tissue (DFFT) content, protein content, amino acids composition, ash content, and DNA content were measured. Only glands known to have been suckled were included in these data. Wet and dry tissue weight; cross-sectional area; and the amount of DFFT, tissue protein, and amino acids in each suckled mammary gland increased (P < .05) during lactation to a peak on d 21. Fat percentage of each suckled gland declined (P < .05) and the percentage of protein and DFFT increased (P < .05) as lactation progressed. These results suggest that hypertrophy occurred in the tissue during lactation. There was a linear increase in the amount and percentage of DNA during lactation (P < .05), suggesting hyperplasia of the mammary tissue. Mammary tissue growth continues in suckled glands during lactation in sows, with gland wet weight increased by 55% and total gland DNA increased by 100% between d 5 and 21 of lactation.  相似文献   

6.
Effect of nutrient intake on mammary gland growth in lactating sows   总被引:2,自引:0,他引:2  
Sixty-one primiparous sows were used to determine the response of mammary gland growth to different energy and protein intakes during lactation. After birth, litter size was set to 9 or 10 pigs. Sows were slaughtered at selected times up to 30 d of lactation. Individual sows were fed one of four diets that were combinations of different amounts of energy and protein (3.0 Mcal ME and 8.0 g lysine/kg diet; 3.0 Mcal ME and 16.2 g lysine/kg diet; 3.5 Mcal ME and 6.4 g lysine/kg diet; or 3.5 Mcal ME and 13.0 g lysine/kg diet). Mammary glands were collected at slaughter and trimmed of skin and the extraneous fat pad. Each gland was weighed, cut in half to measure cross-sectional area, ground, and stored at -20 degrees C for chemical analysis. Frozen, ground tissue was used to determine dry matter, dry fat-free tissue (DFFT), total tissue protein, ash, and DNA content. Only glands known to have been suckled were included in this data set. Response surface regression was used for statistical analysis. The percentage of protein, fat, ash, and DNA in each suckled mammary gland was affected only by total energy intake (P<.05). The percentage of dry tissue and fat decreased as the total energy consumed during lactation increased, whereas the percentage of protein and DFFT increased as total energy intake increased. There were quadratic effects (P<.05) of both total energy and protein intake on wet weight, dry weight, protein amount, DFFT amount, and DNA amount of each suckled mammary gland during lactation. This study shows that mammary gland growth is affected by nutrient intake during lactation. The weight of suckled mammary glands and the amount of mammary tissue protein, DFFT, and total DNA were maximal on d 27.5 of lactation when sows had consumed an average of 16.9 Mcal of ME and 55 g of lysine per day during lactation. Provision of adequate amounts of nutrients to sows during lactation is important for achieving maximal growth of mammary glands and maximal milk production.  相似文献   

7.
This study on primiparous sows was designed to 1) determine the impact of nursing a large litter on LH secretion and follicular development, and 2) investigate the metabolic adaptations by which milk yield increases with litter size. At farrowing, crossbred, primiparous sows were assigned to 1 of 3 experimental groups differing in litter size and feed allowance. Sows with 13 or 14 piglets (13AL, n = 7) were fed ad libitum. Sows with 7 piglets were fed ad libitum (7AL, n = 6) or were feed-restricted (7R, n = 8). The restriction was based on the estimated energy deficiency for the 13AL sows. On d 9 +/- 1 of lactation, a jugular catheter was surgically implanted. Serial blood samplings and glucose tolerance tests were performed in mid- and late lactation. Sows were slaughtered 3 d after weaning, and ovarian characteristics were recorded. During lactation, the 7AL sows lost no or little body reserves, and their estimated energy balance was near zero. The 13AL and 7R sows exhibited similar negative energy balances and similar losses of backfat and estimated lipid content. Litter growth rate was greater (P < 0.05) in the 13AL than in the 7AL and 7R groups. After weaning, the volume of the largest 14 follicles was smaller (P < 0.05) in sows nursing 13 or 14 piglets than in sows with 7 piglets. Plasma concentrations of LH and LH pulse frequency did not differ between groups (P > 0.1). The longer glucose half-life on d 16 than on d 27 of lactation (22.5 vs. 18.8 min; P < 0.05) indicated a lower glucose tolerance in mid- than in late lactation. The area under the insulin curve was greater in the 7AL than in the 13AL sows (P = 0.08) and intermediate in the 7R group, with no differences in glucose profiles. This led to the suggestion that the 7AL sows were more resistant to insulin than the 13AL sows. In all groups of sows, follicular development after weaning was correlated with LH secretion in midlactation. Active follicular development was associated with prolonged secretion of insulin in response to glucose challenge. Our results show that besides litter size, a sow's metabolic status in lactation influences follicular maturation after weaning and also indicate that the metabolic adaptations by which primiparous sows nursing large litters increase litter growth rate and body reserve mobilization do not involve an accentuated peripheral insulin resistance.  相似文献   

8.
Sows of differing parities and genetics were used at different locations to determine the effects of feeding added L-carnitine during lactation on sow and litter performance. In Exp. 1, sows (n = 50 PIC C15) were fed a lactation diet (1.0% total lysine, .9% Ca, and .8% P) with or without 50 ppm of added L-carnitine from d 108 of gestation until weaning (d 21). No differences in litter weaning weight, survivability, sow ADFI, or sow weight and last rib fat depth change were observed. Number of pigs born alive in the subsequent farrowing were not different (P>.10). In Exp. 2, parity-three and -four sows (n = 115 Large White cross) were used to determine the effect of feeding 0, 50, 100, or 200 ppm of added L-carnitine during lactation (diet containing .9% total lysine, 1.0% Ca, and .8% P) on sow and litter performance. No improvements in the number of pigs or litter weights at weaning were observed (P>.10). Sows fed added L-carnitine had increased weight loss (linear; P<.04), but no differences (P>.10) were observed in last rib fat depth change or subsequent reproductive performance. In Exp. 3, first-parity sows (n = 107 PIC C15) were fed a diet with or without 50 ppm of added L-carnitine during lactation (diet containing 1.0% total lysine). Sows fed added L-carnitine tended (P<.10) to have fewer stillborn and mummified pigs than controls (.42 vs .81 pigs). No differences were observed for litter weaning weight, survivability, or subsequent farrowing performance. Feeding 50 to 200 ppm of added L-carnitine during lactation had little effect on sow and litter performance.  相似文献   

9.
The aim of this study was to investigate the effect of dietary fibre on reproductive performance during the first two parities. Gilts were randomly allocated to receive three fibrous diets from days 1-90 of gestation, including low fibre [low fiber (LF), 10.8% neutral detergent fiber (NDF), n=132], middle fibre [middle fiber (MF), 15.8% NDF, n=132] and high fibre diet (HF, 20.8% NDF, n=135), until completion of the second parity. Response criteria included backfat measurements, litter size and pig weight at parturition and day 22 of lactation, weaning-oestrus-interval, oestrus rate, sow farrowing and culling rate, uniformity of newborns and relative organ weights. The results showed sows fed LF diet in parity 1 gained more backfat (p<0.05) during gestation but lost more (p<0.05) during lactation than sows fed HF diet. Furthermore, sows fed LF diet farrowed more pigs (+0.7-1.1 pigs, p<0.05) and pigs born alive (+1.0 pigs, p<0.05) relative to sows fed HF diet. Likewise, sows fed LF and MF diets had greater litter weights at parturition (both p=0.06) and day 22 after lactation (both p<0.05). In parity 2, yet, it was MF diet to increase both total pigs born and pigs born alive (+0.9-1.1 pigs, p<0.05) and litter weight (p=0.05) relative to other diets. After 22 d of lactation, intriguingly, sows fed HF diet had most pigs alive (p<0.01-0.07) and heavier litter weight (p=0.07 or 0.2). Feeding HF diet also increased internal organs weight of newborns (p<0.05). Collectively, feeding LF and MF diets had beneficial effects on litter weight at parturition and day 22 of lactation in parity 1, and feeding MF diet until parity 2 was able to improve litter size and weight at parturition, but this positive effect disappeared after 22 days of lactation, instead feeding HF diet showed the optimal litter performance.  相似文献   

10.
A cooperative study, using 231 primiand multiparous crossbred sows from six experiment stations (IN, KS, MI, MN, ND, and OH), was conducted to determine the effects of elevating dietary valine concentration in corn-soybean meal diets on lactational performance of sows nursing large litters. Crossbred sows were fed diets containing a minimum of .60% lysine during gestation. Sows were allotted at farrowing to four dietary valine concentrations, .80, .95, 1.10, and 1.25%. Crystalline L-valine replaced cornstarch to maintain a constant ratio of corn:soybean meal across diets. Dietary lysine, provided by corn, soybean meal, and .15% crystalline L-lysine x HCl, was .90% in all diets. Sows were allowed ad libitum access to feed. Sows were weighed within 24 h after farrowing, and all litters were adjusted to > or = 10 pigs/litter by d 2 following farrowing. Average sow parity, number of pigs on d 2, and lactation length for the four treatments were, respectively, 2.3, 2.3, 2.3, 2.5; 10.9, 10.8, 10.8, 10.7; and 25.1, 24.5, 25.2, 25.0 d. The ADFI during lactation was 5.87, 5.77, 5.87, and 5.74 kg (P > .50); hence, valine intakes were 41, 48, 55, and 61 g/d (linear, P < .01). Lysine intake ranged from 51.5 to 52.7 g/d (P > .50). Sow weight after farrowing averaged 198 kg (P > .60). Overall pig survival to weaning was high (>92%), and the number of pigs weaned (10.1, 10.3, 10.3, 10.3) did not differ (P > .30) among treatments. Litter weaning weights (73.6, 73.6, 74.5, 72.6 kg), litter weight gains (55.1, 55.1, 56.0, 54.1 kg), sow weight change during lactation (-4.9, -5.4, -4.8, -6.3 kg), and return-to-estrus interval (7.5, 6.4, 6.9, 8.2 d) were not affected (P > .30) by dietary valine. There were no station x treatment interactions (P > .50). These results indicate no benefit of elevated dietary valine for lactating sows nursing > or = 10 pigs and consuming a corn-soybean meal diet containing .90% lysine and .80% valine.  相似文献   

11.
Pregnant sow nutrition has potential effects on the muscle fiber development of progeny in utero. A total of 199 Landrace x Large White sows from parities 0 to 6 and their offspring were used to evaluate the effects of increasing the feeding amount during midpregnancy on the muscle tissue, growth performance, and meat quality of the progeny. The experiment was divided into 2 study replicates, and in each replicate, sows were assigned to 1 of the 2 treatments: 1) sows in the control group (C sows) were fed 2.5 to 3.0 kg/d (feed: 12.1 MJ of ME/kg and 0.62% lysine) throughout gestation; and 2) sows in the high group (H sows) received an extra feed allowance of 1.5 kg/d for gilts and 2.0 kg/d for multiparous sows above the C amount from d 45 to 85 of gestation (period of secondary muscle fiber formation). Sow backfat was recorded on d 40 and 85 of gestation. Sow performance (litter size and piglet BW) at farrowing and on d 18 of lactation was measured. At weaning, pigs were divided into 5 BW groups/treatment, and progeny growth performance was measured during the nursery (n = 958) and the growing-finishing (n = 636) periods. At slaughter, carcass and meat quality traits (lean content, main cut weight, pH, Minolta color, and drip loss) were recorded from the second lightest group at weaning (BW group 4; n = 90), and samples from the longissimus thoracis muscle were taken to study muscle fiber characteristics (n = 70). The extra nutrition from d 45 to 85 of gestation did not lead to differences in litter size or piglet BW at farrowing and on d 18 of lactation. Pigs born to H mothers had fewer muscle fibers and fewer estimated primary and secondary fibers than did pigs born to C mothers (P < 0.05). However, postnatal growth performance was not consistently affected by the maternal treatment. The smaller number of muscle fibers found in the H group of pigs was associated with fewer type IIB fibers (P < 0.05) with greater cross-sectional areas (P < 0.10), which might be related to the significantly greater meat pH at 24 h postmortem and the smaller L* (lightness) values recorded in the H group of pigs. Results from the present study confirm the existence of effects of maternal nutrition on fetal development, at least in terms of muscle tissue development and meat quality, although with no beneficial effects were found for the postnatal growth performance of the progeny.  相似文献   

12.
Two experiments were conducted to determine the voluntary feed intake and performance of lactating sows fed diets containing a sucrose/milk chocolate product (MCP) blend (Exp. 1) or dried porcine solubles (DPS; Exp. 2). Dried porcine solubles is a coproduct of heparin extraction from porcine small intestines. In Exp. 1, mixed-parity sows (n = 108) at two research centers were assigned to a corn-soybean-meal-based diet formulated to contain 0.9% total lysine or a similar diet that contained 4% sucrose and 2% MCP on an as-fed basis. Sows were allowed ad libitum access to dietary treatments from the day of farrowing until pigs were weaned at approximately 21 d postpartum. Diet had no significant effect on voluntary feed intake of sows during lactation, backfat depth, or postweaning interval to estrus, but it had variable effects on body weight changes. Inclusion of the sucrose/MCP blend in diets elicited a 2% improvement in litter weaning weight at one research center and a 6% depression in litter weaning weight at the other center (diet x research center, P < 0.05). Litter size throughout lactation was unaffected by dietary treatment. In Exp. 2, mixed-parity sows (n = 119) at two research centers were assigned to corn-soybean meal-based diets formulated to contain 0.9% total lysine with 0, 1.5, or 3.0% added DPS. Sows were assigned to dietary treatments within research center, farrowing group, and parity at parturition. Dried porcine solubles tended to increase (P < 0.10) total feed consumed in the first 9 d of lactation and average daily feed intake over the entire lactation (6.03, 6.53, and 6.30 kg) for sows fed 0, 1.5, and 3.0% DPS, respectively. Litter size and weight on d 18 of lactation were not affected by concentration of DPS in the diet. Days from weaning to estrus and percentage of sows displaying estrus were not influenced by diet. We conclude that inclusion of the sucrose/MCP blend in the diet for lactating sows had no consistent effect on voluntary feed intake of sows and weight gain of nursing pigs. Inclusion of DPS at 1.5 or 3.0% tended to improve feed intake of lactating sows but had no significant influence on litter performance.  相似文献   

13.
This study was conducted to 1) determine milk yield of sows that were machine milked up to four times daily; 2) determine the effect of pig substitution on milk yield; 3) assess litter weight changes for sows that are milked; and 4) determine milk composition. Eight sows were milked four times daily to d 51 postpartum. Sows either maintained their own litter or had a week-old replacement litter to replace 25-d-old pigs. Individual gland milk yields were obtained on random days throughout lactation, and different diameter and weighted teat cups were rotated so that all glands received all combinations. Composite milk samples were analyzed for fat, protein, and somatic cells. Milk yields peaked at about 19 d postpartum and declined to 45 d postpartum in sows with their own litter, whereas milk yields peaked earlier and had a more dramatic decline after fostering of a younger litter. Litter weights were 17.1 +/- 1.0 kg at farrowing with 13.6 +/- .6 pigs born alive. Final litter weights were 34.4 +/- 11.7 kg for sows with replacement litters and 74.4 +/- 13.5 kg for sows with their own litters, and numbers of pigs weaned were 6.5 +/- 1.3 and 9.7 +/- 1.5, respectively. Milk fat was influenced by route of oxytocin administration (6.53 +/- .12 for i.v. vs 7.21 +/- .19% for i.m. administration; P < .05). Milk fat percentage was highest on d 2 and declined to 13 d postpartum. Milk protein was influenced by time of day of milking (lowest at the fourth milking, 5.57 +/- .11%) and followed a pattern similar to that for milk fat. Milk protein was affected in a linear manner by milk yield, with highest protein associated with lowest milk yields. Somatic cells in milk were influenced by litter replacement (P < .05) and oxytocin administration (P < .01). There was a linear increase in somatic cells from about 8 x 10(6) cells/mL milk at d 2 to more than 12 x 10(6) cells/mL milk at d 51 postpartum. These results show that pig replacement affects the amount of milk obtained. Moreover, milk composition changes throughout lactation. However, milk removal from sows has a severe impact on litter weight gains, and in systems where sow's milk is needed for commercial purposes, pig supplementation is necessary.  相似文献   

14.
The effects of piglet birth weight and liquid milk replacer supplementation of piglets during lactation on growth performance to slaughter weight was evaluated in a study carried out with 32 sows (PIC C-22) and their piglets (n = 384; progeny of PIC Line 337 sires). A randomized block design with a 2 x 2 factorial arrangement of treatments was used. Treatments were birth weight (Heavy vs Light) and liquid milk replacer (Supplemented vs Unsupplemented). The study was divided into two periods. At the start of period 1 (birth to weaning), pigs were assigned to either Heavy or Light (1.8 [SD = 0.09] vs 1.3 kg [SD = 0.07] BW, respectively, P < 0.001) litters of 12 pigs and half of the litters were given ad libitum access to supplemental milk replacer from d 3 of lactation to weaning (21 +/- 0.2 d). In period 2 (weaning to 110 kg BW), a total of 308 pigs were randomly selected from within previous treatment and sex subclasses and placed in pens of four pigs. Pigs were given ad libitum access to diets that met or exceeded nutrient requirements. Pigs in heavy litters were heavier at weaning (6.6 vs 5.7 kg BW; SE = 0.14; P < 0.001) and tended to have more pigs weaned (11.4 vs 10.9 pigs/litter; SE = 0.21; P = 0.10). After weaning, pigs in the Heavy litter had greater ADG (851 vs 796 g; SE = 6.7; P < 0.001) and ADFI (1,866 vs 1,783 g; SE = 17.6; P < 0.001), similar gain:feed (0.46 vs 0.45; SE = 0.003; P > 0.05), and required seven fewer days (P < 0.001) to reach slaughter weight compared to pigs in the Light treatment. Feeding supplemental milk replacer during lactation produced heavier pigs at weaning (6.6 vs 5.7 kg BW; SE = 0.14; P < 0.001) and tended to increase the number of pigs weaned (11.4 vs 10.9 pigs/litter; SE = 0.21; P = 0.10) but had no effect (P > 0.05) on growth performance from weaning to slaughter. However, pigs fed milk replacer required three fewer days (P < 0.01) to reach 110 kg BW. Sow feed intake and BW loss during lactation were not affected (P > 0.05) by either birth weight or milk replacer treatment. In conclusion, birth weight has a substantially greater impact on pig growth performance after weaning than increasing nutrient intake during lactation.  相似文献   

15.
Effects of sarcoptic mange on lactating swine and growing pigs   总被引:1,自引:0,他引:1  
The impact of Sarcoptic mange on sows and on performance of their offspring from birth to slaughter was determined. Sows naturally infested with Sarcoptic mange were paired, mated to the same boar, and assigned randomly to treated or control farrowing groups. Treated sows received ivermectin s.c. at 300 micrograms/kg body weight; control sows received the vehicle s.c. Sow performance was evaluated via sow feed consumption, litter size, litter birth weights, litter weaning weights and piglet death loss from birth to weaning. Seven replicates (farrowing groups), each with six sow pairs, were included in the trial. Offspring from treated and control sows, 35 head/group, were fed to slaughter weights. Untreated sows had litters that weighed 4.14 kg less than ivermectin-treated sow litters at 21 d (P less than .07). Treated sows consumed 1.95 kg less feed per weaned piglet and .13 kg less feed per kilogram of weaned piglet (P less than .05). Piglets from treated sows were 5.79 kg/head heavier at slaughter (P less than .05) and had a .05 kg/d superior average daily gain (P less than .05).  相似文献   

16.
Fifty-three primiparous sows were used to study the effects of a high-energy, fat-supplemented diet on sow lactation and rebreeding performance. Sows received either a low [Lo, 12.5 Mcal metabolizable energy (ME)/d] or high (Hi, 16.0 Mcal ME/d) energy sorghum-soybean diet during a 28-d lactation. At weaning, sows were randomly allotted, within lactation treatment, to a low (lo, 5.54 Mcal ME/d) or high (hi, 9.61 Mcal ME/d) energy sorghum-soybean diet until the day of first postweaning estrus. Primiparous sows fed Lo weaned larger (P less than .05) litters than sows fed Hi; however, average pig weight was not affected by lactation treatments. Primiparous sows fed Hi had more backfat at weaning (P less than .01) than Lo sows. In contrast, sow weight was not affected by dietary treatments. Neither lactation nor rebreeding treatments influenced days to rebreeding; however, an interaction (P less than .01) was observed. Mean days from weaning to rebreeding for Lolo, Lohi, Hilo and Hihi sows were 10.0, 7.6, 6.9 and 17.1, respectively. Forty sows were maintained on the same dietary treatments during their second parity. Sows receiving Lo during their second parity farrowed and weaned more (P less than .05) pigs than Hi sows. Multiparous sows fed Hi nursed heavier (P less than .05) pigs on d 21 of lactation and at weaning compared with Lo sows. Sows fed Hi were heavier (P less than .05) and had more (P less than .01) backfat at weaning of their second litter compared to Lo sows. Days to postweaning estrus were not affected by lactation or rebreeding diets. Mean length of the second parity rebreeding interval for Lolo, Lohi, Hilo and Hihi sows was 6.2, 10.2, 7.0 and 10.5 d, respectively. These results suggest that feeding levels during lactation of 12.5 Mcal ME/d or higher supported adequate rebreeding performance. Postweaning feeding levels did not influence days to first estrus. Feeding a high energy diet continuously throughout the lactation and rebreeding phases in primiparous sows may lengthen the postweaning interval to estrus.  相似文献   

17.
A cooperative research study involving 1,080 litters was conducted at eight stations to determine the effects of additional feed during the last 23 d of gestation on reproductive performance of sows and on preweaning performance of their pigs. Primiparous and multiparous sows were fed fortified corn- or sorghum-soybean meal diets (14% crude protein). Control sows received 1.82 kg/d from March through November and 2.27 kg/d from December through February. Treated sows were fed an additional 1.36 kg of feed/d from d 90 of gestation to farrowing. Sows were allowed to consume the same diet ad libitum during a 21-d lactation. Additional feed in late gestation resulted in greater (P less than .001) sow weight gain from d 90 to d 110 of gestation (16.8 vs 9.0 kg) and greater (P less than .001) parturition-lactation weight loss (21.3 vs 16.4 kg). Total weight gain from breeding to 21 d of lactation favored sows that received extra feed (27.5 vs 22.7 kg; P less than .001). Sows receiving extra feed had more live pigs at farrowing (10.05 vs 9.71, P = .06) and at 21 d postpartum (8.35 vs 8.06, P = .09), and the pigs were heavier at birth (1.48 vs 1.44 kg, P = .003) and at 21 d (5.37 vs 5.20 kg, P = .006). Lactation feed intake and number of days from weaning to estrus were not affected by treatment. The results indicate that additional feed in late gestation improves reproductive performance in sows. In this study, the cost of an additional 31 kg of feed/sow was more than offset by the value of the additional sow weight gain (approximately 5 kg), the additional .3 of a pig/litter at weaning and the additional 2.6 kg of total litter weaning weight.  相似文献   

18.
Seventeen Landrace X Large White primiparous sows that farrowed in August 1982 were fed ad libitum (AL, n = 8) or their intakes were restricted (R, n = 9) during lactation. Litter sizes were equalized after farrowing and pigs were not allowed creep feed. Pigs were weaned 23.8 +/- .4 d postpartum. On d 6, 12 and 20 postpartum, all sows were fasted for 16 h and blood samples were collected prior to feeding for analysis of plasma glucose (GLU), urea nitrogen (UN), free fatty acids (FFA), prolactin (PRL) and serum insulin (INS). On d -2, 2 and 4 from weaning, sows were fasted for 16 h and then blood samples were collected hourly from 0 to 6 postprandial for analysis of GLU, UN, FFA, PRL and INS. Serum for analysis of luteinizing hormone (LH), progesterone and estradiol was collected every 6 h from 1 d before until 12 d after weaning. Samples for LH were also collected at 15-min intervals for 3 h at -18, -6, 6, 18, 78, 102, 126, 150, 240 and 480 h from weaning. After weaning all sows were fed 1.8 kg X d-1, and were checked for estrus twice daily. Daily intakes of metabolizable energy (ME) during lactation were greater in AL (12,194 +/- 465 kcal) than in R sows (8,144 +/- 90 kcal). Compared with AL sows, R sows lost more weight and backfat during lactation and had higher postprandial UN levels 2 d before and 4 d after weaning. Reproductive performance and reproductive hormones were not affected by restriction of energy, but frequency of episodic release of LH prior to weaning was greater in sows that exhibited estrus after weaning (n = 12) than in anestrous sows (n = 5). After weaning, LH and estradiol concentrations were similar between estrous and anestrous sows until onset of the preovulatory increase in estradiol in the sows that exhibited estrus. Energy intake, body condition and productivity were similar between anestrous sows and sows that exhibited estrus. On d 12 and 20 of lactation, preprandial levels of GLU were greater and FFA were lower in anestrous than estrous sows. We conclude that restriction of feed intake during lactation affected body condition and metabolism of primiparous sows, but reproductive performance and productivity were not affected. Aberrations in partitioning of energy during lactation may predispose primiparous sows to postweaning anestrus, but the mechanisms by which this occurs have yet to be defined.  相似文献   

19.
The purpose of this field trial was to determine if maximal care of pigs from birth until 16 d of age would result in a significant alteration in the survivorship and growth performance of the pigs compared with control pigs born in the same time period. Sows were randomly assigned to treatment group prior to farrowing. Control pigs received the standard, commercial farm care. In maximal care litters, pigs were dried off at farrowing, given a rubber mat in the creep area, and given electrolytes, chilled pigs were warmed and given colostrum or glucose, surgical instruments used for processing were dipped into an antiseptic between pigs, the castration wounds were sprayed with iodine, and sows were fed 3 times rather than twice a day. Pigs that received the maximal care weighed 170 g (+/− 80 g) more at 16 d of age than standard care pigs. Factors that reduced weight at 16 d included having a low birth weight, nursing a gilt or a parity 5–6 sow, nursing in a large litter, being clinically ill or being lame after 3 d of age, being cross-fostered and nursing an ill sow. In general, maximal care did not reduce mortality. Providing maximal care did improve weaning weights and enabled small birth weight pigs to reach 3.7 kg at 16 d of age.  相似文献   

20.
An experiment was conducted to evaluate feather meal as a source of Val in lactating sow diets. Sows (five farrowing groups; mean parity = 2.34) were allotted to one of two dietary treatments on the basis of ancestry, parity, and weight and date of d 110 of gestation. The treatment diets included 1) corn-soybean meal lactation diet (n = 40) or 2) corn-soybean meal lactation diet with 2.5% feather meal (n = 39). The diets were formulated on an equal Lys basis. All litters were adjusted to 10 pigs within 24 h after farrowing, and all sows weaned at least nine pigs. Sows were bled at 110 d of gestation and at weaning, and serum urea N was determined. Backfat thickness was determined ultrasonically at 110 d of gestation and at weaning. Serum urea N and backfat thickness at d 110 of gestation were used as covariates for serum urea N and backfat thickness at weaning, respectively. The litter response criteria (weaning weight, litter weight gain, and percentage survival) were not affected (P > .10) by feather meal. The sow response criteria (weaning weight, weight loss per day, weaning backfat thickness, change in backfat thickness, ADFI, and days to estrus) were not affected (P > .10) by feather meal. Sows fed feather meal had increased (P < .01) serum urea N and tended (P = .15) to have decreased sow weaning weight. Following the initial analysis of the data, the data set was split into two groups: 1) sows with litters gaining less than 2.17 kg/d (n = 19 and 20 for control and feather meal diets, respectively) and 2) sows with litters gaining more than 2.17 kg/d (n = 21 and 19 for control and feather meal diets, respectively). These two groups were analyzed separately. In sows with litters gaining less than 2.17 kg/d, the litter and sow criteria were not affected (P > .10) by treatment. In sows with litters gaining more than 2.17 kg/d, sow weaning weight was decreased (P < .04) and sow weight loss (P < .02) and serum urea N (P < .01) were increased in sows fed feather meal. Feather meal (as a source of Val) did not improve litter weight gain, but it increased serum urea N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号