首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Avian influenza vaccines and therapies for poultry   总被引:1,自引:0,他引:1  
Vaccines have been used in avian influenza (AI) control programs to prevent, manage or eradicate AI from poultry and other birds. The best protection is produced from the humoral response against the hemagglutinin (HA) protein. A variety of vaccines have been developed and tested under experimental conditions with a few receiving licensure and field use following demonstration of purity, safety, efficacy and potency. Current licensed vaccines are predominately inactivated whole AI vaccines, typically produced from low pathogenicity (LP) AI virus strains, or occasionally from high pathogenicity AI virus strains. Recently, reverse genetic procedures have been developed that allow construction of vaccine strains using a genetically altered HA gene (changing HP HA proteolytic cleavage site to LP) and a backbone of internal gene segments for safe, high growth production. Other licensed AI vaccines include recombinant fowl poxvirus vector with an AI H5 insert and a recombinant Newcastle disease virus vector with an AI H5 gene insert. The latter vaccine can be mass administered via aerosol application.  相似文献   

2.
Inactivated whole avian influenza (AI) virus vaccines, baculovirus-derived AI haemagglutinin vaccine and recombinant fowlpoxvirus-AI haemagglutinin vaccine were tested for the ability to protect chickens against multiple highly pathogenic (HP) H5 AI viruses. The vaccine and challenge viruses, or their haemagglutinin protein components, were obtained from field AI viruses of diverse backgrounds and included strains obtained from four continents, six host species, and isolated over a 38-year-period. The vaccines protected against clinical signs and death, and reduced the number of chickens shedding virus and the titre of the virus shed following a HP H5 AI virus challenge. Immunization with these vaccines should decrease AI virus shedding from the respiratory and digestive tracts of AI virus exposed chickens and reduce bird-to-bird transmission. Although most consistent reduction in respiratory shedding was afforded when vaccine was more similar to the challenge virus, the genetic drift of avian influenza virus did not interfere with general protection as has been reported for human influenza viruses.  相似文献   

3.
In 1997, highly pathogenic (HP) H5N1 avian influenza virus (AIV) caused infections in poultry in Hong Kong and crossed into humans, resulting in a limited number of infections including 18 hospitalized cases and six associated deaths. The unique ability of this, AIV to infect both poultry and people raised a concern for the potential of humans to be biological as well as mechanical vectors of this AIV to poultry. The current study was undertaken to determine if existing vaccines and their technologies could be used during an outbreak to protect poultry. Commercial and experimental inactivated whole H5 AIV and baculovirus-expressed AIV H5 hemagglurinin protein vaccines provided protection from clinical signs and death in chickens after lethal challenge by human-origin HP H5N1 Hong Kong strains 156/97 and 483/97. The commercial and experimental inactivated vaccines had mean protective doses ranging from 0.25 to 0.89, which represents the milligrams of viral protein in the vaccines that provided protection from death in half of the birds. Furthermore, the vaccines reduced the ability of the challenge AIV to replicate in chickens and decreased the recovery of challenge AIV from the enteric and respiratory tracts, but the use of a vaccine will nor totally prevent AI virus replication and shedding. Existing vaccines will protect poultry from mortality and reduce virus replication from the new HP AIV strain that can infect both poultry and humans.  相似文献   

4.
Protective immunity against avian influenza (AI) can be elicited in chickens in a single-dose regimen by in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad)-vector encoding the AI virus (AIV) hemagglutinin (HA). We evaluated vaccine potency, antibody persistence, transfer of maternal antibodies (MtAb), and interference between MtAb and active in ovo or mucosal immunization with RCA-free recombinant Ad expressing a codon-optimized AIV H5 HA gene from A/turkey/WI/68 (AdTW68.H5(ck)). Vaccine coverage and intrapotency test repeatability were based on anti-H5 hemagglutination inhibition (HI) antibody levels detected in in ovo vaccinated chickens. Even though egg inoculation of each replicate was performed by individuals with varying expertise and with different vaccine batches, the average vaccine coverage of three replicates was 85%. The intrapotency test repeatability, which considers both positive as well as negative values, varied between 0.69 and 0.71, indicating effective vaccination. Highly pathogenic (HP) AIV challenge of chicken groups vaccinated with increasing vaccine doses showed 90% protection in chickens receiving > or = 10(8) ifu (infectious units)/bird. The protective dose 50% (PD50) was determined to be 10(6.5) ifu. Even vaccinated chickens that did not develop detectable antibody levels were effectively protected against HP AIV challenge. This result is consistent with previous findings ofAd-vector eliciting T lymphocyte responses. Higher vaccine doses significantly reduced viral shedding as determined by AIV RNA concentration in oropharyngeal swabs. Assessment of antibody persistence showed that antibody levels of in ovo immunized chickens continued to increase until 12 wk and started to decline after 18 wk of age. Intramuscular (IM) booster vaccination with the same vaccine at 16 wk of age significantly increased the antibody responses in breeder hens, and these responses were maintained at high levels throughout the experimental period (34 wk of age). AdTW68.H5(ch)-immunized breeder hens effectively transferred MtAb to progeny chickens. The level of MtAb in the progenies was consistent with the levels detected in the breeders, i.e., intramuscularly boosted breeders transferred higher concentrations of antibodies to the offspring. Maternal antibodies declined with time in the progenies and achieved marginal levels by 34 days of age. Chickens with high maternal antibody levels that were vaccinated either in ovo or via mucosal routes (ocular or spray) did not seroconvert. In contrast, chickens without MtAb successfully developed specific antibody levels after either in ovo or mucosal vaccination. These results indicate that high levels of MtAb interfered with active Ad-vectored vaccination.  相似文献   

5.
Hsu SM  Chen TH  Wang CH 《Avian diseases》2010,54(4):1197-1209
Vaccination is an effective method for controlling avian influenza (AI), especially in countries with endemic infection. This study conducted a Bayesian meta-analysis to evaluate the efficacy of AI vaccines in chickens. We included both inactivated and recombinant fowlpox virus expressing H5 (rFPV-H5) vaccine studies that used specific-pathogen-free chickens where outcomes against the H5N1 or H5N2 AI viruses were measured. Vaccine efficacy was evaluated by protection from mortality, protection from morbidity, reductions in virus isolation from the respiratory tract, and reductions in virus isolation from the cloaca. The efficacies for homologous inactivated vaccines by those four outcomes were 92% (95% confidence interval 90%-95%), 94% (91%-96%), 54% (50%-58%), and 88% (84%-91%), respectively. Corresponding figures for heterologous inactivated vaccines were 68% (63%-73%), 78% (74%-81%), 24% (16%-31%), and 71% (64%-77%); and efficacies for rFPV-H5 vaccine were 97% (94%-99%), 93% (90%-94%), 21% (14%-27%), and 78% (72%-84%), respectively. Although those vaccines protect chickens from morbidity and mortality, virus shedding would be an important biosecurity issue for further AI endemic control.  相似文献   

6.
The spike 1 (S1) surface glycoprotein of infectious bronchitis virus (IBV) is the major inducer of the generation of virus neutralizing antibodies, and the administration of purified S1 has been shown to elicit a protective immune response against virulent virus challenge. On the basis of these observations, recombinant fowl poxvirus (rFPV) containing a cDNA copy of the S1 gene of IBV Mass 41 (rFPV-S1) was constructed and its immunogenicity and vaccine potential were evaluated. Initially, rFPV-S1 was shown to express the S1 in vito by indirect immunofluorescence staining and western blot analyses. Later, in vivo expression was demonstrated by the detection of IBV-specific serum immunoglobulin G and neutralization antibodies in the sera of chickens immunized with rFPV-S1. That the recombinant virus elicited anti-IBV protective immunity was indicated by the manifested, relatively mild clinical signs of disease, decreased titers of recovered challenge virus, and less severe histologic changes of the tracheas in virulent IBV Mass 41-challenged chickens previously receiving rFPV-S1 as compared with parental fowl poxvirus (FPV)-vaccinated control birds. In contrast, chickens immunized with either recombinant or parental FPV were resistant to a subsequent virulent FPV challenge. As to a preferred method of immunization, wing web administration appeared to be superior to the subcutaneous route because a greater percentage of birds vaccinated by the former protocol exhibited an anti-IBV humoral immune response. Thus, rFPV-S1 has potential as a poultry vaccine against both fowl pox and infectious bronchitis.  相似文献   

7.
The humoral immune response and immunity conferred in chicks were compared following separate and combined oral vaccination with F strain of Newcastle disease virus (NDV) and HP1 strain of fowl pox virus. The haemagglutination inhibition (HI) antibody titre against NDV and passive haemagglutination (PHA) antibody titre against fowl pox virus were comparable in two respective groups. The serum IgG concentration increased significantly after the second vaccination in all the groups. The NDV vaccine induced significantly higher IgG production as compared to fowl pox virus vaccine. There was no significant difference in serum IgG concentration produced by combined vaccine and separate F strain vaccine. The protection afforded by combined and separate vaccinations did not vary significantly against challenge with virulent strains of NDV and fowl pox virus at different stages.  相似文献   

8.
We used in ovo technology to protect chickens against multiple diseases by inoculating vaccines containing mixtures of live viral agents. A single in ovo injection of a vaccine containing serotypes 1, 2, and 3 of Marek's disease virus (MDV), a vaccine strain of serotype 1 infectious bursal disease virus (IBDV), and recombinant fowl pox vaccine with HN and F genes of Newcastle disease virus (rFP-NDV) induced protection against virulent MDV, IBDV, Newcastle disease virus, and fowl poxvirus. The multiple-agent vaccine induced specific antibodies against the viral agents present in the mixture and did not adversely affect the survival of hatched chickens. Inoculation of a vaccine containing serotypes 1, 2, and 3 of MDV and IBDV did not affect hatchability of eggs, although the addition of rFP-NDV to the mixture reduced hatchability by 23%-26%. In ovo vaccination with a vaccine containing MDV and IBDV vaccine viruses did not exacerbate the inhibitory effect of individual viral agents on humoral and cellular immune competence.  相似文献   

9.
In general, avian influenza (AI) vaccines protect chickens from morbidity and mortality and reduce, but do not completely prevent, replication of wild AI viruses in the respiratory and intestinal tracts of vaccinated chickens. Therefore, surveillance programs based on serological testing must be developed to differentiate vaccinated flocks infected with wild strains of AI virus from noninfected vaccinated flocks in order to evaluate the success of vaccination in a control program and allow continuation of national and international commerce of poultry and poultry products. In this study, chickens were immunized with a commercial recombinant fowlpox virus vaccine containing an H5 hemagglutinin gene from A/turkey/Ireland/83 (H5N8) avian influenza (AI) virus (rFP-H5) and evaluated for correlation of immunological response by hemagglutination inhibition (HI) or agar gel immunodiffusion (AGID) tests and determination of protection following challenge with a high pathogenicity AI (HPAI) virus. In two different trials, chickens immunized with the rFP-H5 vaccine did not develop AGID antibodies because the vaccine lacks AI nucleoprotein and matrix genes, but 0%-100% had HI antibodies, depending on the AI virus strain used in the HI test, the HI antigen inactivation procedure, and whether the birds had been preimmunized against fowlpox virus. The most consistent and highest HI titers were observed when using A/turkey/Ireland/83 (H5N8) HPAI virus strain as the beta-propiolactone (BPL)-inactivated HI test antigen, which matched the hemagglutinin gene insert in the rFP-H5 vaccine. In addition, higher HI titers were observed if ether or a combination of ether and BPL-inactivated virus was used in place of the BPL-inactivated virus. The rFP-H5 vaccinated chickens survived HPAI challenge and antibodies were detected by both AGID and HI tests. In conclusion, we demonstrated that the rFP-H5 vaccine allowed easy serological differentiation of infected from noninfected birds in vaccinated populations of chickens when using standard AGID and HI tests.  相似文献   

10.
Avian influenza viruses (AIV) of the H9 subtype cause serious health problems in chickens, resulting in great economic losses to the poultry industry worldwide. The killed vaccine (KV) against H9 subtype AIV has been widely used in China since 1998 but has been linked with side effects in chickens and only partial protection. A few studies have demonstrated the immunostimulatory effects of the hemagglutinating virus of Japan envelope (HVJ-E) in cancer therapy. In this study, the adjuvant efficacy and the protective effects of HVJ-E, in combination with H9N2 AI KV against AIV were evaluated. The maturation of murine dendritic cells treated by HVJ-E was verified by FACS in the current experiment, then the antibody hemagglutination inhibition (HI) titers and cytokines and the post-challenge virological profiles (oropharyngeal and cloacal virus shedding) were investigated to define the immune responses in chickens. Our findings indicate that HVJ-E could induce dendritic cell (DC) maturation in mice. Injection of HVJ-E in chickens resulted in raised levels of IFN-β and IFN-γ being present in sera suggesting a stimulatory effect in these animals. The antibody responses to AIV of chickens inoculated with HVJ-E adjuvanted killed H9-AIV were higher than those of chickens inoculated with oil adjuvanted H9-HIV. Furthermore, although inoculation of either HVJ-E or oil adjuvanted AIV reduced virus shedding following challenge, compared to controls, HVJ-E adjuvanted AIV was more effective in reducing shedding than oil adjuvant.  相似文献   

11.
将禽流感病毒血凝素 H9A基因克隆入插入载体 p FG11S中 ,通过酶切鉴定获得了正向转移载体 p FG11SHA;将其与禽痘病毒疫苗株 (w FPV)共转染鸡成纤维细胞 (CEF) ,通过蓝白斑筛选纯化得到重组病毒 r FPV- Ps- HA;以间接免疫荧光法证实 HA基因得到了表达。将该病毒经颈部皮下免疫 1日龄 SPF鸡 ,免疫后 15 d以 H9亚型禽流感病毒 F株翅静脉攻毒 ,攻毒后第 5天采集泄殖腔棉拭子样品进行病毒分离。将此重组病毒与以痘苗病毒 P7.5启动子表达相同基因的重组病毒 r FPV- P7.5 - HA作比较 ,结果表明 ,r FPV- Ps- HA相对于 r FPV- P7.5 - HA明显抑制了病毒的排出 ;攻毒后第 2、5、7、9、11天分别对 r FPV- Ps- HA、油乳剂灭活苗免疫鸡进行泄殖腔、气管排毒规律的检测 ,发现疫苗组均能很好地抑制排毒 ,攻毒对照组泄殖腔的排毒率明显高于气管排毒率  相似文献   

12.
Sun Y  Pu J  Fan L  Sun H  Wang J  Zhang Y  Liu L  Liu J 《Veterinary microbiology》2012,156(1-2):193-199
Despite the long-term vaccination programs implemented in China, H9N2 avian influenza viruses (AIVs) continue to persist in chicken populations, even in vaccinated flocks. We previously demonstrated that H9N2 AIV isolated from chickens in China also underwent antigenic drift and evolved into distinct antigenic groups (C, D and E). To understand whether antigenic drift of viruses away from the vaccine strain partially contributed to the circulation of H9N2 AIV in China, we evaluated the protective efficacy of a commercial vaccine against different antigenic groups of H9N2 AIV. Challenge experiments using vaccinated chickens indicated that the vaccine prevented shedding of antigenic group C viruses, but not those of the more recent groups D and E. Vaccinated chickens, even those with vaccine-induced HI titers of 1:1024, shed virus after being infected with A/chicken/Shandong/ZB/2007, a representative virus of antigenic group D. Genetic analysis showed that the representative viruses of antigenic groups D and E possessed greater numbers of amino acid substitutions in the hemagglutinin protein compared to the vaccine strain and the antigenic group C virus, and many of which were located in antigenic sites. Our results indicated that the persistence of H9N2 AIV in China might be due to incomplete vaccine protection, and that the avian influenza vaccine should be regularly evaluated and updated to maintain optimal protection. Furthermore, the avian influenza vaccination policy also needs to be re-assessed, and increased veterinary biosecurity on farms, rather than vaccine application alone, should be implemented to prevent and control avian influenza.  相似文献   

13.
The efficacy of experimental inactivated infectious coryza vaccines produced by a commercial vaccine manufacturer was evaluated. The vaccines, containing as the adjuvant phase either a double-emulsion mineral oil system or aluminum-hydroxide gel, were administered to 6-week-old chickens as a single dose. Some vaccines were a monovalent product containing a Page serovar C Haemophilus paragallinarum strain, and others were a bivalent product containing both Page serovar A and serovar C strains. After 3 weeks, all chickens were challenged by infraorbital sinus inoculation of virulent H. paragallinarum, either Page serovar C (strain HP31) or Page serovar A (strain HP14). The monovalent serovar C double-emulsion-based vaccines gave significant protection against a serovar C challenge, with the level of protection varying from 60% to 100%. The monovalent serovar C aluminum-hydroxide-gel vaccine also gave significant protection (94%) against a serovar C challenge. The bivalent double-emulsion vaccine gave significant protection against challenge from both serovars (100% for serovar C and 83% for serovar A). Although no major adverse reactions were detected, some chickens receiving both the double-emulsion vaccines and the aluminum-hydroxide vaccine developed relatively minor granulomatous reactions at the site of injection.  相似文献   

14.
Two low-pathogenicity (LP) and two high-pathogenicity (HP) avian influenza (AI) viruses were inoculated into chickens by the intranasal route to determine the presence of the AI virus in breast and thigh meat as well as any potential role that meat could fill as a transmission vehicle. The LPAI viruses caused localized virus infections in respiratory and gastrointestinal (GI) tracts. Virus was not detected in blood, bone marrow, or breast and thigh meat, and feeding breast and thigh meat from virus-infected birds did not transmit the virus. In contrast to the two LPAI viruses, A/chicken/Pennsylvania/1370/1983 (H5N2) HPAI virus caused respiratory and GI tract infections with systemic spread, and virus was detected in blood, bone marrow, and breast and thigh meat. Feeding breast or thigh meat from HPAI (H5N2) virus-infected chickens to other chickens did not transmit the infection. However, A/lchicken/Korea/ES/2003 (H5N1) HPAI virus produced high titers of virus in the breast meat, and feeding breast meat from these infected chickens to other chickens resulted in Al virus infection and death. Usage of either recombinant fowlpox vaccine with H5 AI gene insert or inactivated Al whole-virus vaccines prevented HPAI virus in breast meat. These data indicate that the potential for LPAI virus appearing in meat of infected chickens is negligible, while the potential for having HPAI virus in meat from infected chickens is high, but proper usage of vaccines can prevent HPAI virus from being present in meat.  相似文献   

15.
为了进一步评价基于HA基因的DNA疫苗的开发应用前景,本研究将表达H5亚型禽流感水禽群代表株A/Duck/Anhui/1/2006(H5N1)[DKAH/1/06(H5N1)]HA基因的DNA疫苗pCAGGoAHHA的免疫保护效力进行了评估,以5μg、10μg、20μg、50μg和100μg剂量免疫3周龄SPF鸡,首次免疫后3周再加强免疫一次,加强免疫后2周用106EID50的高致病力禽流感病毒(HPAIV)A/Duck/Fujian/31/2007(H5N1)[DKFJ/31/07(H5N1)]鼻腔途径进行攻毒,观察发病与死亡情况。分别于攻毒后第3d、5d、7d天采集喉头及泄殖腔拭子进行病毒分离、滴定检测攻毒鸡排毒情况,同时检测免疫及攻毒后血清HI抗体、NT抗体的动态变化。结果,20μg、50μg、100μg组的pCAGGoAHHA均可对免疫鸡产生100%完全保护(不发病、不致死、不排毒),而5μg和10μg剂量组则可对免疫鸡分别形成25%和75%的保护。结果表明,H5亚型禽流感水禽群DNA疫苗质粒pCAGGoAHHA具有良好的免疫保护性,有望成为预防H5亚型HPAIV的技术储备候选疫苗。  相似文献   

16.
The purpose of this study was to determine if nucleocapsid of rabies virus could improve the immune response (humoral and protective) of chickens vaccinated against avian influenza with an inactivated avian influenza experimental vaccine (AIV). On the other hand, AIV with and without NC was compared with an inactivated oil emulsion avian influenza commercial vaccine (CV) virus, currently used in Mexico. Groups of 8 day old chickens were vaccinated intracutaneously with an AIV (group 1); group 2, AIV supplemented with 20 μg of nucleocapsid of rabies virus (NC); Group 3, commercial vaccine (CV) and control groups (4 and 5) with 20 μg of NC and non-infected allantoic fluid, respectively. CV showed a better antibody-mediated response (p < 0.001) after and before challenging; which correlated with the best protection; while NC improved the protection in comparison with group 1. This is the first report on the potential utility of the rabies virus N protein to improve immune response in domestic species.  相似文献   

17.
A stable recombinant fowl poxvirus (rFPV) expressing the C-terminal region (119 amino acids) of the nucleocapsid (N) protein of an infectious bronchitis virus (IBV) strain Ch3 was constructed by inserting the coding sequence within the thymidine kinase gene of fowl poxvirus (FPV) by homologous recombination. The N protein was expressed under control of the vaccinia virus promoter P7.5 in chicken embryo fibroblast cell cultures as seen in immunofluorescence assay and in rFPV-inoculated specific-pathogen-free (SPF) chickens by detecting antibodies with enzyme-linked immunosorbent assay (ELISA). A homologous IBV strain (Ch3) and two heterologous IBV strains (Ch5 and H4) were used to inoculate SPF chickens in a challenge to examine the protective efficacy of the rFPV. When the chickens were challenged with IBV Ch3 or Ch5, the control birds had respiratory signs of infections bronchitis, whereas all the vaccinated birds were clinically normal although low levels of the IBV infection were detected by a differential ELISA. In contrast, in the chickens challenged with IBV H4, all control birds and vaccinated birds suffered from the highly lethal IBV H4 infection. Our results suggest that the C-terminal 119 amino acid of the nucleocapsid expressed by FPV is a host-protective antigen and may induce cross-protective immunity against illness among some IBV strains.  相似文献   

18.
Inactivated and fowlpox virus (FP)-vectored vaccines have been used to control H5 avian influenza (AI) in poultry. In H5 AI endemic countries, breeder flocks are vaccinated and therefore, maternally-derived antibodies (MDA) are transferred to their progeny. Results of three immunogenicity and one efficacy studies performed in birds with or without MDA indicated that the immunogenicity of an inactivated vaccine based on a H5N9 AI isolate (inH5N9) was severely impaired in chicks hatched from inH5N9-vaccinated breeders. This MDA interference was lower when breeders received only one administration of the same vaccine and could be overcome by priming the chicks at day-of-age with a live recombinant FP-vectored vaccine with H5 avian influenza gene insert (FP-AI). The interference of anti-FP MDA was of lower intensity than the interference of anti-AI MDA. The highest interference observed on the prime-boost immunogenicity was in chicks hatched from breeders vaccinated with the same prime-boost scheme. The level of protection against an antigenic variant H5N1 highly pathogenic AI isolate from Indonesia against which the FP-AI or inH5N9 alone was poorly protective could be circumvented by the prime-boost regimen in birds with either FP or AI MDA. Thus, the immunogenicity of vaccines in young chicks with MDA depends on the vaccination scheme and the type of vaccine used in their parent flocks. The heterologous prime-boost in birds with MDA may at least partially overcome MDA interference on inactivated vaccine.  相似文献   

19.
Beginning in April 2009, a novel H1N1 influenza virus caused acute respiratory disease in humans, first in Mexico and then around the world. The resulting pandemic influenza A H1N1 2009 (pH1N1) virus was isolated in swine in Canada in June 2009 and later in breeder turkeys in Chile, Canada, and the United States. The pH1N1 virus consists of gene segments of avian, human, and swine influenza origin and has the potential for infection in poultry following exposure to infected humans or swine. We examined the clinical events following the initial outbreak of pH1N1 in turkeys and determined the relatedness of the hemagglutinin (HA) gene segments from the pH1N1 to two H1N1 avian influenza (AI) isolates used in commercial turkey inactivated vaccines. Overall, infection of turkey breeder hens with pH1N1 resulted in -50% reduction of egg production over 3-4 weeks. Genetic analysis indicated one H1N1 AI vaccine isolate (Alturkey/North Carolina/17026/1988) contained approximately 92% nucleotide sequence similarity to the pH1N1 virus (A/Mexico/4109/2009); whereas, a more recent AI vaccine isolate (A/ swine/North Carolina/00573/2005) contained 75.9% similarity. Comparison of amino acids found at antigenic sites of the HA protein indicated conserved epitopes at the Sa site; however, major differences were found at the Ca2 site between pH1N1 and A/ turkey/North Carolina/127026/1988. Hemagglutinin-inhibition (HI) tests were conducted with sera produced in vaccinated turkeys in North Carolina to determine if protection would be conferred using U.S. AI vaccine isolates. HI results indicate positive reactivity (HI titer > or = 5 log2) against the vaccine viruses over the course of study. However, limited cross-reactivity to the 2009 pH1N1 virus was observed, with positive titers in a limited number of birds (6 out of 20) beginning only after a third vaccination. Taken together, these results demonstrate that turkeys treated with these vaccines would likely not be protected against pH1N1 and current vaccines used in breeder turkeys in the United States against circulating H1N1 viruses should be updated to ensure adequate protection against field exposure.  相似文献   

20.
Infectious laryngotracheitis (ILT) is a highly contagious respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). The disease is mainly controlled through biosecurity and by vaccination with live-attenuated vaccines. The chicken embryo origin (CEO) vaccines, although proven to be effective in experimental settings, have limited efficacy in controlling the disease in dense broiler production sites due to unrestricted use and poor mass vaccination coverage. These factors allowed CEO vaccines to regain virulence, causing long lasting and, consequently, severe outbreaks of the disease. A new generation of viral vector fowl poxvirus (FPV) and herpesvirus of turkey (HVT) vaccines carrying ILTV genes has been developed and such vaccines are commercially available. These vaccines are characterized by their lack of transmission, lack of ILTV-associated latent infections, and no reversion to virulence. HVT-vectored ILTV recombinant vaccines were originally approved for subcutaneous HVT or transcutaneous (pox) delivery. The increased incidence of ILTV outbreaks in broiler production sites encouraged the broiler industry to deliver the FPV-LT and HVT-LT recombinant vaccines in ovo. The objective of this study was to evaluate the protection induced by ILTV viral vector recombinant vaccines after in ovo application in 18-day-old commercial broiler embryos. The protection induced by recombinant ILTV vaccines was assessed by their ability to prevent clinical signs and mortality; to reduce challenge virus replication in the trachea; to prevent an increase in body temperature; and to prevent a decrease in body weight gain after challenge. In this study, both recombinant-vectored ILTV vaccines provided partial protection, thereby mitigating the disease, but did not reduce challenge virus loads in the trachea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号