首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo determine the effects of intramuscular (IM) administration of medetomidine and xylazine on intraocular pressure (IOP) and pupil size in normal dogs.Study designProspective, randomized, experimental, crossover trial.AnimalsFive healthy, purpose-bred Beagle dogs.MethodsEach dog was administered 11 IM injections of, respectively: physiological saline; medetomidine at doses of 5, 10, 20, 40 and 80 μg kg−1, and xylazine at doses of 0.5, 1.0, 2.0, 4.0 and 8.0 mg kg−1. Injections were administered at least 1 week apart. IOP and pupil size were measured at baseline (before treatment) and at 0.25, 0.50, 0.75, 1, 2, 3, 4, 5, 6, 7, 8 and 24 hours post-injection.ResultsA significant decrease in IOP was observed at 6 hours after 80 μg kg−1 medetomidine compared with values at 0.25 and 0.50 hours, although there were no significant changes in IOP from baseline. In dogs treated with 8.0 mg kg−1 xylazine, significant reductions in IOP were observed at 4 and 5 hours compared with that at 0.25 hours after administration. In dogs treated with 5, 10, 20 and 40 μg kg−1 medetomidine and 0.5, 1.0 and 2.0 mg kg−1 xylazine, there were no significant changes in IOP. Pupil size did not change significantly after any of the medetomidine or xylazine treatments compared with the baseline value.Conclusions and clinical relevanceLow or moderate doses of medetomidine or xylazine did not induce significant changes in IOP or pupil size. In contrast, high doses of medetomidine or xylazine induced significant changes up to 8 hours after treatment, but values remained within the normal canine physiological range. The results of this study suggest a lack of significant change in IOP and pupil size in healthy dogs administered low or moderate doses of xylazine or medetomidine.  相似文献   

2.
3.
Twenty normal Golden Retrievers being screeened for eye, hip and elbow diseases were given tropicamide topically and medetomidine systemically. Medetomidine effects were later reversed with systemic atipamezole. Pupil size and intraocular pressure changes were determined. Pupil size increased significantly following tropicamide administration and continued to increase slightly but significantly after medetomidine injection. It was unclear whether the slight increase in pupil size following medetomidine administration was due to continued effect of tropicamide or due to the medetomidine itself. Atipamezole did not influence pupil size. Intraocular pressure (IOP) was not affected by these drugs. Ophthalmic screening examination for inherited disease following tropicamide administration is equally feasible prior to sedation with medetomidine and after reversal with atipamezole, but not during the period of sedation.  相似文献   

4.
Effects of topical administration of a single dose of timolol maleate on intraocular pressure (IOP) and pupil diameter were evaluated in normotensive eyes of 11 clinically normal dogs over 12 hours (7:00 AM to 7:00 PM). Mean (+/- SEM) normal IOP was 15.5 (+/- 1.1) mm of Hg and diurnal fluctuation was observed, with the highest IOP seen in the morning. Mean normal pupil diameter was 8.5 (+/- 0.3) mm. Topical treatment with 0.5% timolol resulted in reduction of IOP in the treated and nontreated eyes. Mean reduction of IOP in the treated eye was 2.5 mm of Hg, a reduction of 16.1%, with maximal reduction of 3.7 mm of Hg. Mean reduction of IOP in the nontreated eye was 1.4 mm of Hg, a reduction of 9.0%. The treated eye had reduced pupil diameter at 30 minutes after treatment, which persisted throughout the 12 hours of the study. Mean reduction of pupil diameter in the treated eye was 2.9 mm, a reduction of 34.1%. In addition, a contralateral effect on pupil diameter was seen in the nontreated eye, with mean reduction of 1.2 mm, a reduction of 14.1%. Topical administration of timolol maleate resulted in reduction of IOP and pupil diameter in treated and contralateral eyes, thus supporting the use of timolol for treatment of glaucoma in dogs. Miosis indicates possible beta-adrenergic inhibition or alpha-adrenergic activation of the sphincter muscle. beta-Adrenergic blockade would then result in miosis.  相似文献   

5.
The effect of IV mannitol (1.5 gm/kg) or oral glycerol (1.4 and 2.0 gm/kg) on intraocular pressure (IOP) and serum osmolality (SOSM) was investigated in 24 normal dogs. Mean IOPs were significantly decreased from baseline values from 0.5 through 5.5 hours following mannitol administration with a mean maximum depression of 8.7 +/- 1.8 mm Hg whereas mean SOSM was significantly increased from baseline values. Mean IOPs were significantly decreased from baseline values from 1.0 through 10 hours following oral administration of 1.4 gm/kg glycerol with a mean maximal depression of 5.4 +/- 2.7 mm Hg. Mean SOSM increased initially followed by a significant decrease. The change in IOP following mannitol administration showed less variation (smaller standard deviations) than glycerol (1.4 gm/kg). Five of the 6 dogs that received the 2.0 gm/kg glycerol vomited; the mean IOP and SOSM values were not significantly altered from baseline values in these dogs. Four of 5 dogs given cooled (10C) 2.0 gm/kg glycerol vomited. The incidence of vomiting appeared to be dose related. Both mannitol and glycerol (1.4 gm/kg) are effective for decreasing IOP in normal dogs.  相似文献   

6.
Rescula (0.12% unoprostone isopropyl) is the first docosanoid compound approved for treatment of glaucoma in humans. It is commercially available in Japan, and is undergoing clinical testing elsewhere. The aim of this study was to evaluate the effect of Rescula on intraocular pressure (IOP) in normotensive dogs. After establishing a baseline diurnal IOP curve, six dogs were unilaterally treated with Rescula while the contralateral eye was treated with a placebo. Applanation tonometry was performed in both eyes, and pupil size was evaluated, 30 min after treatment, and at 1-hr intervals for the next 9 hr. Rescula caused a significant (p=0.014) and long-lasting decrease in IOP, from 20.49+/-2.02 mm Hg in control eyes to 15.49+/-0.69 mm Hg in treated eyes. These results suggest that Rescula is potentially efficacious in treatment of canine glaucoma.  相似文献   

7.
8.
Objective To investigate the effects of intramuscularly administered hydromorphone hydrochloride and acepromazine on intraocular pressure (IOP) and pupil size (PS). Animals studied Seventeen dogs free of clinically relevant ocular abnormalities. Procedure Measurements of IOP and PS were obtained and the dogs were injected intramuscularly with hydromorphone (0.04–0.08 mg/kg) and acepromazine (0.04 mg/kg). Measurements of IOP and PS were repeated 10 min and 25 min later. Results Though a decreasing trend in IOP values was demonstrated, no significant difference was noted in IOP from the initial examination to examination following intramuscular administration of hydromorphone and acepromazine. Significant miosis was present in 16 of 17 dogs at 10 min and 25 min following administration of hydromorphone and acepromazine. Conclusion Hydromorphone (0.04–0.08 mg/kg) and acepromazine (0.04 mg/kg) cause significant miosis in dogs at 10 and 25 min following intramuscular administration.  相似文献   

9.
PURPOSE: The purpose of this study was to determine if intravenous hypertonic hydroxyethyl starch (7.5%/6%) (HES) could decrease the intraocular pressure (IOP) in healthy normotensive dogs, and compare its effect with that of mannitol (20%) (experimental study). In addition, the potential IOP-lowering effect of hypertonic HES was evaluated in six dogs with primary glaucoma (clinical study). MATERIAL AND METHODS: Experimental study: eight male ophthalmoscopically and clinically healthy Beagles were included in this study. The IOP of each dog was measured by applanation tonometry in both eyes to obtain control values at 10:00, 10:15, 10:30, 10:45, 11:00 a.m., and then every hour until 6:00 p.m. prior to the first treatment (control period). Each dog received, with at least 2-week intervals and in a random order, an intravenous (IV) infusion of 4 mL/kg hypertonic HES (1.2 g/kg NaCl; 0.96 g/kg HES) and 4 mL/kg mannitol 20% (1 g/kg) over a period of 15 min starting at 10:00 a.m. IOP was measured oculus uterque (OU) at the same time intervals as in the control study. The differences in IOP between the treatment groups and the baseline IOP (before the start of infusion), between oculus sinister (OS) and oculus dexter (OD) and between the same time points of all groups were determined with a Student's t-test for paired samples (P = 0.05). Clinical study: six dogs with primary glaucoma (representing seven eyes) received an IV infusion of 4 mL/kg hypertonic HES over a period of 15 min. IOP was measured before and 15 and 30 min after starting the infusion. RESULTS: Experimental study: no significant difference between IOP of both eyes was found. A significant decrease in IOP from baseline value was recorded at 15, 30, 45, and 60 min after the start of mannitol infusion (mean amplitude in IOP decrease 3.21 mmHg; P < 0.05) and at 15 and 30 min in dogs treated with HES (mean amplitude in IOP decrease 2.43 mmHg; P < 0.05). At 120 and 180 min there was a significantly higher IOP (P < 0.05) in HES treatment group compared to the values of the control group. Clinical study: in 5/7 eyes diagnosed with primary glaucoma a maximum decrease in IOP of an average of 24% from the baseline value (IOP before start of the infusion) was observed (range of decrease 2-21 mmHg). In three of these five cases the maximum decrease was reached at 15 min and in two cases at 30 min. In one case an increase in IOP of 35% (+ 18 mmHg) was seen after 15 min and 26% (+ 13 mmHg) after 30 min. Case 4 showed an increase in IOP of 5% (+ 3 mmHg) after 15 min and a decrease of 6% (- 4 mmHg) after 30 min. CONCLUSIONS: Intravenous hypertonic HES is comparable to intravenous mannitol 20% in lowering the intraocular pressure in healthy normotensive dogs. But this effect lasted half an hour longer after mannitol. In 6/7 eyes with primary glaucoma, hypertonic HES decreased IOP.  相似文献   

10.
OBJECTIVE: To determine the effect of various mydriatics (1% atropine, 1% cyclopentolate, 0.5% tropicamide, 10% phenylephrine) on intraocular pressure (IOP) and pupil size (PS) in normal cats. ANIMALS STUDIED: The mydriatics were tested in 10 adult ophthalmoscopically normal European Domestic Short-haired cats. Procedure Single-dose drug studies were divided into placebo (vehicle of phenylephrine), 10% phenylephrine, 0.5% tropicamide, 1% cyclopentolate and 1% atropine. After measurement of IOP and pupil size (PS) at 8 a.m. on the first day, one drop of the tested drug was applied to one randomly selected eye. The IOP and PS were measured for a minimum of 36 h until the pupil returned to pretest size. RESULTS: Ten per cent phenylephrine had no significant effect on IOP, and the effect on the pupil size was minimal (相似文献   

11.
Effects of topical administration of a single dose of timolol maleate, a nonselective beta-adrenergic blocking agent, on intraocular pressure (IOP) and pupil diameter were evaluated in the normotensive eyes of 10 clinically normal cats over 12 hours. Mean (+/- SEM) normal IOP was 17.1 (+/- 1.1) mm of Hg and diurnal fluctuation was observed, with the highest IOP seen in the evening. Mean (+/- SEM) normal pupil diameter was 10.1 (+/- 0.5) mm. Topical treatment with 0.5% timolol resulted in reduction of IOP in treated and nontreated eyes. This effect was time-dependent and was first observed at 6 hours after treatment. Mean reduction of IOP was 22.3% in the treated eye and 16.3% in the nontreated eye. The treated eye had reduced pupil diameter at 30 minutes after treatment, and miosis persisted throughout the 12 hours of the study. Mean reduction of pupil diameter was 38.7%. A contralateral effect on pupil diameter was not seen in the nontreated eye. Topical administration of timolol maleate results in a reduction of IOP in treated and contralateral eyes, which supports the use of timolol for treatment of glaucoma in cats. In addition, the treated eye becomes miotic. This effect may indicate beta-adrenergic inhibition or alpha-adrenergic activation of the iris sphincter muscle. beta-Adrenergic blockade would then result in miosis.  相似文献   

12.
In each of 5 groups of dogs, 0.05 ml of 1 of the following solutions was injected into the anterior chamber of both eyes: phosphate-buffered saline solution, 0.001 microgram of prostaglandin F2 alpha (PGF2 alpha), 0.01 microgram of PGF2 alpha, 0.1 microgram of leukotriene D4 (LTD4), and 1 microgram of LTD4. A 10% solution of sodium fluorescein was injected IV (14 mg/kg of body weight) at the same time, and pupil size, intraocular pressure, and anterior chamber fluorescence were measured for 1 hour after injections. In a dose-dependent manner, PGF2 alpha was a potent miotic. A significant effect on intraocular pressure was not detected when the groups given PGF2 alpha were compared with the control group. When compared with LTD4, PGF2 alpha significantly (P less than 0.05) increased the breakdown of the blood-aqueous barrier, as evidenced by increased fluorescein leakage into the anterior chamber. Leukotriene D4 caused a decrease in pupil size only at 5 minutes, compared with that of the control group. Intraocular pressure was greater (but not significantly) in the group given 1 microgram of LTD4.  相似文献   

13.
Effects of topical administration of a single dose of 2% pilocarpine on intraocular pressure (IOP) and pupil diameter were evaluated in normotensive eyes of 10 clinically normal cats over 12 hours. Mean (+/- SEM) normal IOP was 17.1 (+/- 1.1) mm of Hg and, diurnal fluctuation was observed, with the highest IOP seen in the evening. Mean (+/- SEM) normal pupil diameter was found to be 10.1 (+/- 0.5) mm. Topical treatment with pilocarpine resulted in reduction of IOP in treated and nontreated eyes. This effect was time-dependent and was first observed at 4 hours after treatment. Mean reduction of IOP was 15.2% in the treated eye and 9.3% in the nontreated eye. The treated eye had reduced pupil diameter at 30 minutes after treatment, and miosis persisted throughout the 12 hours of the study. Mean reduction in pupil diameter was 28.5% in the treated eye and 14.2% in the nontreated eye. Topically administered pilocarpine results in reduction of IOP and pupil diameter in treated and contralateral eyes, which supports the use of pilocarpine for treatment of glaucoma in cats.  相似文献   

14.
Objective To evaluate the changes in intraocular pressure and pupil size in glaucomatous dogs after instillation of 0.005% latanoprost (Xalatan, Pharmacia and Upjohn, Kalamazoo, MI, USA) once in the morning, or once in the evening, or twice daily in five‐day multiple‐dose studies. Animals studied Eight Beagles with the moderate stage of inherited primary open‐angle glaucoma. Procedures Applanation tonometry (IOP) and pupil size (PS) measurements were obtained at 8 am, 10 am, 12 noon, 2 pm, and 4 pm in eight glaucoma dogs. Methylcellulose (0.5% as placebo) was instilled in the control eye, and 0.005% latanoprost was instilled in the opposite drug eye. Control and drug eyes were selected using a random table. For these three studies, 0.5% methylcellulose and 0.005% latanoprost were instilled the second through the fifth days with instillations in the morning (8.30 am), or evening (8 pm), or twice daily (8.30 am and 8 pm). Statistical comparisons between drug groups included control, placebo, and treated (0.005% latanoprost) eyes for three multiple‐dose studies. Results In the 8‐am latanoprost study, the mean ± SEM diurnal declines in IOP for the placebo and drug eyes for the first day were 6.5 ± 3.6 mmHg and 8.4 ± 4.0 mmHg, respectively. The mean ± SEM diurnal changes in IOP after 0.005% latanoprost at 8 am once daily for the next four days were 23.3 ± 5.0 mmHg, 25.4 ± 2.1 mmHg, 25.7 ± 1.7 mmHg, and 26.1 ± 1.7 mmHg, respectively, and were significantly different from the control eye. A significant miosis also occurred starting 2 h postdrug instillation, and the resultant mean ± SD pupil size was 1.0 ± 0.1 mm. In the first day of the second latanoprost study, the mean ± SEM diurnal changes in the placebo and drug eye IOPs were 11.6 ± 3.8 mmHg, and 12.0 ± 4.4 mmHg, respectively. For the following four days with latanoprost instilled at 8 pm, the mean ± SEM diurnal changes in IOP in the drug eyes were 24.9 ± 2.1 mmHg, 22.4 ± 1.8 mmHg, 21.6 ± 1.9 mmHg, and 26.6 ± 2.2 mmHg, respectively. Compared to the fellow placebo eyes, the diurnal changes in IOP were significantly different. Significant changes in pupil size were similar to the IOP changes, with miosis throughout the day and return to baseline pupil size the following morning before drug instillation. In the last study, the mean ± SEM diurnal changes in IOP for the placebo and drug eyes for the first day were 6.6 ± 2.1 mmHg and 9.4 ± 2.8 mmHg, respectively. For the four subsequent days with latanoprost instilled twice daily, the mean ± SEM diurnal IOP changes were 19.6 ± 1.5 mmHg, 19.1 ± 1.4 mmHg, 19.9 ± 1.7 mmHg, and 20.3 ± 0.7 mmHg, respectively, and were significantly different from the placebo eyes. The mean changes in PS were 3.1 ± 0.7 mm. Conclusion 0.005% latanoprost instilled once daily (am or pm) as well as twice daily produces significant decreases in IOP and PS in the glaucomatous Beagle. The evening instillation of 0.005% latanoprost produced less daily fluctuations in IOP than when the drug was instilled in the morning. 0.005% latanoprost instilled twice daily produced the greatest decline in IOP with the least daily fluctuations, but longer duration miosis.  相似文献   

15.
Objective To evaluate changes in intraocular pressure and pupil size in glaucomatous dogs after instillation of 0.004% travoprost once in the morning, or once in the evening, or twice daily in 5‐day multiple dose studies. Materials and methods Applanation tonometry (IOP) and pupil size (PS) measurements were obtained at 8 a.m., 10 a.m., 12 noon, 2 p.m. and 4 p.m. in eight glaucoma dogs. Methylcellulose (0.5% as placebo) was instilled in the control eye, and 0.004% travoprost was instilled in the opposite drug eye. Methylcellulose (0.5%) and 0.004% travoprost were instilled on the 2nd through to the 5th day with instillations in the morning (8.30 a.m.), or evening (8 p.m.), or twice daily (8.30 a.m. and 8 p.m.). Results The mean ± SEM diurnal changes from baseline IOP in the control and placebo eyes in all three studies ranged from 1.2 ± 0.3 mmHg to 3.2 ± 0.9 mmHg. The mean ± SEM diurnal changes from the baseline IOP after 0.004% travoprost at 8 a.m. once daily for the next 4 days were 19.0 ± 2.7 mmHg, 24.7 ± 2.7 mmHg, 24.9 ± 3.1 mmHg, and 24.7 ± 3.1 mmHg, respectively, and were significantly different from the control eye. After travoprost was instilled at 8 p.m., the mean ± SEM baseline changes from the baseline IOP in the drug eyes were 23.5 ± 2.2 mmHg, 24.2 ± 2.2 mmHg, 24.5 ± 2.3 mmHg, and 24.2 ± 2.3 mmHg, respectively. When 0.004% travoprost was instilled twice daily, the mean ± SEM baseline IOP changes were 27.7 ± 2.1 mmHg, 28.1 ± 2.1 mmHg, 28.4 ± 2.2 mmHg, and 28.5 ± 2.2 mmHg, respectively, and were significantly different from the control eyes. Miosis of varying duration was frequent during the three studies. Conclusion Travoprost instilled once daily (a.m. or p.m.) as well as twice daily produces significant decreases in IOP and PS in the glaucomatous Beagle.  相似文献   

16.
17.
OBJECTIVE: To determine the effect of single and multiple-dose 0.5% timolol maleate on intraocular pressure (IOP) and pupil size between 8 AM and 8 PM. Animals Nine female horses with normotensive eyes. Procedure IOP, horizontal and vertical pupil size were measured on a single day, between 8 AM and 8 PM at hours 0, 0.5, 1, 2, 4, 6, 8, 10, and 12. A single dose of 0.5% timolol maleate was applied to both eyes immediately after the first measurement at 8 AM. IOP and pupil size were measured at 8 AM and 4 PM in a 5-day experiment of twice-daily application of 0.5% timolol maleate. RESULTS: A significant decrease in IOP from 24.9 +/- 4.2 mmHg prior to application of timolol maleate to 20.7 +/- 3.1 mmHg (4.2 mmHg = 17%) was observed 8 h after single-dose application. A significant decrease in horizontal pupil size (2.0 mm = 11%) was present 6 h after single-dose application. In the multiple-dose experiment, a significant decrease in IOP was present on days 4 and 5 as compared to IOP measured prior to application of timolol maleate. A significant decrease in horizontal and vertical pupil size was present throughout the 5-day study as compared to the values obtained prior to treatment. CONCLUSIONS: 0.5% timolol maleate significantly decreased IOP and pupil size in normo-tensive eyes of this group of female horses in both single and multiple twice daily applications.  相似文献   

18.
This crossover study tested the hypothesis that both diazepam and microdose medetomidine would comparably reduce the amount of propofol required to induce sedation. Four different medications, namely high-dose diazepam (0.4 mg/kg intravenously [IV]), low-dose diazepam (0.2 mg/kg IV), medetomidine (1 mug/kg IV), and placebo (0.5 mL physiological saline IV) were followed by propofol (8 mg/kg IV) titrated to a point where intubation could be performed. The effects of medetomidine were comparable to the effects of high-dose diazepam and significantly better than the effects of low-dose diazepam or placebo. Dogs in all treatment groups had transient hypoxemia, and induction and recovery qualities were similar.  相似文献   

19.
20.

Objective

To compare intraocular pressure (IOP) and pupillary diameter (PD) following intravenous (IV) administration of dexmedetomidine and acepromazine in dogs.

Study design

Prospective, randomized experimental trial.

Animals

A group of 16 healthy adult dogs aged (mean ± standard deviation) 4.9 ± 3.3 years and weighing 15.7 ± 9.6 kg, without pre-existing ophthalmic disease.

Methods

IV dexmedetomidine hydrochloride (0.002 mg kg–1; DEX) or acepromazine maleate (0.015 mg kg–1; ACE) was administered randomly to 16 dogs (eight per group). The IOP and PD, measured using applanation tonometry and Schirmer's strips mm scale, respectively, and the heart rate (HR), systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures and respiratory rate (fR) were recorded at baseline, at time of injection, and then 5, 10, 15, 20 and 25 minutes after injection. A single ophthalmologist, unaware of treatment, performed all measurements under consistent light conditions. Values were compared with baseline and among treatments using a multivariate mixed-effects model (p ≤ 0.05).

Results

The IOP was significantly lower in the DEX group compared with the ACE group at 10 (p < 0.01) and 15 minutes (p < 0.01) after drug injection. PD was significantly smaller compared to baseline for the entire duration of the study (p < 0.01) in both groups. Dogs in the DEX group had significant lower HR (p < 0.01) and fR (p < 0.01), higher SAP (p < 0.01) and DAP (p < 0.01) at all time points, and higher MAP (p < 0.01) during the first 15 minutes following drug injection in comparison with the ACE group.

Conclusions and clinical relevance

Our results suggest that premedication with IV dexmedetomidine temporarily decreases IOP when compared with IV acepromazine. Both drugs cause miosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号