首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Simazine, linuron and propyzamide were incubated in 18 different soils at 25°C and field capacity soil moisture content. The degradation of each herbicide followed first-order kinetics. The half-life of simazine varied from 20 to 44 days, that of linuron from 22 to 86 days and that of propyzamide from 10 to 32 days. The rate of linuron degradation was highly significantly correlated with soil organic matter content, clay content, soil respiration and the extent of herbicide adsorption by the soil. The rate of simazine degradation was significantly and negatively correlated with soil pH, but the rate of propyzamide degradation was not related with any of the soil factors examined.  相似文献   

2.
The rates of disappearance of atrazine, dichlorprop, linuron and propyzamide were measured in two soils incubated at 22°C and 80% water holding capacity. Observations were made at four pH levels in each soil. Atrazine degradation was relatively insensitive to pH; it increased slightly with increasing pH in one soil and decreased in the other. The other compounds all degraded more slowly at low pH in both soils although dichlorprop had essentially disappeared in 14 days under all conditions, so that the effect of pH is not unlikely to be of practical interest. The ratios of the degradation rates of atrazine, linuron, and propyzamide varied with the soil and the pH.  相似文献   

3.
Mineralisation of the phenylurea herbicide isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) and two of its known metabolites, 3-(4-isopropylphenyl)-1-methylurea (monodesmethyl-isoproturon) and 4-isopropylaniline, was studied in Danish agricultural soils with or without previous exposure to isoproturon. A potential for rapid mineralisation of isoproturon and the two metabolites was present in soils sampled from three plots within an agricultural field previously treated regularly with the herbicide, with 34-45%, 51-58% and 33-36% of the added [phenyl-U-14C]isoproturon, [phenyl-U-14C]monodesmethyl-isoproturon and [phenyl-U-14C]4-isopropylaniline metabolised to [14C]carbon dioxide within 30 days at 20 degrees C. In contrast, such extensive mineralisation of these three compounds was not observed within this period in soils sampled from two other agricultural fields without previous treatment with isoproturon. The mineralisation patterns indicated growth-linked metabolism of the three compounds in the previously exposed soils, and doubling times for [14C]carbon dioxide production ranged from 1.6 to 3.2, 1.0 to 2.1 and 1.3 to 1.7 days for isoproturon, monodesmethyl-isoproturon and 4-isopropylaniline, respectively. The ability to mineralise [phenyl-U-14C]isoproturon to [14C]carbon dioxide was successfully sub-cultured to a fresh mineral medium which provided isoproturon as sole source of carbon and nitrogen. One of the soils sampled from an agricultural field not previously treated with isoproturon showed accelerated mineralisation of [phenyl-U-14C]4-isopropylaniline toward the end of the experiment, with a doubling time for [14C]carbon dioxide production of 7.4days. This study indicates that the occurrence of rapid mineralisation of the phenyl ring of isoproturon to carbon dioxide is related to previous exposure to the herbicide, which suggests that microbial adaptation upon repeated isoproturon use may occur within agricultural fields.  相似文献   

4.
BACKGROUND: The 2,4‐D degradation ability of the microbiota of three arable Mediterranean soils was estimated. The impact of soil moisture and temperature on 2,4‐D degradation was investigated. RESULTS: The microbiota of the three soils regularly exposed to 2,4‐D were able rapidly to mineralise this herbicide. The half‐life of 2,4‐D ranged from 8 to 30 days, and maximum mineralisation of 14C‐2,4‐D ranged from 57 to 71%. Extractable 14C‐2,4‐D and 14C‐bound residues accounted for less than 1 and 15% respectively of the 14C‐2,4‐D initially added. The highest amounts of 14C‐2,4‐D bound residues were recorded in the soil with the lowest 2,4‐D‐mineralising ability. Although all three soils were able to mineralise 2,4‐D, multivariate analysis revealed that performance of this degrading microbial activity was dependent on clay content and magnesium oxide. Soil temperature affected the global structure of soil microbial community, but it had only a moderate effect on 2,4‐D‐mineralising ability. 2,4‐D‐mineralising ability was positively correlated with soil moisture content. Negligible 2,4‐D mineralisation occurred in all three soils when incubated at 10 or 15% soil moisture content, i.e. within the range naturally occurring under the Mediterranean climate of Algeria. CONCLUSION: This study shows that, although soil microbiota can adapt to rapid mineralisation of 2,4‐D, this microbial activity is strongly dependent on climatic parameters. It suggests that only limited pesticide biodegradation occurs under Mediterranean climate, and that arable Mediterranean soils are therefore fragile and likely to accumulate pesticide residues. Copyright © 2009 Society of Chemical Industry  相似文献   

5.
Herbicide degradation in soils is highly temperature‐dependent. Laboratory incubations and field experiments are usually conducted with soils from the temperate climatic zone. Few data are available for cold conditions and the validation of approaches to correct the degradation rate at low temperatures representative of Nordic environments is scarce. Laboratory incubation studies were conducted at 5, 15 and 28°C to compare the influence of temperature on the dissipation of metribuzin in silt/sandy loam soils in southern and northern Norway and in a sandy loam soil under temperate climate in France. Using 14C‐labelled metribuzin, sorption and biodegradation were studied over an incubation period of 49 days. Metribuzin mineralisation and total soil organic carbon mineralisation rates showed a positive temperature response in all soils. Metribuzin mineralisation was low, but metabolites were formed and their abundance depended on temperature conditions. The rate of dissipation of 14C‐metribuzin from soil pore water was strongly dependent on temperature. In Nordic soils with low organic content, metribuzin sorption is rather weak and biodegradation is the most important process controlling its mobility and persistence.  相似文献   

6.
The rates of disappearance of atrazine and linuron when incubated at 22°C with soil or soil containing added nutrient materials were determined with 2 contrasting soils. Inorganic salts, straw or a combination of both increased atrazine degradation in both soils. None of the treatments influenced linuron breakdown greatly. It is concluded that in these soils the rate limiting step in atrazine degradation could be microbiological, not chemical.  相似文献   

7.
O. LODE 《Weed Research》1967,7(3):185-190
Summary. A glasshouse experiment was performed in which linuron was added to five Norwegian soils. Chemical residue analysis and bioassay tests showed that the rate of decomposition varied for the different soils and that the linuron content which produced a reduction in growth of ryegrass seedlings varied with soil type. No leaching into the lower layers occurred. An initial depression in the numbers of bacteria and fungi present in the soils was observed, but the populations later recovered.  相似文献   

8.
The dependence of the behaviour of metsulfuron-methyl on soil pH was confirmed during incubations under controlled laboratory conditions with two French soils used for wheat cropping. The fate of [14C] residues from [triazine-14C]metsulfuron-methyl was studied by combining different experimen-tal conditions: soil pH (8·1 and 5·2), temperature (28 and 10°C), soil moisture (90 and 50% of soil water holding capacity) and microbial activity (sterile and non-sterile conditions). Metsulfuron-methyl degradation was mainly influenced by soil pH and temperature. The metsulfuron-methyl half-life varied from five days in the acidic soil to 69 days in the alkaline soil. Under sterile conditions, the half-life increased in alkaline soil to 139 days but was not changed in the acidic soil. Metsulfuron-methyl degradation mainly resulted in the formation of the amino-triazine. In the acidic soil, degradation was characterised by rapid hydrolysis giving two specific unidentified metabolites, not detected during incubations in the alkaline soil. Bound residues formation and metsulfuron-methyl mineralisation were highly correlated. The extent of bound residue formation increased when soil water content decreased and was maximal [48 (±4)% of the applied metsulfuron-methyl after 98 incubation days] in the acidic soil at 50% of the water holding capacity and 28°C. Otherwise, bound residues represented between 13 and 32% of the initial radioactivity. © 1998 SCI  相似文献   

9.
Spatial heterogeneity is a ubiquitous feature in natural ecosystems, especially in arid regions. Different species and their discontinuous distribution, accompanied by varied topographic characteristics, result in soil resources distributed differently in different locations, and present significant spatial heterogeneity in desert ecosystems. In this study, conventional and geostatistical methods were used to identify the heterogeneity of soil chemical properties in two desert populations, Haloxylon persicum Bunge ex Boss., which dominates on the slopes and tops of sand dunes and Haloxylon ammodendron (C. A. Mey.) Bunge, which inhabits interdunes in the Gurbantunggut Desert of Xinjiang, China. The results showed that soil pH, electrical conductivity (EC), soil organic carbon (SOC), available nitrogen (AN) and available phosphorus (AP) were significantly higher in H. ammodendron populations than that in H. persicum. The coefficient of variation (CV) indicated that (1) most parameters presented a moderate degree of variability (10% < CV < 100%) except pH in both plots, (2) the variability of soil pH, EC and AP in H. ammodendron populations was higher than that in H. persicum populations, and (3) SOC and AN in H. ammodendron populations were lower than that in H. persicum populations. Geostatistical analysis revealed a strong spatial dependence (C0/(C0+C) < 25%) within the distance of ranges for all tested parameters in both plots. The Kriging-interpolated figures showed that the soil spatial distribution was correlated with the vegetation distribution, individual size of plants, and the topographic features, especially with the plants nearest to sampling points and the topographic features. In each plot, soil EC, SOC, AN and AP presented similar distributions, and fertile islands and salt islands occurred in both plots but did not affect every individual plant, since the sampling distance was larger than the size of such fertile islands. The results of topographic effects on soil heterogeneity suggested s  相似文献   

10.
The persistence of [14C]MCPA at a rate equivalent to 1 kg ha?1 was studied under laboratory conditions in a clay loam, heavy clay and sandy loam at 85% of field capacity moisture and 20±1°C both alone and in the presence of tri-allate, trifluralin, tri-allate and trifluralin, malathion, Vitaflow DB, malathion and Vitaflow DB, bromoxynil, bromoxynil and asulam, bromoxynil and difenzoquat, dicamba, dicamba and mecoprop, linuron, MCPB, metribuzin, propanil, TCA, benzoylprop-ethyl, diclofop-methyl, and flamprop-methyl. Except in the soils treated with asulam, the half-lives of [14C]MCPA in all three soil types were similar, being approximately 13±1 days, thus indicating that none of the other chemicals studied adversely affected the soil degradation of MCPA. In the asulam treated soils, the half-lives of the MCPA were about 3 days longer than in non-asulam treated soils; the effect was most marked in the clay loam.  相似文献   

11.
Spatial heterogeneity is a ubiquitous feature in natural ecosystems,especially in arid regions.Different species and their discontinuous distribution,accompanied by varied topographic characteristics,result in soil resources distributed differently in different locations,and present significant spatial heterogeneity in desert ecosystems.In this study,conventional and geostatistical methods were used to identify the heterogeneity of soil chemical properties in two desert populations,Haloxylon persicum Bunge ex Boss.,which dominates on the slopes and tops of sand dunes and Haloxylon ammodendron (C.A.Mey.) Bunge,which inhabits interdunes in the Gurbantunggut Desert of Xinjiang,China.The results showed that soil pH,electrical conductivity (EC),soil organic carbon (SOC),available nitrogen (AN) and available phosphorus (AP) were significantly higher in H.ammodendron populations than that in H.persicum.The coefficient of variation (CV) indicated that (1) most parameters presented a moderate degree of variability (10%<CV<100%) except pH in both plots,(2) the variability of soil pH,EC and AP in H.ammodendron populations was higher than that in H.persicum populations,and (3) SOC and AN in H.ammodendron populations were lower than that in H.persicurn populations.Geostatistical analysis revealed a strong spatial dependence (Co/(Co+C)<25%) within the distance of ranges for all tested parameters in both plots.The Kriging-interpolated figures showed that the soil spatial distribution was correlated with the vegetation distribution,individual size of plants,and the topographic features,especially with the plants nearest to sampling points and the topographic features.In each plot,soil EC,SOC,AN and AP presented similar distributions,and fertile islands and salt islands occurred in both plots but did not affect every individual plant,since the sampling distance was larger than the size of such fertile islands.The results of topographic effects on soil heterogeneity suggested significant differences between the interdunes and dune-tops.Different topographic characteristics (physical factors) between plots result in the differences in SOC,AN and AP,while the heterogeneity of soil pH and EC arise from plant species and their distribution (biotic factor).Such biotic and physical factors did not occur in isolation,but worked together on soil heterogeneity,and played important parts in improving the soil properties.Hence these factors were ecologically valuable in the highly resource-stressed arid study area.  相似文献   

12.
The disappearance of linuron and metribuzin was studied during laboratory incubation of soil samples which had been taken from several depths at three sites, and treated with the pesticides. Temperature and water content of the soils were varied. There was a tendency for the rate of loss to be slower in soil taken from deeper horizons than in surface soil but the differences were not large. In only ten out of forty experiments did the value 1 for the apparent order of reaction fall within 95% confidence limits. In the remaining experiments the apparent reaction order was greater than 1 with eight values higher than 4. For one soil, the reaction order for linuron was markedly lower for incubation at 22°C compared with incubations at 10°C. The results could be explained on the basis that the systems were complex, involving consecutive or competing reactions. An alternative possibility is that the apparent complexities were artifacts brought about by the inherent limitations of the laboratory incubation system.  相似文献   

13.
BACKGROUND: The diuron‐mineralising ability of the microbiota of a Mediterranean vineyard soil exposed each year to this herbicide was measured. The impact of soil moisture and temperature on this microbial activity was assessed. RESULTS: The soil microbiota was shown to mineralise diuron. This mineralising activity was positively correlated with soil moisture content, being negligible at 5% and more than 30% at 20% soil moisture content. According to a double Gaussian model applied to fit the dataset, the optimum temperature/soil moisture conditions were 27.9 °C/19.3% for maximum mineralisation rate and 21.9 °C/18.3% for maximum percentage mineralisation. The impact of temperature and soil moisture content variations on diuron mineralisation was estimated. A simulated drought period had a suppressive effect on subsequent diuron mineralisation. This drought effect was more marked when higher temperatures were used to dry (40 °C versus 28 °C) or incubate (28 °C versus 20 °C) the soil. The diuron kinetic parameters measured after drought conditions were no longer in accordance with those estimated by the Gaussian model. CONCLUSION: Although soil microbiota can adapt to diuron mineralisation, its activity is strongly dependent on climatic conditions. It suggests that diuron is not rapidly degraded under Mediterranean climate, and that arable Mediterranean soils are likely to accumulate diuron residues. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
Volatilization, mineralization, degradation and binding of soil-applied [14C]DDT were studied in three different soils from a tropical region of southern India subjected to solar irradiation and flooding for a period of 42 days. The soil types–red cotton soil, nursery soil and canal bank soil–differed in their organic carbon content, pH and texture. Under unflooded conditions, volatile losses were highest in the sandy canal bank soil. Flooding significantly enhanced volatilization, and this effect was maximal in the nursery soil, which had the highest organic carbon. The soils fully exposed to solar radiations in quartz tubes registered 1.5-1.8 times greater volatility. The volatilized organics contained appreciable quantities of DDE under both flooded and unflooded conditions. In addition, greater quantities of DDD volatilized from the flooded systems. The rate of formation of DDE was faster when soils were irradiated in quartz tubes. Mineralization remained minimal throughout the period of exposure and flooding the soil appeared to reduce further the [14C]carbon dioxide evolution. Canal bank soil exhibited the least mineralization and degradation. The data indicate that volatilization was significantly influenced by solar radiation and flooding to a much greater degree than by the differences in soil properties. Binding of DDT to soil was significantly increased by flooding the soil, thus leaving up to 33% of the initial DDT as bound residues in the nursery soil.  相似文献   

15.
The effects of application rate, volume, solvent and soil moisture content on the kinetics of mineralization and degradation, of [14C] permethrin have been studied in a sandy loam soil under standard laboratory conditions. During the incubation period, up to 32 days, the temperature and moisture level of the soil were controlled. Apart from the effects of application rate, which have been widely reported, application volume had the most significant effect on mineralization rate and T1/2. [14C]Permethrin, at a level of a 1 mg kg?1 in the soil, applied in 100 μl of methanol, resulted in the evolution of 14% of the applied radiochemical as [14C] carbon dioxide over 30 days. The same level applied in 1000 μl mineralized at a faster rate, with 30% [14C]carbon dioxide evolved over 30 days. The test chemical applied to soil in methanol mineralized at a significantly faster rate than a similar concentration applied in ethanol. There was no significant difference when comparing applications made using acetonitrile with those using methanol or ethanol. The addition of formulation ingredients resulted in little or no variation in mineralisation rate compared to an equivalent application volume of methanol/water.  相似文献   

16.
The microbial degradation of [14C]paraquat using cultures from two agricultural soils was investigated. The experiments were carried out in the absence of light, under aerobic conditions. Degradation was rapid, with 50% mineralisation to [14C]carbon dioxide occurring within three weeks. HPLC, capillary electrophoresis and mass spectroscopy confirmed that the majority (>85%) of the remaining radiochemical in solution was [14C]oxalic acid, and that no paraquat remained.  相似文献   

17.
[14C]Diflubenzuron is readily degraded in various agricultural soils and in hydro-soil; 50% of the applied dose of 1 mg kg−1 was metabolised in 2 days or less. The chief products of hydrolysis were identified as 4-chlorophenylurea and 2, 6-difluorobenzoic acid. A part of the radioactivity, increasing with incubation time, could not be extracted. Release from the soil of [14C]carbon dioxide, derived from both labelled phenyl rings, points to the ultimate mineralisation of diflubenzuron.  相似文献   

18.
Increasing adsorption of [14C]-labelled carbendazim in soil took place within a few weeks of incubation and was greatest in soil with a high organic matter content. Carbendazim was slowly decomposed in soil, mainly by soil microorganisms. After 250 days of incubation in two unsterilised soils, 13 and 5% respectively of added [14C]-carbendazim was recovered compared with 70 and 50% respectively from sterile soils; 4–8% of added carbendazim was recovered as 2-aminobenzimidazole (2-AB) from both unsterilised and sterile soil. After 270 days' incubation, 33 and 9% of 14C was recovered as 14CO2 from soil supplied with [14C]-carbendazim (20 and 100 mg/kg) respectively. Degradation started more rapidly when carbendazim was added to soil preincubated with the fungicide but the degradation rate was very low in all cases, indicating that the compound is a poor microbial energy source and that the degradation is a co-metabolic process. 2-AB was found as a degradation product although it appeared to be unstable in soil, decomposing rapidly after a lag period of about 3 weeks; small amounts remained in the soil for several months, however, presumably adsorbed on soil particles.  相似文献   

19.
How common reed (Phragmites australis Trin. ex Steud.) colonization correlates to soil heterogeneity and environmental determinants remains unclear in arid areas. We conducted a field investigation and soil sampling in 100 plots along Keriya River Basin to uncover the relationship between common reed and heterogeneous soils. Reed colonization variables and its soil properties were measured and recorded for the analysis of their relationship using Pearson correlation and redundancy analysis methods. The comparison results of common reed characteris- tics among 100 plots showed that common reeds performed strong tolerance and ecophysiological plasticity to edaphic stresses. Common reed colonization was tightly connected to soil heterogeneity according to the correla- tion analysis between its colonization characteristics and soil properties. Common reed colonization got feedbacks on soil properties as well, including the increase of soil organic matter and the alleviation of salt uplifting. The main limiting environmental determinant of common reed colonization was soil salt, followed by pH and soil water content.  相似文献   

20.
The herbicide isoproturon was degraded rapidly in a sandy loam soil under laboratory conditions (incubation temperature, 15°C; soil moisture potential, -33 kPa). Degradation was inhibited following treatment of the soil with the antibiotic chloramphenicol, but unaffected by treatment with cycloheximide, thus indicating an involvement of soil bacteria. Rapid degradation was not observed with other phenylurea herbicides, such as diuron, linuron, monuron or metoxuron incubated in the same soil under the same experimental conditions. Three successive applications of isoproturon to ten soils differing in their physicochemical properties and previous cropping history induced rapid degradation of the herbicide in most of them under laboratory conditions. There were, however, no apparent differences in ease of induction of rapid degradation between soils which had been treated with isoproturon for the last five years in the field and those with no pre-treatment history. A mixed bacterial culture able to degrade isoproturon in liquid culture was isolated from a soil in which the herbicide degraded rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号