首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During one year, samples from eight drainage lakes, seven run-off stations and three deposition sites from various geographical areas in Sweden were collected and analyzed for methyl Hg (MeHg) and total Hg (Hg-tot). The MeHg concentrations ranged from 0.04 to 0.64 ng L?1, 0.04 to 0.8 ng L?1, and <0.05 to 0.6 ng L?1 in run-off, lake water and rain water, respectively. The corresponding Hg-tot concentrations were found in the range 2 to 12 ng L?1, 1.35 to 15 ng L?1, and 7 to 90 ng L?1, respectively. A Hg-tot level of about 60 ng Hg L?1 was found in throughfall water. The MeHg and Hg-tot concentrations are positively correlated in both run-off and lake water, but not in rain and throughfall water. A strong positive correlation between the MeHg, as well as the Hg-tot concentration, and the water color is observed in both run-off and lake waters, which suggests that the transport of MeHg and other Hg fractions from soil via run-off water to the lake is closely related to the transport of organic substances; and is a consequence of the biogeochemical processes and the water flow pathway. The ratio between the mean values of MeHg and Hg-tot seems to be an important parameter, with an indicated negative coupling to the mean value of pH for run-off water, but a strong positive correlation to Hg-content in fish, the ratio between the area of the catchment and the lake, as well as to the retention time of lake.  相似文献   

2.
A simple dose-effect model expressing the relationships between lake acidity, weighted mean annual sulfate concentration in wet deposition, Ca, Mg and true color (as an index of organic anion concentration) is presented. The agreement between observed and estimated pH for more than a 1000 lakes is high according to the Pearson coefficients of correlation (0.81 to 0.90) and the standard error of estimation (0.22 to 0.27 pH unit). Results obtained with this model show that an airborne sulfate target loading of 20 kg ha?1 yr?1 would be too high to adequately protect sensitive lake ecosystems. A target loading of 15 kg ha?1 yr?1 in wet deposition would be best suited for the protection of the greater portion of sensitive lakes. However, a target loading of 10 kg ha?1 yr?1 would be required to protect the most sensitive lake ecosystems.  相似文献   

3.
The B concentration was determined in bulk deposition and in surface freshwaters (lakes and rivers) of the river Po watershed in Northern Italy. The curcumin photometric method was used to determine B content for all analyses. The B concentrations were under detection limits (0.06 mg B L?1) in bulk deposition and below 0.09 mg B L?1 in lake waters. Approximately 65 % of river samples measured had B concentrations close to natural background levels for natural waters (0.1 mg B L?1). There was a strong correlation (r < 0.85) between B concentration and those of both total dissolved P and anionic detergents. The elevated B concentrations may be related to anthropogenic sources.  相似文献   

4.
In order to test whether major reductions in acid inputs had improved water quality sufficiently for fish populations to recover, we stocked wild European perch (Perca fluviatilis) in three highly acidified lakes that had previously supported this species, and in one limed lake. The fish, which were introduced from a local lake (donor lake), generally ranged from 12 to 16 cm in total length, and were stocked at densities of 117–177 fish ha?1. The untreated lakes were highly acid, with minimum pH values and maximum inorganic aluminium concentrations (Ali) during the spring of 4.6–4.7 and 118–151 µg L?1 respectively. In the limed lake, the corresponding values for pH and Ali ranged between 5.8 and 6.6 and 5 and 19 µg L?1 respectively. Gill-netting in two subsequent years after the introduction yielded only a few recruits (0+) and one adult in one of the three acidified lakes in one year only. However, stocked perch reproduced successfully in both years in the limed lake. There was a significant linear relationship between the catches (CPUE) of juvenile perch (age 0+) in the different lakes in the autumn and the water quality in May (time of hatching), both in terms of Ali (r 2=0.934, P<0.05) and pH (r 2=0.939, P<0.05). Our data suggest unsuccessful recruitment in waters of pH <5.1 and Ali>60 µg L?1.  相似文献   

5.
If soil solution phosphorus (P) optimum levels for plant growth (external P) are known, P adsorption isotherms or their equations could further be used to assess how much fertilizer P may be needed for optimum plants yield (QFPN) by adjusting this known external solution P requirement in the soil (ESPR). Surface soil samples were collected from a farmer's field area and research area. An adsorption study was conducted on Ustic Endoaquerts (S1 soil), Typic Calciargids (S2 soil), and Typic Torripsamments (S3 soil) to develop the two-surface Langmuir-type equations. Phosphorus adsorption data were obtained by equilibrating 10-g soil samples in 100 mL of 0.01 M calcium chloride (CaCl2) containing various amounts of monopotassium phosphate (KH2PO4). Thereafter, 11 P fertilizer rates were calculated by two-surface Langmuir-type equations to adjust different estimated soil solution P levels (EPAS) that were designated as treatments (0.05 to 0.90 mg L?1). Then field experiments on lentil (cv. Niab Masoor 2002) were conducted according to a randomized complete block design (RCBD) on these soils to determine internal (plant tissue), external (soil solution), and fertilizer P requirements. Maximum lentil seed yield (Mg ha?1) was 0.87 with T4 (0.17 mg P L?1) in S1 soil, 1.8 with T3 (0.20 mg P L?1) in S2 soil, and 0.73 with T7 (0.28 mg P L?1) in S3 soil, obtained by applying 170 kg P2O5 ha?1 in S1 soil, 110 kg P2O5 ha?1 in S2 soil, and 78 kg P2O5 ha?1 in S3 soil. Internal P concentrations (%) of the whole plant associated with 95% of maximum lentil seed yield at flowering stage were 0.245, 0.210, and 0.315 in S1, S2, and S3 soils, respectively. Internal P requirements of lentil seed were 0.290 in S1, 0.245% in S2, and 0.380% in S3 soil. The ESPRs for 95% of maximum yield of lentil were 0.16 mg L?1, in S1 soil, 0.23 mg L?1 in S2 soil, and 0.27 mg L?1 in S3 soil. The QFPN estimated from graphs corresponding to these ESPR values were 160 kg P2O5 ha?1 in S1 soil, 125 kg P2O5 ha?1 in S2 soil, and 74 kg P2O5 ha?1 in S3 soil. The QFPNs estimated from corresponding two-surface Langmuir-type equation by using respective ESPR values were 164, 127, and 75 kg P2O5 ha?1 in S1, S2, and S3 soil, respectively. Field-applied P2O5 amounts to adjust soil solution P levels (mg L?1) at 0.166 (T4), 0.229 (T4), and 0.281 (T7) were 170, 126, and 78 kg ha?1 in S1, S2, and S3 soil, respectively. Based on the results of these studies, we propose that QFPNs estimated by graphs against identified ESPR values or calculated by the use of corresponding two-surface Langmuir-type equations are in close proximity to the field-applied P to adjust desired EPAS value. Therefore, either of the two techniques may be used to estimate QFPN for optimum lentil yield. Close  相似文献   

6.
Response of cassava (Manihot esculenta Crantz) to fertigation as a form of nutrient delivery is unknown. The objectives of this study were to establish a balanced nutrition and to enhance agronomic nutrient use efficiency (ANUE) of cassava under fertigation. This study was conducted in the greenhouse and in the field. In both, the results showed a similar trend. There were six fertigation concentrations and three cassava varieties, selected for their duration of growth in the field. Shoot biomass of the long‐duration variety (Nalumino) was the highest, even though its dry root yield was the lowest (10.18 t ha?1) among the varieties. In contrast, the medium‐duration variety (Kampolombo) produced the highest dry root yield (20.34 t ha?1) and a lower shoot biomass. The highest root yield of the shortest‐duration variety (Mweru) was achieved at 200 mg N, 30 mg P, and 200 mg K L?1 (155.0, 23.3, 155.0 kg N, P, K ha?1), while Nalumino's was at 70 mg N, 7 mg P, and 70 mg K L?1 (54.3, 5.4, 54.3 kg N, P, K ha?1). ANUE and harvest index of these varieties declined as the fertigation concentrations increased. Additionally, the correlation between concentrations of N in the youngest fully expanded leaf (YFEL) blades and dry root yields was the lowest (R2 = 0.5488), whereas P and K were R2 = 0.7237 and R2 = 0.8006, respectively, an indication that nutrient concentrations in the leaf, especially N, cannot easily be used to predict root yield. When cassava reaches nutrient sufficiency, mainly N, its accumulation in the leaf continues without significant increase in the root yield.  相似文献   

7.
Abstract

We estimated the phosphorus (P) budgets for all 212 cities, towns and villages of Hokkaido, Japan. We also carried out water sampling from all major rivers flowing in the respective areas during the snowmelt season and measured total P (TP) concentration. Surplus P in the agricultural land was estimated by subtracting the amount of crop uptake from the input sources, such as the amount of chemical and compost fertilizers, crop residues, rainfall and irrigation. The livestock excreta P not utilized on farmland was assumed to be disposed P. Total P concentrations in most of the river water ranged from undetectable to 1 mg L?1, rarely reaching up to 2.32 mg L?1, and the areas surrounding the Funka Bay had comparatively higher concentrations. More than two-thirds of the areas had surplus P in farmland ranging from negative values to 30 kg ha?1 of farmland, and areas with mixed farmland and livestock husbandry had higher surplus values ranging from 31 to 72 kg ha?1, indicating that the source of the residual P was applied chemical and manure fertilizers. Total P concentration in river water was not correlated with the proportion of upland field and urban area or with the farmland surplus P resulting from the P cycling and the municipal waste P that mixes into the river water. However, TP concentration was positively correlated with the proportion of Andisol area occupied by farmlands (r = 0.25, P < 0.01). The TP concentration was also correlated with the topographic factors in areas (r = 0.49, P < 0.01) that possess more than 50% Andisols in farmlands. Multiple regression analysis showed that TP concentration was best explained by a combination of disposed excreta, the Andisol area occupied by farmland, the application rate of chemical fertilizers and topographic factors (r 2 = 0.21, P < 0.001). Thus, P losses from farmlands to river water during the snowmelt season could mainly be attributed to fertilizer management and soil type along with the topographic condition of the area.  相似文献   

8.
9.
Experimental addition of phosphate to enclosures in an acidified lake in Southern Norway was performed to study the effect on nitrate, pH and labile aluminium along a gradient of phosphate from 4–19 µg P L?1. Nitrate decreased from 180 µg L?1 to below detection limit after three weeks at P-concentrations > 17 µg L?1, due to phytoplankton uptake. pH increased from 4.9 to 5.2, corresponding to a 50% decrease of H+-equivalents from 12 to 6 µg P L?1 due to algal uptake of H+-ions when assimilating NO3 ?-ions. Due to the increased pH and probably also precipitation with phosphate, concentrations of labile aluminium decreased from 150 to 100 µg L?1 within the P-interval 4–19 µg L?1. Algal biomass increased from 0.5 to 6 µg chlorophyll a L?1 along the same P-gradient. The results suggest that moderate P-addition (< 15 µg P L?1 to avoid eutrophication problems) can improve water quality in moderately acidified lakes, and also increase nitrate retention in strongly acidified lakes. In humic lakes, the treatment will be less efficient due to light limitation of primary production and the presence of organic acids.  相似文献   

10.
Nelson Lake, a moderately acidic (pH 5.7), metal-contaminated (Cu 22 μg L?1; Zn 18 ug L?1) lake, 28 km from the smelters at Sudbury, had a degraded fish community in the early 1970's, with lake trout (Salvelinus namaycush) scarce, smallmouth bass (Micropterus dolomieui) extinct, and the littoral zone dominated by the acid-tolerant yellow perch (Perca flavescens). Liming of the lake in 1975–76 increased pH to 6.4, and decreased metal concentrations. Chemical conditions have remained relatively stable in the 10 yr following base addition. Initially, it appeared that neutralization produced dramatic changes in the resident fish community. Yellow perch abundance declined rapidly after neutralization, lake trout abundance increased to the extent that 3.26 kg ha?1 were caught in the winter of 1980, and reintroduced smallmouth bass reproduced and established a large population. However, these changes in the fish community can not be directly attributed to liming, as water quality and the sport fisheries of an unlimed nearby lake also improved. Reduced emissions from Sudbury smelters were responsible for improvements in the untreated lake. Recovery of the lake trout population in Nelson Lake appears to have begun prior to liming. Of the lake trout sampled during the 1980 winter fishery, 65.8% were present prior to the chemical treatment. Predation by lake trout was the likely cause of the perch decline. Our results suggest that chemical conditions producing population level responses in fish have abrupt thresholds and that neutralization of lakes above these thresholds may not produce distinguishable effects.  相似文献   

11.
Abstract

The study was carried out to investigate the water balance and runoff and infiltration losses of nutrients in a paddy field plot located in southern Korea. Field monitoring was carried out during the cropping season from May 1, 1999 to September 30, 2000. The soil of the experimental paddy field belonged to the Jisan series (SiL; fine loam, mixed, mesic Fluventic Haplaquepts) covering on area of 5,000 m2 (100 m × 50 m). The measured input quantities of N and P into the paddy field were as follows: 122 and 140 kg N ha?1 and 29 and 30 kg P2O5 kg ha?1 from chemical fertilizer, 20 and 28 kg N ha?1 and 0.35 and 0.36 kg P ha?1 from precipitation, and 26 and 35 kg N ha?1 and 0.57 and 0.72 kg P ha?1 from irrigation water, respectively. The measured outputs of N and P during the study period were as follows: 48 and 52 kg N ha?1 and 1.1 and 1.6 kg P ha?1 from runoff water, and 9 and 12 kg N ha?1 and 0.04 and 0.05 kg P ha?1 from infiltration. The runoff loading was the highest in June, presumably because of the higher concentrations of chemical components associated with chemical fertilizer application. The runoff losses of nutrients were compared to the amounts of nutrients supplied by chemical fertilizers. It was found that the losses of N accounted for 34.3 and 42.6% of the chemical fertilizer applied, while those of P accounted for 3.8 and 5.3%. The ratio between nutrient losses by infiltration and the chemical fertilizer applied was 6.4 and 9.8% for N and 0.1 and 0.2% for P, respectively.  相似文献   

12.
Ustochrept soil was collected from a major potato-growing area in Pakistan for a potassium (K) adsorption isotherm experiment. Adsorption data were fitted to Freundlich and Langmuir adsorption models. Results showed that the Freundlich model (R2?=?0.96**) fit the data better than did the Langmuir model. Fertilizer rates were calculated based on the Freundlich model and targeted solution K levels at 0, 3, 6, 9, 12, 15, 18, 21, 24, and 27 mg K L?1. A field experiment was then conducted on the soil to assess the effect of various soil solution K levels (0–27 mg L?1, with K fertilizer rates at 0, 24, 49, 75, 101, 128, 155, 182, 210, and 237 kg ha?1), on tuber yield and quality along with 300 kg N and 250 kg P2O5 ha?1 as basal doses. Yield response models (linear plus plateau, quadratic, square root, quadratic plus plateau, and exponential) were used to calculate the optimal fertilizer rate for potato crop. Linear plus plateau model fit the data with less bias than the other models. There was a significant effect of K use on the yield and quality of potatoes. Potassium fertilizer application at 130 kg K ha?1, which is equivalent to a soil solution level of 12 mg K L?1, maximized the tuber yield of potato. However, for the improvement in tuber dry matter, reducing sugars, protein contents, and starch contents, the soil solution K level required was as high as14.62 mg L?1 (157 kg ha?1). Even greater rate of K, 17.74 mg L?1 (190 kg ha?1), was needed to maximize vitamin C content in potato.  相似文献   

13.
The generation of alkalinity by SO4 reduction and net storage of reduced S in lake sediments has been estimated from an analysis of sediment cores from 16 lakes in ME, VT, NY, MI, MN, and WY. The cores have been dated by 210Pb. The rate of pre-1850 (background) storage of S in lake sediments suggests that alkalinity contribution to lake water from this process ranged from 0.2 to 9.3 geq L?1, with an average of 4 geq L?1, Background values are similar for all lakes and remain low in the WY lakes up to the present. Maximum alkalinity contributions recorded in sediment, from upper mid-west and eastern lakes, dated between 1850 and 1985 are between 0.4 and 33 geq L?1, with a lake mean maximum of 9.9 geq L?1, Significant increases in recent S storage only occur in eastern lakes. Average values for net S accumulation in the sediment of most lakes for post-1850 sediment are typically less than half of maximum values.  相似文献   

14.
The Fukushima Daiichi nuclear power plant accident caused radioactive pollution in northeastern Honshu Island, Japan. This study examined the influence of snowmelt and rainfall on soil erosion processes and siltation of small lakes in Miyagi Prefecture (150 km northwest of the power plant). Two sets of slopes and lakes, respectively in pasture and forest catchments, were examined. Snowpack thickness, soil infiltration, surface runoff volume, soil and sediment physicochemical properties, Cs concentration of precipitation, meltwater, and rainwater, and lake siltation rates were determined. The total radioactive Cs content in precipitation was 0.7–7.4 BqˑL−1 and was below the Japanese standard (10 BqˑL−1). Total radioactive Cs was at the allowable level in water flowing down the pasture catchment slope (0.1–9.2 BqˑL−1) during snowmelt and rainfall, as well as in pasture (0.9–8.8 BqˑL−1) and forest (0.7–5.2 BqˑL−1) catchment lake water. There was no soil erosion (surface runoff) in the forest catchment. Soil losses in the pasture catchment were 23 due to rainfall and 9 kg ha−1 yr−1 following spring snowmelt. After snowmelt, a 0.5 and 0.2 mm thick layer of silt was deposited in pasture and forest catchment lakes, respectively, and 1.4 and 0.6 mm were deposited during the rainfall period. Average siltation rates were 1.9 and 0.8 mmˑyr−1 for pasture and forest catchment lakes, respectively. The upper layer of lake bottom sediments is represented mainly by silt fractions (2–50 μm), with high organic matter (4.0–5.7%) and radiocesium (1100–1600 kgˑha−1) contents.  相似文献   

15.
Phosphorus (P) transfers may accelerate water eutrophication to waters. Increasing awareness of the role of diffuse P sources motivates land managers in different regions of Europe to undertake conservation programs that place emphasis not only on soil conservation but also on water quality and eutrophication risk. Fertilizer applications and wastes are the main sources of dissolved P in Galicia and in the Atlantic regions of Spain. The aim of this study was to assess the temporal changes in concentration of total P (TP), sedimentary P (SP), and total dissolved P (TDP) and suspended solids at the outlet of an agroforestry catchment located in northwestern Spain. The study datasets range from January 1999 to December 2007, with 992 water samples collected. The water-collection strategy was a stratified point sampling involving more frequent collections when flow was high. Phosphorus contents were assessed by inductively coupled plasma (ICP)–mass spectroscopy (MS), and suspended solids were measured by filtration. The content ranges of the different studied P forms and suspended solids were as follows: TDP between 1 and 672 mg L?1, SP between 1 and 1064 mg L?1, TP between 1 and 1111 mg L?1, and suspended solids between 1 and 1044 mg L?1. A few events of intense precipitation with peaks of TP greater than 200 mg L?1 and in some cases even more than 1000 mg L?1 were responsible for most of the P losses in the catchment studied. TP and SP, TP and suspended solids, and SP and suspended solids showed highly significant correlations during the entire study period, evidencing the erosive origin of P in this catchment.  相似文献   

16.
The behaviour of P in a range of English arable soils was examined by plotting the change in resin P in the topsoil (ΔPres) at the end of a 3‐ to 5‐year period, against the P balance over the same period (fertilizer P applied minus offtake in crops, estimated from farmers’ reported yields and straw removal). Based on the assumption that values for offtake per tonne of crop yield used for UK arable crops are valid averages, 20–60% of ΔPres was explained by the balance. Applying excess P fertilizer increased Pres, and reducing P fertilizer use decreased it; typically 3–4 kg P ha?1 was required for each mg L?1ΔPres (6–8 kg ha?1 for each mg L?1 of Olsen P). About half the P balance seems to be resin extractable and this differed little between soil groups, except in cases of very low P (index 0) in which the P buffering was stronger, and on very high P soils (index 4/5) when buffering was less. However, on calcareous soils and red soils, when fertilizer was applied in accord with offtake, Pres fell by up to 4 mg L?1 year?1 (2 mg L?1 yr?1 olsen P) and to prevent this an extra 3–10 kg P ha?1 year?1 fertilizer was required. But on most non‐calcareous soils, replacing offtake maintained Pres, with perhaps slight rises on soils of low clay content or greater organic matter content. In soils under arable rotations, the apparent recovery of P from fertilizer was often around 100%, falling to 85% on Chalk soils and 75% on medium–heavy soils on limestone or Lower Chalk. The fate of the ‘missing’ P needs clarification. The case for corrections to current P fertilizer recommendations in the UK on certain soil types is discussed.  相似文献   

17.
Once soil solution phosphorus (P) level optimum for plant growth is identified, P adsorption isotherms or their equations can further be used to estimate fertilizer P rates required to adjust this desired soil solution P level to obtain maximum yield. Surface soil samples were collected from a farmer's field area and research area. An adsorption study was conducted on Ustic Endoaquerts (S1 soil), Typic Calciargids (S2 soil), and Typic Torripsamments (S3 soil) to develop the Freundlich-type equations. Phosphorus adsorption data were obtained by equilibrating 10-g soil samples in 100 mL of 0.01 M calcium chloride (CaCl2) containing various amounts of monopotassium phosphate (KH2PO4). Values of 1/n (slope) ranged from 0.4827 to 0.6452 L kg?1. Based on 1/n values, it was inferred that each of the two S1 and S3 soils was homogeneous and S2 was not. The KF (mg P kg?1) values of S1, S2, and S3 soils were 92.45, 55.81, and 23.38, respectively. The highest amount of P (92.45 mg kg?1) was adsorbed at unit EPC in S1 soil, whereas the lowest amount (23.38 mg P kg?1) was adsorbed in S3 soil. Thereafter, 11 P fertilizer doses were calculated by these Freundlich-type equations to adjust different estimated soil solution P levels that were designated as treatments (0.05 to 0.90 mg L?1). Then field experiments on wheat (cv. Inqalab-91) were conducted according to a randomized complete block design (RCBD) on these soils to determine internal (plant tissue), external (soil solution), and fertilizer P requirements. Maximum wheat gain yield (Mg ha?1) was 6.82 with T5 (0.25 mg P L?1) on S1 soil, 5.96 with T5 (0.25 mg P L?1) on S2 soil, and 4.97 with T7 (0.40 mg P L?1) on S3 soil that was obtained by application of 196 kg P2O5 ha?1 on S1 soil, 142 kg P2O5 ha?1 on S2 soil, and 78 kg P2O5 ha?1 on S3 soil. Internal P concentration (%) associated with 95% of maximum wheat yield at booting stage was 0.32 in S1, 0.21 in S2, and 0.33 in S3 soil. In straw, it was 0.123% in S1, 0.080% in S2, and 0.108% in S3 soil. The internal P requirement of wheat grain was 0.39% in S1, 0.40% in S2, and 0.37% in S3 soil. External soil solution P requirement (ESPR) for 95% of maximum yield of wheat was 0.45 mg L?1 in S1 soil, 0.34 mg L?1 in S2 soil, and 0.44 mg L?1 in S3 soil. Quantity of P2O5 corresponding to ESPR values were 217 kg ha?1 on S1, 123 kg ha?1 on S2, and 60 kg ha?1 on S3 soil. Putting ESPR values in the respective Freundlich-type equation, P fertilizer rates (kg P2O5 ha?1) were estimated that were 282 on S1, 167 on S2, and 83 on S3 soil; Practically, 262, 156, and 78 kg P2O5 ha?1 was applied in the field to adjust soil solution P level (mg L?1) at 0.40 (T7), 0.30 (T6), and 0.40 (T7) in S1, S2, and S3 soil, respectively, that are somewhat less than determined ESPR values. Phosphorous doses applied to achieve a desired EPAS value or estimated from graphs against predicted ESPR values, or calculated from corresponding Freundlich-type equations using desired ESPR values are in close proximity to one another. Therefore, any of the techniques can be used interchangeably to estimate the P fertilizer requirement for optimum wheat yield.  相似文献   

18.
Over-fertilization has caused significant phosphorus(P) accumulation in Chinese greenhouse vegetable production(GVP) soils. This study, for the first time, quantified profile P accumulation directly from soil P measurements, as well as subsoil P immobilization, in three alkaline coarse-textured GVP soil profiles with 5(S5), 15(S15), and 30(S30) years of cultivation in Tongshan, Southeast China. For each profile, soil samples were collected at depths of 0–10(topsoil), 10–20, 20–40, 40–60, 60–80, and 80–100 cm. Phosphorus accumulation was estimated from the difference in P contents between topsoil and parent material(60–100 cm subsoil). Phosphorus mobility was assessed from measurements of water-soluble P concentration(PSol). Finally, P sorption isotherms were produced using a batch sorption experiment and fitted using a modified Langmuir model. High total P contents of 1 980(S5), 3 190(S15), and 2 330(S30) mg kg~(-1) were measured in the topsoils versus lower total P content of approximately 600 mg kg~(-1) in the 80–100 cm subsoils. Likewise, topsoil PSol values were very high, varying from 6.4 to 17.0 mg L~(-1). The estimated annual P accumulations in the topsoils were 397(S5), 212(S15), and 78(S30) kg ha~(-1) year~(-1). Sorption isotherms demonstrated the dominance of P desorption in highly P-saturated topsoils, whereas the amount of adsorbed P increased in the 80–100 cm subsoils with slightly larger P adsorption capacity. The total P adsorption capacity of the 80–100 cm subsoils at a solution P concentration of0.5 mg L~(-1) was 15.7(S5), 8.7(S15), and 6.5(S30) kg ha~(-1), demonstrating that subsoils were unable to secure P concentrations in leaching water below 0.5 mg L~(-1) because of their insufficient P-binding capacity.  相似文献   

19.
ABSTRACT

Lucerne or alfalfa (Medicago sativa L.) is grown as a forage crop on many livestock farms. In calcareous soils in eastern Turkey, lucerne production requires phosphorus (P) additions as the soils are naturally P deficient. Phosphorus sorption isotherms were used to estimate P fertilizer needs for lucerne grown for two years in a 3-cut system on a calcareous P deficient Aridisol in eastern Anatolia, Erzurum province, Turkey. Annual P applications ranged from 0–1200 kg P ha?1. The Langmuir two-surface adsorption equation was used to derive the maximum P sorption capacity of unamended soil and to determine soil solution P, maximum buffer capacity (MBC), equilibrium buffer capacity (EBC), and P saturation at the optimum economic P rate (OEPR) for dry matter (DM) production. Soils were tested for Olson P at the onset of the study and after two years of P applications. In both years, tissue was analyzed for P content at flowering prior to first cutting. The OEPR (2-year average) was 754 kg P ha?1 yr?1 corresponding with a soil solution P concentration of 0.30 mg L?1, a DM yield of 8725 kg DM ha?1, and $528 ha?1 annual profit. The P content of leaves at flowering increased linearly with P application beyond 100 kg P ha?1 and was 3.2 g kg?1 P at the OEPR. The unfertilized soil had an EBC, MBC, P saturation, and Xmax of 3304 mL g?1, 3401 mL g?1, 6%, and 1086 mL g?1, respectively, whereas two years of fertilization to the OEPR decreased EBC and MBC to 358 mL g?1 and 540 mL g?1, and increased P saturation and Olsen P to 56% and 32 mg kg?1, respectively. These results suggest a P saturation >50% or Olsen P >30 mg kg?1 are needed to maintain an optimum soil solution concentration of 0.30 mg L?1 in this calcareous Aridisol. Similar studies with different soils and initial soil test P levels are needed to conclude if these critical soil test values can be applied across the region.  相似文献   

20.
From a level of 1 kg ha?1yr?1 in north central Minnesota, emission-related wet SO4 deposition increases across northern Wisconsin and northern Michigan to about 18 kg ha?1yr?1 in south central Michigan. Samples taken from 82 clearwater (low color) lakes across this region in the summer of 1984 showed a pattern of acidification in proportion to deposition. We found a linear increase in the difference between alkalinity and Ca+Mg and in lake SO4 concentration with increasing deposition. We developed a simple equation to predict the emission-related SO4 deposition levels that will cause the alkalinity of sensitive clear-water lakes to go to zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号