首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A humic acid (HA) fraction of the soil organic matter (SOM) was extracted with alkali from soil samples originated in non-fertilized and fertilized (NPK + organic manure) plots of long-term (45 years) field experiments. The HA preparations served as supplemental sources of nutrients or as sole source of either C or N for soil micro-organisms indigenous to the same soils. Under aerobic conditions (shake cultures) between 15% and 45% of HA were degraded in 21 days. The degradation was minimum if HAs were added supplementary, although the biomass formation was strongly enhanced. Preparations of HA from long-term fertilized soils appeared somewhat less susceptible to microbial degradation but they were capable of supporting microbial growth. Under copious nutritional conditions some novel HA-like substances were formed. The HA preparations re-isolated from individual cultures exhibited differences in elemental and structural characteristics. The FTIR spectra indicated an increasing proportion of aromatic structures that appeared as associated with mineral moieties. Conclusively, HAs from long-term fertilized and manured soils could be considered as more resistant to microbial activities than those from control soil, but under limited nutrient conditions their aliphatic constituents appear utilizable by micro-organisms.  相似文献   

2.
Humic acids (HA)  extracted with alkali from unfertilized and fertilized (NPK + organic manure) plots of  long-term, i.e. 45 years, field experiments were added as a supplemental source of nutrients or as the sole sources of carbon and nitrogen to semi-aerobic cultures of complex microbial communities indigenous to the same individual soils. Depending on the experimental conditions, between 2.7% and 47.3% of the added HA preparations were utilized in 12 months. In full strength nutrient media these numbers seemed affected by some novel microbially produced HA-like substances. An average utilization rate was 33% for the HA from an unfertilized   Orthic-Luvisol plot, whereas HA preparations extracted from fertilized plots of the Orthic-Luvisol or  a Dystric-Cambisol soil site were utilized to 27% and 15% respectively. The HA preparations re-isolated after 12 months from microbial cultures exhibited differences in elemental and structural characteristics, corresponding mainly with the nutrient status of the individual  cultures. Those from nitrogen-deficient cultures, e.g., were partly depleted in N. The Fourier-transformed infrared (FTIR) spectra of  the re-isolated HA preparations indicated loss in aliphatic structures. Aromatic structures were strongly associated with  mineral moieties and  remained rather  unaffected. The results indicate in general that an increase in soil organic matter contents as frequently observed in long-term fertilized soils could be attributed to an enhanced resistance of humic acid fractions to microbial degradation.  相似文献   

3.
This study addressed differences between Diplocardia spp. (a native North American earthworm) and Octolasion tyrtaeum (an introduced European species), with respect to behavior, influence on soil microbial biomass, and plant uptake of N in tallgrass prairie soils. We manipulated earthworms in PVC-encased soil cores (20 cm diameter) over a 45-day period under field conditions. Treatments included: (1) control with no earthworms, (2) Diplocardia spp. only, and (3) O. tyrtaeum only. Prior to addition of earthworms, seedlings of Andropogon gerardii (a dominant tallgrass) were established in each core, and a dilute solution of 13C-labeled glucose and 15N-labeled (NH4)2SO4 was added to the soil to facilitate examination of earthworm/microbe/plant interactions. We found that Diplocardia spp. were significantly more active than O. tyrtaeum, and quickly assimilated 13C and 15N from the tracer. Individuals of Diplocardia spp. were present at shallower soil depths than O. tyrtaeum throughout the study. Contrary to expectation, this greater activity of Diplocardia spp. did not result in increased plant productivity. Rather, the activity of Diplocardia spp. was associated with less plant growth and smaller amounts of N acquired by A. gerardii seedlings compared to controls or O. tyrtaeum treatments. We observed few significant influences of earthworm treatments on microbial biomass C or N pool sizes, but the microbial C/N ratio was consistently greater in the presence of Diplocardia spp. relative to O. tyrtaeum. Results of this study indicate that activity of earthworms may enhance competition for N between microbes and plants during the growing season in tallgrass prairie.  相似文献   

4.
Humic acids (HA) extracted from Chernozem (Haplic Phaeozem), Brown Earth (Cambic Umbrisol) and Podzol (Humic Podzol) were added as a supplemental source of nutrients, or as the sole sources of carbon and nitrogen to aerobic cultures of complex microbial communities indigenous to the same individual soils. Depending on nutrient conditions in the individual cultures and origin of HA, between 14 and 86 % of the added HA was utilized. The formation of microbial biomass was enhanced up to six fold in the full-strength nutrient media supplemented with humic acids but was strongly inhibited if HA served as the sole C source. HA preparations re-isolated from the microbial cultures exhibited elemental and structural changes characteristic for early diagenetic transformations of humic substances. These included an increase in carbon content, C:N ratio, infra-red absorption typical for aromatics, and a decrease in infra-red absorption associated with aliphatic acids, nitrogenous and carbohydrate-like substances.  相似文献   

5.
The mineralisation of green manure from agroforestry trees was monitored with the objective to compare the temporal dynamics of mineralisation of litter from different species. Green manures from five agroforestry tree species were used on a fallow field during the long rainy season of 1997 (March-August) and from two species in the following short rainy season (September-January) in western Kenya. Different methods, i.e. measurements of isotopic ratios of C in respired CO2 and of soil organic matter (SOM) fractions, soil inorganic N and mass loss from litterbags, were used in the field to study decomposition and C and N mineralisation. Soil respiration, with the separation of added C from old soil C by using the isotopic ratio of 13C/12C in the respired CO2, correlated well with extractable NH4+ in the soil. Mineralisation was high and very rapid from residues of Sesbania sesban of high quality [e.g. low ratio of (polyphenol+lignin)/N] and low and slow from low quality residues of Grevillea robusta. Ten days after application, 37% and 8% of the added C had been respired from Sesbania and Grevillea, respectively. Apparently, as much as 70-90% of the added C was respired in 40 days from high quality green manure. Weight losses of around 80%, from high quality residues in litterbags, also indicate substantial C losses and that a build-up of SOM is unlikely. For immediate effects on soil fertility, application of high quality green manure may, however, be a viable management option. To achieve synchrony with crop demand, caution is needed in management as large amounts of N are mineralised within a few days after application.  相似文献   

6.
The residual effects of adding 40 t ha–1 sewage sludge (SL) to a degraded soil cropped with barley were investigated after 9 and 36 months in a field experiment under semiarid conditions. The principal soil properties were apparently still affected by SL amendment 9 months after application but the effects disappeared after 36 months. With respect to control soil humic acids (HAs), the SL-HA was characterized by higher contents of S- and N-containing groups, smaller contents of acidic groups, a prevalent aliphaticity, extended molecular heterogeneity, and smaller degrees of aromatic polycondensation and humification. Amendment with SL caused an increase in N, H, S and aliphaticity contents and a decrease in C/N ratios and O and acidic functional group contents in soil HAs isolated 9 months after SL application. These effects tended to decrease after 36 months, most probably because the slightly humified SL-HA was mineralised over time through extended microbial oxidation, while only the most recalcitrant components such as S-containing and aromatic structures were partially accumulated by incorporation into soil HA. Microbial biomass, basal respiration, metabolic quotient and enzymatic activities increased in soil 9 months after SL application, possibly because of increased soil microbial metabolism and enhanced mineralisation processes. After 36 months these properties returned to values similar to those of the unamended soil, presumably due to the loss of energy sources.  相似文献   

7.
Two approaches to quantitatively estimating root-derived carbon in soil CO2 efflux and in microbial biomass were compared under controlled conditions. In the 14C labelling approach, maize (Zea mays) was pulse labelled and the tracer was chased in plant and soil compartments. Root-derived carbon in CO2 efflux and in microbial biomass was estimated based on a linear relationship between the plant shoots and the below-ground compartment. Since the maize plants were grown on C3 soil, in a second approach the differences in 13C natural abundance between C3 and C4 plants were used to calculate root-derived carbon in the CO2 efflux and in the microbial biomass. The root-derived carbon in the total CO2 efflux was between 69% and 94% using the 14C labelling approach and between 86% and 94% in the natural 13C labelling approach. At a 13C fractionation measured to be 5.2‰ between soil organic matter (SOM) and CO2, the root-derived contribution to CO2 ranged from 70% to 88% and was much closer to the results of the 14C labelling approach. Root-derived contributions to the microbial biomass carbon ranged from 2% to 9% using 14C labelling and from 16% to 36% using natural 13C labelling. At a 3.2‰ 13C fractionation between SOM and microbial biomass, both labelling approaches yielded an equal contribution of root-derived C in the microbial biomass. Both approaches may therefore be used to partition CO2 efflux and to quantify the C sources of microbial biomass. However, the assumed 13C fractionation strongly affects the contributions of individual C sources.  相似文献   

8.
樟树人工林对湘东退化红壤性质及微生物碳源利用的影响   总被引:1,自引:0,他引:1  
通过对湘东红壤丘陵区樟树(Cinnamomum camphora)人工林林下与林间土壤进行配对采样与分析,研究樟树人工林对退化红壤性质及微生物碳源利用的影响。结果表明:与林间土壤相比,林下土壤的pH增加0.95个单位,全磷、全钾和含水量分别提高14.8%,16.8%和45.6%,容重降低8.1%,均达到显著水平。樟树人工林显著增加林下土壤微生物的平均颜色变化率(average well color development,AWCD),林间土壤微生物对碳水化合物、氨基酸、羧酸、聚合物和酚酸类碳源的利用强度依次仅相当于林下土壤微生物的27.6%,19.2%,23.4%,47.1%和3.5%,但二者对胺类碳源的利用没有明显变化。樟树人工林显著增加林下土壤微生物的丰富度指数、多样性指数、优势度指数和均匀度指数。主成分分析发现,樟树人工林改变土壤微生物的碳源利用模式;相关性分析表明,樟林恢复后土壤理化性质的改善是造成微生物碳源利用能力和多样性指数提升的主要原因,而土壤pH是其中的首要驱动因素。综上,樟树人工林有助于提高湘东退化红壤的微生物生态功能,樟树是进行退化红壤生态修复和重建的适宜树种。  相似文献   

9.
Cecil sandy loam soils (ultisol) from forest (coniferous and deciduous), pasture, and arable ecosystems were sampled (0-10 cm) in the vicinity of Athens, Georgia, USA. Soil from each site was subdivided into three portions, consisting of untreated soil (control) as well as live and sterile samples treated with the fungicide metalaxyl and the herbicide propachlor at 10 mg kg-1 soil. Pesticide transformation rate, basal respiration (basal) and substrate-induced respiration (SIR) rates, and microbial metabolic quotient (qCO2) were measured for the initial application of metalaxyl [methyl-N-(2,6-dimethylphenyl)-N-(metoxyacetyl)-DL-alaninate] or propachlor (2-chloro-N-isopropyl-acetanilide) at 22°C and 60% water holding capacity. Positive correlations were found for the following: metalaxyl transformation rate constant (Kmet) and basal (r=0.73); Kmet and SIR (r=0.83); propachlor transformation rate constant (Kpr) and basal (r=0.89); and Kpr and SIR (r=0.91). Regression analysis of pesticide transformation rate and soil respiration activity, coupled with specific soil properties (pH, Corg, and clay content), revealed a positive correlation between K and SIR for Corg (r=0.88 and 0.98, for metalaxyl and propachlor, respectively). qCO2s were not significantly different (P=0.05) in propachlor-amended and pesticide-free soils. Metalaxyl amendment resulted in a change in the ecophysiological status of the soil microbial community as expressed by qCO2. The qCO2 values in metalaxyl-amended soils were significantly greater (P=0.05) in pine forest (by 25%) and arable and pasture (by 20%) soils compared to unamended soils. Differences in qCO2 values may represent the magnitude of pesticide-induced disturbance. The duration of this disturbance was greater in the pine forest soil (48 days) compared to arable and pasture soils (21 and 15 days, respectively).  相似文献   

10.
  目的  针对东北黑土区长期集约化耕作导致的土壤退化问题,开展不同秸秆覆盖还田量对土壤微生物碳代谢特征的影响及其驱动因素的研究。  方法  采用MicroRespTM方法结合土壤碳氮含量等理化性质,测定土壤微生物碳代谢能力及其影响因素,使用Past v2.16、Canoco 5.0等软件对微生物群落功能多样性、结构差异以及土壤理化性质和微生物群落碳代谢特征间的关系进行分析。  结果  秸秆连续覆盖还田14年后,土壤微生物对羧酸类与氨基酸类碳源的代谢活性显著降低,但对外源碳底物的代谢多样性显著增强。67%和100%秸秆还田显著改变了土壤微生物群落碳源代谢结构,100%秸秆还田下微生物对芳香酸类碳源的相对代谢活性提高。土壤微生物对碳源的代谢活性主要与土壤碳氮含量显著相关,土壤可溶性碳与碱解氮含量分别是影响土壤微生物碳源代谢多样性和结构的主要理化因子。  结论  长期秸秆还田可以通过降低土壤微生物对易利用碳源的代谢需求、提高对碳源的代谢多样性而改善免耕土壤微生物碳代谢功能。本研究可为优化东北黑土区保护性耕作管理模式、促进该地区农业可持续发展提供微生物学参考。  相似文献   

11.
Purpose

The study of interactions between humic substances (HSs) and soil filamentous fungi is the key to understanding the sustainable soil functioning. The present work aims to examine the decomposition of HSs by filamentous dark-pigmented fungus Alternaria alternatа under the laboratory conditions and to determine the effect of easily assimilable organic carbon on this process. Analyzing such polydisperse substances like HSs by a complex integrated methodology makes it possible to explore the data on their decomposition by microorganisms.

Materials and methods

To achieve the aforementioned goals, we used chromatographic and spectroscopic approaches: low-pressure size-exclusion and hydrophobic interaction chromatography accompanied by absorption and fluorescence spectroscopy. To determine the effect cometabolism conditions produced on HS decomposition, two types of carbon substrates were added to the nutrient media: easily assimilable organic carbon (standard 0.3% or reduced 0.03% sucrose content) and hardly assimilable organic carbon (HSs), as well as their combinations. Five HS samples of different organic matter origin have been inspected: potassium humates (HPs) and humic acids (HAs) from coal, peat, and lignosulfonate. Correlation matrix and principal component analysis (PCA) were calculated for comprehensive data analysis.

Results and discussion

Transformations of the investigated HSs under fungal cultivation lead to the increase in the low molecular weight fraction, rise of hydrophilic fraction, enlargement of absorbance ratio A250/A365, shortening of the emission wavelength of the humic-type fluorescence, and growth in the fluorescence quantum yield measured with excitation at 355 nm. A positive correlation was observed between the accumulation of fungal biomass and the degree of HS decomposition. PCA analysis confirms that the difference in the results of HS decomposition largely depends on the sucrose content and the nature of HSs. We divided all the HS samples into four groups according to the degree of HS decomposition: original HS solutions, HPs altered using fungal cultivation at 0.03% sucrose, HAs after fungal cultivation at 0.03% sucrose, and finally, HSs (both HPs and HAs) after fungal cultivation at 0.3% sucrose.

Conclusions

In the laboratory experiments, we showed that (1) the isolated HAs were more effectively degraded than the parent HPs, and this process was more pronounced at a reduced sucrose content, and (2) the decomposition of stable organic compounds (HSs) was activated by the easily assimilable carbon sources (especially 0.3% sucrose) being present. We assume that it is the easily assimilable organic carbon that most likely triggers the HS degradation working as the priming effect in natural environments.

  相似文献   

12.
[目的]降低烤烟生长后期植烟土壤的氮素供应对提高烤烟烟叶质量非常重要,而微生物同化作用在调控土壤有效氮含量过程中起着重要作用,且受添加有机碳源质量和数量的影响.因此,我们研究不同有机碳源降低土壤矿质氮的效果,以及碳添加量与矿质氮降低量间的定量关系.[方法]供试土壤采自贵州玉米烟草轮作土壤,属于黄壤土.供试有机碳源有5种...  相似文献   

13.
This study investigates how carbon sources of soil microbial communities vary with soil depth. Microbial phospholipid fatty acids (PLFA) were extracted from 0–20, 20–40 and 40–60 cm depth intervals from agricultural soils and analysed for their stable carbon isotopes (δ13C values). The soils had been subjected to a vegetation change from C3 (δ13C≈?29.3‰) to C4 plants (δ13C≈?12.5‰) 40 years previously, which allowed us to trace the carbon flow from plant-derived input (litter, roots, and root exudates) into microbial PLFA. While bulk soil organic matter (SOM) reflected ≈12% of the C4-derived carbon in top soil (0–20 cm) and 3% in deeper soil (40–60 cm), the PLFA had a much higher contribution of C4 carbon of about 64% in 0–20 cm and 34% in 40–60 cm. This implies a much faster turnover time of carbon in the microbial biomass compared to bulk SOM. The isotopic signature of bulk SOM and PLFA from C4 cultivated soil decreases with increasing soil depth (?23.7‰ to ?25.0‰ for bulk SOM and ?18.3‰ to ?23.3‰ for PLFA), which demonstrates decreasing influence of the isotopic signature of the new C4 vegetation with soil depth. In terms of soil microbial carbon sources this clearly shows a high percentage of C4 labelled and thus young plant carbon as microbial carbon source in topsoils. With increasing soil depth this percentage decreases and SOM is increasingly used as microbial carbon source. Among all PLFA that were associated to different microbial groups it could be observed that (a) depended on availability, Gram-negative and Gram-positive bacteria prefer plant-derived carbon as carbon source, however, (b) Gram-positive bacteria use more SOM-derived carbon sources while Gram-negative bacteria use more plant biomass. This tendency was observed in all three-depth intervals. However, our results also show that microorganisms maintain their preferred carbon sources independent on soil depth with an isotopic shift of 3–4‰ from 0–20 to 40–60 cm soil depth.  相似文献   

14.
郝燕  李金霞  孙小妹  陈年来 《土壤》2020,52(6):1203-1211
在甘肃祁连葡萄观光园进行了增施沼液试验,旨在探明沼液施用量和年限对土壤质量和土壤微生物功能多样性的影响,试验设置的处理包括:对照处理(施用化肥,N 180 kg/hm2,P2O5 150 kg/hm2,K2O 22.5 kg/hm2)、沼液替代化肥处理(33%、67%和100%化肥氮分别被沼液氮替代)及沼液增施处理(沼液氮用量分别为化肥氮的133%、167%和200%),采用Biolog-ECO微平板法测定土壤微生物功能多样性。结果表明:(1)33%沼液处理的土壤微生物群落代谢活性最高,连续2 a使用沼液的处理间差异大于1 a使用。(2)土壤微生物利用的主要碳源为碳水化合物类,使用沼液能够显著提高土壤微生物对氨基酸类和羧酸类碳源的利用率。连续两年使用沼液,133%和167%沼液处理的效果优于其他处理。(3)与对照相比,使用沼液处理仅在提高土壤微生物均一度指数方面存在优势,且133%和167%沼液处理效果优于其他处理。(4)主成分分析表明,沼液使用量和使用年...  相似文献   

15.
Root exudates and litter are the main sources of inputs of labile carbon into the microbial pool in successional ecosystems. Here we studied whether typical pioneer species (Eriophorum vaginatum, Eriophorum angustifolium and Calluna vulgaris) alter the functional response of the microbial community of a previously cutover peatland. Peat was sampled at three depths (0–5, 20–25 and 40–45 cm) from beneath these species and from bare soil areas. MicroResp analysis using ecologically relevant, radiolabelled, carbon sources showed significant separation in community level physiological profiles (CLPP) of soil microorganisms according to peat depth. This effect was also reflected in microbial biomass carbon, which also decreased with increasing depth. Furthermore, distinct differences in CLPP were observed between the three plant species and the bare soil in the absence of an effect on microbial biomass carbon or total soil carbon. The plant species effects were driven by differential utilisation of xylose, glutamic acid, lysine and phenylethylamine. The data suggest that ‘new’ carbon inputs from plants colonising abandoned cutover peatland may support communities of microorganisms that have functionally distinct roles in carbon turnover.  相似文献   

16.
Bioavailability of triazine herbicides in a sandy soil profile   总被引:1,自引:0,他引:1  
The bioavailability of atrazine was evaluated in a Danish soil profile (Drengsted) using a combination of soil sorption, transport and mineralisation methods as well as inoculation using Pseudomonas ADP. Sorption of atrazine decreased markedly with depth as indicated by Kd values of 5.2 l kg-1 for the upper soil and 0.1 l kg-1 for the subsoils. The transport of atrazine was evaluated using soil TLC plates and the resulting Rf values were 0.1 for the upper soil and 0.9 for the subsoil. Only a relatively small amount of atrazine leached through undisturbed soil columns taken from the upper 60 cm. Inoculating with Pseudomonas strain ADP (1᎒6 CFU g-1 dry weight soil) revealed that the degradation of 0.01 ppm atrazine was fully completed (80% mineralisation) within 10 days in the subsoil, while it reached less than 15% in the upper soil. Over a period of 500 days, a total mineralisation of 37% of added atrazine in the upper soil was found (2 mg kg-1 incubated at 20° C). However, in the subsurface soil where 0.02 mg kg-1 of atrazine was incubated at 10°C, the degradation was slower, only reaching about 12%. Terbuthylazine mineralisation was found to be temperature-dependent and low (less than 5%) in the upper soil and very much lower in the subsoil. Desethylterbuthylazine was the most frequently found metabolite. Finally, Pseudomonas strain ADP inoculated into soils from different depths increased the mineralisation of terbuthylazine dramatically. Modelling using a "two-compartment model" indicated that desorption of terbuthylazine is the limiting step for its mineralisation.  相似文献   

17.
The effect of a change of tillage and crop residue management practice on the chemical and microbiological properties of a cereal-producing red duplex soil was investigated by superimposing each of three management practices (CC: conventional cultivation, stubble burnt, crop conventionally sown; DD: direct-drilling, stubble retained, no cultivation, crop direct-drilled; SI: stubble incorporated with a single cultivation, crop conventionally sown), for a 3-year period on plots previously managed with each of the same three practices for 14 years. A change from DD to CC or SI practice resulted in a significant decline, in the top 0-5 cm of soil, in organic C, total N, electrical conductivity, NH4-N, NO3-N, soil moisture holding capacity, microbial biomass and CO2 respiration as well as a decline in the microbial quotient (the ratio of microbial biomass C to organic C; P <0.05). In contrast, a change from SI to DD or CC practice or a change from CC to DD or SI practice had only negligible impact on soil chemical properties (P >0.05). However, there was a significant increase in microbial biomass and the microbial quotient in the top 0-5 cm of soil following the change from CC to DD or SI practice and with the change from SI to DD practice (P <0.05). Analysis of ester-linked fatty acid methyl esters (EL-FAMEs) extracted from the 0- to 5-cm and 5- to 10-cm layers of the soils of the various treatments detected changes in the FAME profiles following a change in tillage practice. A change from DD practice to SI or CC practice was associated with a significant decline in the ratio of fungal to bacterial fatty acids in the 0- to 5-cm soil (P <0.05). The results show that a change in tillage practice, particularly the cultivation of a previously minimum-tilled (direct-drilled) soil, will result in significant changes in soil chemical and microbiological properties within a 3-year period. They also show that soil microbiological properties are sensitive indicators of a change in tillage practice.  相似文献   

18.
Thirty-two different basidiomycete isolates were inoculated separately into contaminated soil and the soil colonization ability was assessed visually. Large differences in the colonization ability and growth patterns were found between the different fungi. Phospholipid fatty acids (PLFAs) were extracted from the soils of the seven isolates with the best colonizing ability. All PLFAs that were not found in pure cultures of the seven fungi were considered as bacterial PLFAs. The bacterial PLFA data were subjected to principal component analysis (PCA) to indicate changes in the indigenous bacterial community. The experiment was repeated in a sandy agricultural soil. The bacterial PLFA patterns were altered when fungi were inoculated into soil, irrespective of whether it was polluted or not. In particular the PLFA cy19:0, indicative of Gram-negative bacteria, was higher in fungal-inoculated soil than in uninoculated controls. The PLFA patterns for each fungal treatment were distributed more or less similarly in the PCA plots of both contaminated and sandy agricultural soil. Soil inoculated with Antrodia vaillantii, Hypholoma fasciculare or Recinicium bicolor was considerably different from the control along PC 1. Soil inoculated with Phanerochaete chrysosporium was characterized by different values along PC 2 compared with the other fungal soils.  相似文献   

19.
Abstract

An investigation was conducted on physico‐chemical properties of humic acids (HAs) in Venezuelan soils. The HAs were extracted by the NaOH method from a Banco‐Bajio‐Estero soil toposequence (local names for soils located at high, intermediate and low topographic levels), in the Venezuelan plains (Mantecal, Apure State). The extracted HAs were analyzed for elemental composition and characterized by fluorescence, Fourier transform infrared (FT‐IR) and electron spin resonance (ESR) spectroscopies. The results showed that free radical concentration of HAs increased from soils at the highest to soils at the lowest topographic position. High carbon (C), nitrogen (N), and carboxyl group contents, E4/E6 ratio, aliphatic character and concentration of free radicals, and low oxygen (O) and phenolic hydroxyl group contents and total acidity were typical of HA from soils at the lower relief position. The FT‐IR spectra indicated that the HA from the soil at the lowest topographic position tended to have a slightly higher content of carboxyl groups than the HAs from soils at higher topographic levels. The observed fluorescence was attributed to the presence of condensed aromatic moieties and/or conjugated unsaturated systems of various complexity in the HA macromolecules.  相似文献   

20.
陈奇  丁雪丽  张彬 《土壤通报》2021,52(6):1460-1472
微生物残体是土壤有机碳库的重要贡献者。为明确外源氮添加对土壤微生物残体积累动态的影响,本文收集整理了1980—2020年已发表的文献,共选取122组试验观测数据,利用整合分析方法(Meta-analysis),以微生物残体标识物-氨基糖为目标组分,定量分析了不同种类和数量的外源氮添加对土壤中微生物来源细胞残体积累数量和组成比例的影响,并系统解析其主要影响因素。结果表明:外源氮添加(0 ~ 6000 kg hm?1)对微生物细胞残体的积累有显著的促进作用,并能引起土壤中真菌和细菌来源细胞残体相对比例发生明显变化。与不加氮对照相比,氮添加使土壤氨基糖总量增加27%,其中氨基葡萄糖、氨基半乳糖和胞壁酸含量分别增加22.5%、29.8%和19.0%。同时,不同种类外源氮素添加对氨基糖积累特征的影响也有所不同,表现为有机氮(如动物厩肥)比无机氮添加对氨基糖积累的促进作用更大。此外,氮添加对氨基糖的影响程度还与土壤自身的碳氮比、土地利用类型和自然降雨量等环境因子密切相关。其中是否添加碳源对微生物残体的响应有较大影响,表现为:无碳源添加会降低土壤氨基糖葡萄糖和胞壁酸对氮添加的响应,削弱了微生物残体对土壤有机质的贡献比例;而氮源同时配合碳源添加条件下,土壤氨基糖积累量显著高于单一氮源添加的处理,说明氮添加对微生物残体积累的影响存在着碳氮耦合效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号