首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The endosperm storage protein of 46 European wheat (Triticum aestivum L.) landraces and obsolete cultivars have been fractionated by SDS-PAGE to determine the composition of high molecular weight glutenin subunits (HMW-GS) composition. It has been discovered that about 46% of the wheats were heterogeneous, comprising 2–11 different glutenin profiles. Eighteen of them were observed to be homogeneous. A total of 13 HMW-GS alleles, including 3 at the Glu-A1, 8 at the Glu-B1, and 3 at the Glu-D1 loci were revealed. HMW-GS null controlled by locus Glu-A1, subunits 7 + 8 by Glu-B1, and 2 + 12 by Glu-D1 predominated. However low frequented alleles such as 17 + 18, 20, 6, and 7 were observed. Furthermore, other new alleles encoding HMW-GS at the locus Glu-B1 have been found in one of France cultivar (Saumur d’Automne). The glutenin-based quality score ranged from 4 to 10.  相似文献   

2.
Protein heterogeneity in European wheat landraces and obsolete cultivars   总被引:2,自引:0,他引:2  
Identity and present degree of genetic homogeneity and heterogeneity, respectively of 52 European wheat accessions, maintained in the collection of wheat genetic resources, have been characterized using analyses of glutenins by sodiumdodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE). Six of the analyzed wheat accessions were observed to be homogeneous, while 46 (88.5%) of them were heterogeneous in protein profiles. Heterogeneous accessions possessed 2 to 13 different protein lanes. Together, 17 high molecular weight glutenin subunit (HMW-GS) alleles have been found. The most frequent HMW-GS alleles at the Glu-A1, Glu-B1, and Glu-D1 complex loci were 1, 7+9, and 2+12, respectively. However, also low frequented HMW-GS alleles or allelic combinations, such as 7+15, 13+16, 20, 6, 7, and 9 were observed. Furthermore, another new allele encoding HMW glutenin subunit with relative molecular weight 98.6 kDa has been found in one of the lines of the cultivar Eritrospermum 917. The Glu-score in the examined accessions varied in broad range, some of the lines reached the maximum value 10.  相似文献   

3.
Fourteen bread wheat near-isogenic lines (NILs) with different alleles at 1B- and 1D-chromosome loci Glu-1, Glu-3 and Gli-1 coding for high molecular weight glutenin subunits (HMW-GS), low molecular weight-GS, and gliadins, respectively, were grown in replicated plots to investigate the individual and combined effects of glutenin and gliadin components on the rheological properties of dough as determined by the Chopin alveograph. NILs did not reveal significant differences in seed yield, protein content, kernel weight, test weight, flour yield, and starch damage. On the contrary, they had a large variation in alveograph dough tenacity P (55–93 mm), swelling G (17–26 mL) and strength W (140–252 J × 10-4). The null alleles at the Gli-D1/Glu-D3 loci, and allele Glu-D1d (HMW-GS 5+10) were found to have a strong positive influence on dough tenacity and a remarkable negative influence on dough swelling (extensibility) when compared to alleles Gli-D1/Glu-D3b and Glu-D1a (HMW-GS 2+12), respectively. On the other hand, alleles Glu-B1c (HMW-GS 7+9) and Gli-B1/Glu-B3k gave greater G values than alleles Glu-B1u (HMW-GS 7*+8) and Gli-B1/Glu-B3b. The effects of individual Glu-1, Gli-1, or Glu-3 alleles on P and G values were largely additive. The impact of the null allele at Gli-D1/Glu-D3 on gluten strength was highly positive in NILs possessing HMW-GS 2+12, and negligible or negative in NILs containing HMW-GS 5+10, suggesting that there is scope for improving dough quality by utilizing this allele in combination with HMW-GS 2+12. Gli-D1/Glu-D3-encoded prolamins were shown to play a major role in conferring extensibility to dough, and could account for the superior breadmaking characteristics of bread wheat as compared to durum wheat.  相似文献   

4.
Summary Sixty hexaploid wheat landraces collected from five regions of Pakistan were assessed for genetic variability in terms of high molecular weight (HMW) glutenin subunits as revealed by SDS-PAGE. The germplasm appeared to be diverse and unique on the basis of HMW glutenin subunit compositions. Out of 24 alleles detected at all the Glu-1 loci, four belonged to Glu-A1, 12 to Glu-B1 and eight to Glu-D1 locus. The number of novel HMW glutenin subunits detected were 1, 4 and 6 at the three loci (Glu-A1, Glu-B1, Glu-D1), respectively. The frequency distribution patterns of 24 allelic variants detected at the three Glu-1 loci in 1080 samples analysed for 60 accessions were determined both on the basis of individual accessions and on the basis of regions (accessions pooled across the regions). One allele (null) at the Glu-A1 locus, three alleles (17+18, 7+8, 14) at the Glu-B1 locus and, two alleles (2+12 and 2**+12) at the Glu-D1 locus were found most frequently distributed in the 60 populations. Maximum variation was observed in the Baluchistan and Gilgit regions of Pakistan in terms of distribution of novel Glu-1 alleles. A higher gene diversity was observed between the populations as compared to the gene diversity within the populations while, a reverse pattern of gene diversity was observed when populations were pooled across the regions (higher within the regions than between the regions). A data base has been generated in this study which could be expanded and usefully exploited for cultivar development or management of gene bank accessions.  相似文献   

5.
The high molecular weight (HMW) glutenin subunit composition of 111 common landraces of bread wheat collected from Hubei province, China has been determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Ninety six of the accessions were homogeneous for HMW glutenin subunit composition and 15 were heterogeneous. For the Glu-1 loci, 16 alleles were detected, 3 at the Glu-A1locus, 9 at the Glu-B1and 4 at the Glu-D1. Three novel alleles were identified, two at the Glu-B1 and one at the Glu-D1locus. Combination of these 16 alleles resulted in 14 different HMW subunit patterns. The distribution of HMW glutenin subunit alleles in a subset of 105 of the 111 accessions representing six populations was assessed both at the individual population and whole population levels. The results demonstrated that the distribution of allelic patterns varied among populations. Taken together, 62.5% of the alleles detected were considered to be rare alleles while the Glu-A1c (null), Glu-B1b (1Bx7 + 1By8) and Glu-D1a (1Dx2 + 1Dy12) alleles were found most frequently in the six populations. The subset exhibited relatively high genetic diversity (A = 5.33, P = 1.00, Ae = 1.352 and He = 0.238) with 81.5% of the diversity being within populations and 18.5% between populations.  相似文献   

6.
小麦高分子量谷蛋白亚基突变体的筛选与鉴定   总被引:2,自引:0,他引:2  
本研究对小麦品种白硬冬2号航天搭载SP2代单株籽粒的高分子量麦谷蛋白亚基(HMW-GS)组成进行了SDS-PAGE电泳分析,在92株材料中发现了2个突变体mut1和mut2,突变频率为2.17%,并利用醇溶蛋白电泳验证了航天诱变引发HMW-GS变异的真实性。在突变体mut1中发现了4种HMW-GS组成突变类型,突变发生在Glu-1B和 Glu-1D位点。突变亚基是由航天诱变引发相关编码基因突变形成的,它们的电泳迁移率发生了明显变化,为新的亚基类型。本文的研究表明,航天诱变能够诱导产生新的HMW-GS,是丰富HMW-GS基因资源的有效途径。  相似文献   

7.
六倍体小黑麦品种资源Glu-1位点的多态性   总被引:1,自引:0,他引:1  
利用SDS-PAGE技术分析了我国新疆101份和波兰11份六倍体小黑麦品种资源高分子量谷蛋白亚基(HMW-GS)组成,共检测到17种高分子量谷蛋白亚基,其中Glu-A1位点编码的HMW-GS有3种变异类型,即1(a)、2*(b)和Null(c),Glu-B1位点编码的HMW-GS有8种变异类型,即7(a)、7+8(b)、7+9(c)、6+8(d)、20(e)、13+19(g)、7+18(r)和6.8+20y(s),Glu-R1位点编码的HMW-GS有6种变异类型,即1r+4r(a)、2r+6.5r(b)、6r+13r(c)、2r+9r(d)、6.5r(e)和0.8r+6r(f)。这些小黑麦品种的HMW-GS组成以Null(c)、7+18(r)和6r+13r(c)为主,分别占58.93%、67.90%和58.00%。在112份供试材料中共检测到30种HMW-GS组合变异类型,其中[Null,7+18,6r+13r(c,r,c)]和[2*,7+18,6r+13r(b,r,c)]出现频率较高,分别为16.91%和16.02%,其他类型组合出现频率较低,个别材料具有少见的特殊亚基组合,如[2*,7+18,2r+9r(b,r,d)]、[2*,6.8+20y,2r+6.5r(b,s,b)]等类型。分析2个地域品种的遗传多样性,发现新疆品种的遗传变异范围小于波兰品种,波兰品种在Glu-1位点上的遗传变异更丰富。结果还显示,在六倍体小黑麦的人工进化过程中Glu-B1位点发生了很大变异,产生了小黑麦特有的7+18(r)和6.8+20y(s)亚基,而且频率很高,为小麦品质改良提供了丰富的基因资源。  相似文献   

8.
A collection of 136 accessions of Aegilops umbellulata (39), Ae. comosa (75) and Ae. markgrafii (22) was analysed for high-molecular-weight (HMW) glutenin subunits composition. The homogeneity of the accessions was studied and 55.1% of the collection was homogeneous for HMW glutenin subunits (29 Ae. umbellulata, 33 Ae. comosa and 14 Ae. markgrafii). The HMW glutenin subunits of Ae. umbellulata are encoded by the Glu-U1 locus; in Ae. comosa results showed that this proteins are encoded at the 1M chromosome, and the locus was named Glu-M1. In Ae. markgrafii it was assumed that HMW glutenin subunits were encoded by an homoeologous locus and it was named Glu-C1. All the accessions of Ae. umbellulata and Ae. markgrafii expressed both, x-type and y-type subunits. Among the Ae. comosa accessions, only one expressed an x-type subunit alone. All the accessions of Ae. umbellulata and some of Ae. comosa had x-type glutenins of higher molecular weights than those commonly present in bread wheat. A total of 8 alleles were detected at the Glu-U1 locus, 11 at the Glu-M1 and 4 at the Glu-C1. The new HMW glutenin variation found in this work suggests their possible utilisation in breeding for wheat quality.  相似文献   

9.
Triticum turgidum subsp. dicoccoides (Körn. ex Asch. et Graebn.) Thell. (AABB), the immediate progenitor of tetraploid and hexaploid wheats, is a species characterised by a wide range of protein polymorphism and by high protein content. Surveys on polymorphism and genetic control of the high molecular weight glutenin subunits (HMW-GS) present in this species, in two forms x- and y-type at the Glu-A1 and Glu-B1 loci, are still considered useful, both to improve technological properties of breeding varieties and to study the genome evolutionary process in wheats. Comparative Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoretic and Reversed Phase High Performance Liquid Chromatographic analyses (SDS-PAGE, RP-HPLC) of the HMW-GS present in several accessions of T. turgidum subsp. dicoccoides allowed the detection of new alleles of Glu-A1 and Glu-B1 loci, with x- and y-type glutenin subunits, apparently similar to those present in cultivated wheats in molecular weight, but different in surface hydrophobicity. In addition, changes in the number of x- and y-type subunits at the glutenin loci were also ascertained. The y-type subunits at the Glu-A1 locus, which are never expressed in cultivated bread and durum wheats, and single y-type expressed glutenin subunits at the Glu-B1 locus were also identified in several accessions. DNA extracted from samples, differing in number or type of HMW-GS and corresponding to x- and y-type genes at Glu-1 loci, were amplified using specific primers, two of which were constructed within the transposon-like sequence of Chinese Spring DNA and analysed by polymerase chain reaction. The results showed this insertion in some accessions of T. turgidum subsp. dicoccoides and also the presence of silent Ax, Bx and By type genes. The usefulness for breeding of these comparative analyses carried out on different HMW-GS alleles detected in Triticum turgidum subsp. dicoccoides, is discussed.  相似文献   

10.
Wheat endosperm storage proteins, namely gliadins and glutenins, are the major components of gluten. They play an important role in dough properties and in bread making quality in various wheat varieties. In the present study, the different alleles encoded at the 6 glutenin loci and at 3 -gliadin loci were identified from a set of 200 hexaploid wheat cultivars grown primarily in France using SDS PAGE. At Glu-A1, Glu-B1 and Glu-D1, encoding high molecular weight glutenin subunits (HMW-GS), 3, 8 and 5 alleles were observed respectively. Low molecular weight glutenin subunits (LMW-GS) displayed similar polymorphism, as 5 and 11 alleles were identified at loci Glu-A3 and Glu-B3 respectively. Four alleles were observed at Glu-D3 loci. Omega-gliadin diversity was also very high, as 7, 13 and 9 alleles were found at Gli-A1, Gli-B1 and Gli-D1, respectively. A total of 147 (or 149) patterns resulted from the genetic combination of the alleles encoding at the six glutenin loci (or Glu-1 and Gli-1 loci). Although Glu-1 and Glu-3 loci were located on different chromosome arms and were theoretically independent, some associations were revealed due to pedigree relatedness between some French wheat cultivars. The usefulness of allelic identification of LMW-GS together with HMW-GS and gliadins for future genetic and technological wheat improvement is discussed.  相似文献   

11.
Protein changes for four hard red spring wheat genotypes (Len, Marshall, 215, and Butte 86) were assessed at various stages of breadmaking using a size-exclusion HPLC technique. Breadmaking stages considered were flour, after mixing, before punching, after punching, after fermentation, and after proofing. Quality and functional characteristics of the four wheat genotypes were determined. The three main protein groups isolated by SE-HPLC were further characterized by SDS-PAGE. A direct relationship between polymeric glutenin (peak I of SE-HPLC fractions) in flours and loaf volume was found for the three wheat genotypes with identical high molecular weight glutenin subunit (HMW-GS) composition (2*, 7+9, 5+10) and one line with similar HMW-GS composition (2*, 7+9, 2+12), differing in the Glu-D1 locus. Quantitative changes in the distribution of SDS-soluble proteins fractionated by SE-HPLC were also examined. Peak I proteins (polymeric proteins) from SDS-extractable proteins tend to decrease during breadmaking, while peak III proteins (low molecular weight) tend to increase. Peak II (monomeric proteins, medium molecular weight) did not show a change in quantity during breadmaking. These results seem to indicate that some type of rearrangement took place during the breadmaking process to release proteins of smaller molecular weight.  相似文献   

12.
卫星搭载小麦SP3代高分子麦谷蛋白亚基的SDS-PAGE分析   总被引:3,自引:2,他引:1  
张素娜  吕金印 《核农学报》2009,23(2):193-196
利用十二烷基磺酸钠-聚丙烯胺凝胶电泳(SDS-PAGE)技术对返回式卫星搭载小麦两个品种SP3代籽粒的高分子麦谷蛋白亚基(HMW-GS)进行了分析,并按照相关评分方法计算了高分子量麦谷蛋白Glu-1位点的品质得分。结果表明,经卫星搭载可产生较高频率的HMW-GS基因变异,陕253和西农1043 两个品种SP3代HMW-GS组成的变异频率分别为27.08%和27.45%。陕253和西农1043 SP3代的小麦品质得分分别为7分和6分,陕253 SP3代变异株为优质小麦。  相似文献   

13.
Glutenin largely determines wheat bread baking quality. As high-molecular-weight glutenin subunit (HMW-GS), related to Glu-1 loci, determines wheat flour elasticity, it correlates strongly with bread-making quality. This study was aimed at clarifying genetic variations in bread-making characteristics between East and West Asian wheat landrace germplasms, by investigating HMW-GS allelic composition of 1068 wheat accessions. Herein, the accession number having reported HMW-GS pattern in previous studies was 855. However, the accession number with newly detected HMW-GS patterns was 114. These new HMW-GS patterns were classified into 4 types based on similarity. Eight Korean accessions with these four types were identified. Concerning landrace germplasm nature, 99 accessions showed heterogeneous patterns caused by seed mixture. The Glu-1 loci allelic variation analysis, revealed that the percentages of Glu-A1c (73.6%), Glu-B1b (60.2%), and Glu-D1a (68.5%) were highest at Glu-A1, Glu-B1, and Glu-D1 loci, respectively. The incidence of preferable alleles for bread baking was high in Chinese accessions. In bread-making quality evaluation using Glu-1 score, 24 among 35 accessions with full score were from China. The polymorphic information content index of each origin based on HMW glutenin subunit combination showed that West Asian and neighboring-regional landraces, excluding Afghanistan ones, were more diverse than East Asian landraces excluding Chinese ones. Cluster analysis based on Glu-1 allelic combination showed that many Korean, Japanese, and Afghan accessions were in the same group. However, many Chinese and other West Asian accessions were in the other group despite geographical distance.  相似文献   

14.
Four pairs of near-isogenic wheat lines, with and without the 1BL/1RS translocation, and differing at the Glu-1 loci (coding for high molecular weight [HMW] glutenin subunits) were evaluated for their dough mixing properties, dough stickiness, and baking performance. In all 1BL/1RS translocation lines, weakening of the dough consistency occurred within 2 min past peak time. The full-formula dough from every 1BL/1RS translocation line exhibited poor dough mixing characteristics and increased stickiness compared to the corresponding wheat control. The HMW glutenin subunits coded by the Glu-A1 locus had no apparent effect on mixing properties, but did have a slight effect on the dough stickiness at two of the four stages of dough mixing. Glu-B1 and Glu-D1 loci encoded glutenin subunits produced significant changes in dough mixing properties and dough stickiness, respectively. With respect to baking performance, there was no significant difference between loaf volumes of 1BL/1RS versus control wheats for three of four near-isogenic pairs. Within the 1RS-group, the translocation lines containing HMW glutenin subunits 5+10 produced bread with greater loaf volumes than the pairs containing its allelic counterpart 2+12. Loaf volume was not influenced by the subunits associated with the Glu-B1 loci. In general, the breads baked from 1BL/1RS translocation lines had a relatively poor crumb and crust quality and contained larger gas cells than the wheat controls. In comparing isogenic pairs, the magnitude of the difference in loaf volume between the control wheat and the corresponding 1BL/1RS translocation line was greater in the pair unique for HMW subunits 5+10; the difference was primarily due to the stronger mixing properties of the wheat control.  相似文献   

15.
N-terminal amino acid sequences and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) molecular weights have been determined for high-performance liquid chromatography (HPLC)-purified high molecular weight (HMW) and low molecular weight (LMW) glutenin subunits (GS) of Triticum tauschii ssp. strangulata, contributor of the D genome to hexaploid bread wheat. The use of three different extraction procedures resulted in similar glutenin preparations. On the basis of N-terminal sequences, the same types of glutenin subunits that have been reported in bread and durum wheats (HMW-GS of both the x and y types and LMW-GS of the LMW-s, LMW-m, α-, and γ-types) were found in T. tauschii. However, the HMW-GS in T. tauschii were in greater proportion relative to LMW-GS when compared to reported values for a bread and durum wheat. Our results support the likelihood that differences in the proportions of the various subunits contributed by the A, B, and D genomes, rather than qualitative differences in the types of subunits, are responsible for the major differences in quality characteristics between bread wheat and durum wheat.  相似文献   

16.
The genetic variations of high-molecular-weight (HMW) glutenin subunits in 1051 accessions of 13 Triticum subspecies were investigated using sodium dodecyl sulfate polyacrylamide-gel electrophoresis. A total of 37 alleles were detected, resulting in 117 different allele combinations, among which 20, 68 and 29 combinations were observed in diploid, tetraploid and hexaploid wheats, respectively. Abundance and frequency of allele and combinations in tetraploid wheats were higher than these in hexaploid wheats. Allele Glu-A1c was the most frequent subunit at Glu-A1 locus in tetraploid and hexaploid wheats. Consequently, the results also suggested that the higher variations occurred at Glu-B1 locus compared to Glu-A1 and Glu-D1. Therefore, carthlicum wheat possessing the allele 1Ay could be presumed a special evolutional approach distinguished from other tetraploid species. Furthermore, this provides a convenient approach of induction of the 1Ay to common wheat through direct cross with carthlicum wheat. Alleles Glu-B1c and Glu-B1i generally absent in tetraploid wheats were also found in tetraploid wheats. Our results implied that tetraploid and hexaploid wheats were distinguished in dendrogram, whereas carthlicum and spelta wheats and however displayed the unique performance. In addition, founder effect, no-randomness of diploidization, mutation and artificial selection could cause allele distribution of HMW-GS in Triticum. All alleles of HMW-GS in Triticum could be further utilized through hybrid in the quality improvement of common wheat.  相似文献   

17.
The high molecular weight glutenin subunits (HMW-GS) composition at the Glu-1 complex loci, in 23 old original wheat genotypes cultivated in Slovakia several decades ago and 32 modern Slovak and Czech wheat cultivars growed in Slovakia at present were studied by SDS-PAGE. Some of the HMW-GS – subunit pairs 3+12, 17+18, and subunit 20, present in old historical wheats were missing in modern cultivars utilized in Slovakia nowadays. There were observed 15 different HMW-GS encoded by 11 alleles or allelic pairs in old genotypes. Lower number of different HMW-GS and competent alleles were observed in a set of modern wheat cultivars – 11 different HMW glutenin subunits encoded by 8 alleles or allelic pairs. The same number of different HMW-GS patterns was revealed in both sets of wheats. From the point of view of genetic variability, it could be concluded that long-term effort of breeders and decreasing of cultivation of landraces and old cultivars are associated with the loss of several HMW-GS alleles and decreasing of genetic variability of wheats. Molecular characterization can reveal broad allelic variability of old wheat genotypes and landraces. Their maintenance in genetic resource collections can prevent losses of these interesting genes.  相似文献   

18.
The high molecular weight glutenin subunits (HMW-GS) can be used for wheat quality improvement. Two novel alleles (designated 1Dx1.5* and 1Dy12.2*, respectively) at the Glu-D1 locus were identified in the Chinese wheat landrace variety ‘Jiuquanjinbaoyin’ by comparison of subunit mobility with that previously identified in several standard hexaploid wheats. The 1Dx1.5* and 1Dy12.2* genes were isolated using the allele-specific PCR primers and the complete open reading frames (ORFs) were obtained. Allele 1Dx1.5* consists of 2487 bp encoding a mature protein of 827 amino acid residues, whereas 1Dy12.2* consists 1980 bp encoding 658 residues. Comparisons of amino acid sequences analysis showed that 1Dx1.5* had higher similarity with the HMW-GS isolated from the wheat related species (Aegilops tauchi Coss.) than from the bread wheat varieties (Triticum aestivum L.). The 1Dy12.2* amino acid sequence showed a generally similar to the 1Dy12* isolated from Chinese endemic wheats. Meanwhile, the dough properties of the lines expressing (null, 7+8, 1.5*+10), (null, 7+8, 2+12.2*) and (null, 7+8, 2+12), respectively, were measured by a Mixograph, which demonstrates that the alleles 1.5*+10 can be considered as having positive impact on dough strength when compared with the alleles 2+12. In addition, the subunits 2+12.2* also showed a greater impact on dough strength than 2+12.  相似文献   

19.
Proteolytic degradation of 50% 1-propanol insoluble (50PI) glutenin of six common wheat cultivars by wheat bug (Eurygaster maura) protease was investigated using reversed-phase HPLC. Wheat at the milk-ripe stage was manually infested with adult bugs. After harvest, bug-damaged kernels were blended (2:1, kernel basis) with undamaged grain of the same cultivar. Samples of ground wheat were incubated in distilled water for different times (0, 30, 60, and 120 min). The incubated whole meal samples were subsequently freeze-dried and stored until analysis. The degree of proteolytic degradation of 50PI glutenin was determined based on the quantity of total glutenin subunits (GS), high molecular weight GS (HMW-GS), and low molecular weight GS (LMW-GS). For ground wheat samples incubated for ≥30 min, 50PI glutenin was substantially degraded as evidenced by a >80% decrease on average in total GS, HMW-GS, and LMW-GS. Some cultivars showed different patterns of glutenin proteolysis as revealed by differences in the ratios of HMW-GS to LMW-GS between sound and bug-damaged samples; a significant decrease in this ratio was found for four cultivars. This evidence, combined with other observations, indicated that there were intercultivar differences in polymeric glutenin resistance to the protease of the wheat bug Eurygaster maura. While the nature of this resistance is unknown, it should be possible to select and develop wheat cultivars with improved tolerance for wheat bug damage. Propanol insoluble glutenin, which corresponds to relatively large glutenin polymers, appears to be an excellent quantitative marker for this purpose.  相似文献   

20.
Variation of high molecular weight glutenin subunits (HMW-GS) in 28 Iranian Aegilops tauschii (2n = 2x = 14, DD) accessions studied by sodium dodecyl sulphate electrophoresis method (SDS-PAGE). The results showed high variation of HMW-GS in the accessions. The range of frequency in 14 HMW-GS combinations was 3.57–25 % in the accessions. AMOVA showed the molecular variance between the geographic areas was lower than within the geographic areas. According to Nei’s genetic diversity, the highest diversity levels were in Semnan, Golestan and Azarbayjan, on the other hand the lowest levels of diversity were found in Khorasan, Gilan and Mazandaran accessions. Hence, the Caspian Sea South East accessions also Azerbayjan in Iran have more diversity. AMOVA did not show variance between strangulata and tauschii but there was more genetic diversity in ssp. tauschii subspecies in comparison of ssp. strangulata according to Nei’s gene diversity and Shannon information index. It showed Iranian Ae. tauschii have a good potential for bread making quality improvement in bread wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号