首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sarcocystis neurona is an obligate intracellular parasite that causes equine protozoal myeloencephalitis (EPM). Previous work has identified a gene family of paralogous surface antigens in S. neurona called SnSAGs. These surface proteins are immunogenic in their host animals, and are therefore candidate molecules for development of diagnostics and vaccines. However, SnSAG diversity exists in strains of S. neurona, including the absence of the major surface antigen gene SnSAG1. Instead, sequence for an alternative SnSAG has been revealed in two of the SnSAG1-deficient strains. Herein, we present data characterizing this new surface protein, which we have designated SnSAG5. The results indicated that the protein encoded by the SnSAG5 sequence is indeed a surface-associated molecule that has characteristics consistent with the other SAGs identified in S. neurona and related parasites. Importantly, Western blot analyses of a collection of S. neurona strains demonstrated that 6 of 13 parasite isolates express SnSAG5 as a dominant surface protein instead of SnSAG1. Conversely, SnSAG5 was not detected in SnSAG1-positive strains. One strain, which was isolated from the brain of a sea otter, did not express either SnSAG1 or SnSAG5. Genetic analysis with SnSAG5-specific primers confirmed the presence of the SnSAG5 gene in Western blot-positive strains, while also suggesting the presence of a novel SnSAG sequence in the SnSAG1-deficient, SnSAG5-deficient otter isolate. The findings provide further indication of S. neurona strain diversity, which has implications for diagnostic testing and development of vaccines against EPM as well as the population biology of Sarcocystis cycling in the opossum definitive host.  相似文献   

2.
Equine protozoal myeloencephalitis (EPM) is a common neurologic disease of horses that is caused by the apicomplexan pathogen Sarcocystis neurona. To help improve serologic diagnosis of S. neurona infection, we have modified existing enzyme-linked immunosorbent assays (ELISAs) based on the immunogenic parasite surface antigens SnSAG2, SnSAG3, and SnSAG4 to make the assays polyvalent, thereby circumventing difficulties associated with parasite antigenic variants and diversity in equine immune responses. Two approaches were utilized to achieve polyvalence: (1) mixtures of the individual recombinant SnSAGs (rSnSAGs) were included in single ELISAs; (2) a collection of unique SnSAG chimeras that fused protein domains from different SnSAG surface antigens into a single recombinant protein were generated for use in the ELISAs. These new assays were assessed using a defined sample set of equine sera and cerebrospinal fluids (CSFs) that had been characterized by Western blot and/or were from confirmed EPM horses. While all of the polyvalent ELISAs performed relatively well, the highest sensitivity and specificity (100%/100%) were achieved with assays containing the rSnSAG4/2 chimera (Domain 1 of SnSAG4 fused to SnSAG2) or using a mixture of rSnSAG3 and rSnSAG4. The rSnSAG4 antigen alone and the rSnSAG4/3 chimera (Domain 1 of SnSAG4 fused to Domain 2 of SnSAG3) exhibited the next best accuracy at 95.2% sensitivity and 100% specificity. Binding ratios and percent positivity (PP) ratios, determined by comparing the mean values for positive versus negative samples, showed that the most advantageous signal to noise ratios were provided by rSnSAG4 and the rSnSAG4/3 chimera. Collectively, our results imply that a polyvalent ELISA based on SnSAG4 and SnSAG3, whether as a cocktail of two proteins or as a single chimeric protein, can give optimal results in serologic testing of serum or CSF for the presence of antibodies against S. neurona. The use of polyvalent SnSAG ELISAs will enhance the reliability of serologic testing for S. neurona infection, which should lead to improved diagnosis of EPM.  相似文献   

3.
An expressed sequence tag (EST) sequencing project has produced over 15,000 partial cDNA sequences from the equine pathogen Sarcocystis neurona. While many of the sequences are clear homologues of previously characterized genes, a significant number of the S. neurona ESTs do not exhibit similarity to anything in the extensive sequence databases that have been generated. In an effort to characterize parasite proteins that are novel to S. neurona, a seemingly unique gene was selected for further investigation based on its abundant representation in the collection of ESTs and the predicted presence of a signal peptide and glycolipid anchor addition on the encoded protein. The gene was expressed in E. coli, and monospecific polyclonal antiserum against the recombinant protein was produced by immunization of a rabbit. Characterization of the native protein in S. neurona merozoites and schizonts revealed that it is a low molecular weight surface protein that is expressed throughout intracellular development of the parasite. The protein was designated Surface Protein 1 (SPR1) to reflect its display on the outer surface of merozoites and to distinguish it from the ubiquitous SAG/SRS surface antigens of the heteroxenous Coccidia. Interestingly, infection assays in the presence of the polyclonal antiserum suggested that SnSPR1 plays some role in attachment and/or invasion of host cells by S. neurona merozoites. The work described herein represents a general template for selecting and characterizing the various unidentified gene sequences that are plentiful in the EST databases for S. neurona and other apicomplexans. Furthermore, this study illustrates the value of investigating these novel sequences since it can offer new candidates for diagnostic or vaccine development while also providing greater insight into the biology of these parasites.  相似文献   

4.
Sarcocystis neurona is the parasite most commonly associated with equine protozoal myeloencephalitis (EPM). Recently, cats (Felis domesticus) have been demonstrated to be an experimental intermediate host in the life cycle of S. neurona. This study was performed to determine if cats experimentally inoculated with culture-derived S. neurona merozoites develop tissue sarcocysts infectious to opossums (Didelphis virginiana), the definitive host of S. neurona. Four cats were inoculated with S. neurona or S. neurona-like merozoites and all developed antibodies reacting to S. neurona merozoite antigens, but tissue sarcocysts were detected in only two cats. Muscle tissues from the experimentally inoculated cats with and without detectable sarcocysts were fed to laboratory-reared opossums. Sporocysts were detected in gastrointestinal (GI) scrapings of one opossum fed experimentally infected feline tissues. The study results suggest that cats can develop tissue cysts following inoculation with culture-derived Sarcocystis sp. merozoites in which the particular isolate was originally derived from a naturally infected cat with tissue sarcocysts. This is in contrast to cats which did not develop tissue cysts when inoculated with S. neurona merozoites originally derived from a horse with EPM. These results indicate present biological differences between the culture-derived merozoites of two Sarcocystis isolates, Sn-UCD 1 and Sn-Mucat 2.  相似文献   

5.
Dual Sarcocystis neurona and Toxoplasma gondii infection was observed in a Northern sea otter from Washington, USA. The animal was found stranded, convulsed, and died shortly thereafter. Encephalitis caused by both S. neurona and T. gondii was demonstrated in histological sections of brain. Immunohistochemical examination of sections with S. neurona specific antisera demonstrated developmental stages that divided by endopolygeny and produced numerous merozoites. PCR of brain tissue from the sea otter using primer pairs JNB33/JNB54 resulted in amplification of a 1100 bp product. This PCR product was cut in to 884 and 216 bp products by Dra I but was not cut by Hinf I indicating that it was S. neurona [J. Parasitol. 85 (1999) 221]. No PCR product was detected in the brain of a sea otter which had no lesions of encephalitis. Examination of brain sections using T. gondii specific antisera demonstrated tachyzoites and tissue cysts of T. gondii. The lesions induced by T. gondii suggested that the sea otter was suffering from reactivated toxoplasmosis. T. gondii was isolated in mice inoculated with brain tissue. A cat that was fed infected mouse brain tissue excreted T. gondii oocysts which were infective for mice. This is apparently the first report of dual S. neurona and T. gondii in a marine mammal.  相似文献   

6.
7.
Horses are considered accidental hosts for Sarcocystis neurona and they often develop severe neurological disease when infected with this parasite. Schizont stages develop in the central nervous system (CNS) and cause the neurological lesions associated with equine protozoal myeloencephalitis. The present study was done to examine the ability of S. neurona merozoites to penetrate and develop in equine peripheral blood leukocytes. These infected host cells might serve as a possible transport mechanism into the CNS. S. neurona merozoites penetrated equine leukocytes within 5 min of co-culture. Infected leukocytes were usually monocytes. Infected leukocytes were present up to the final day of examination at 3 days. Up to three merozoites were present in an infected monocyte. No development to schizont stages was observed. All stages observed were in the host cell cytoplasm. We postulate that S. neurona merozoites may cross the blood brain barrier hidden inside leukocytes. Once inside the CNS these merozoites can egress and invade additional cells and cause encephalitis.  相似文献   

8.
Sera from 961 horses from Brazil were tested for antibodies against the major surface antigens SnSAG4 and NhSAG1 to determine the seroprevalence of Sarcocystis neurona and Neospora hughesi, respectively. Antibodies against SnSAG4 were detected in 669 (69.6%) of the horses, while antibodies against NhSAG1 were detected in only 24 (2.5%) of the horses. These serologic results suggest that there is a high concentration of S. neurona in the environment of Brazil, which results in marked exposure of horses to this parasite. Additionally, the data further confirm that infection with Neospora spp. is relatively uncommon in horses.  相似文献   

9.
OBJECTIVE: To determine serologic prevalence of Sarcocystis neurona, Toxoplasma gondii, and Neospora caninum in horses in Brazil. DESIGN: Prevalence survey. ANIMALS: 101 Thoroughbreds in Brazil. PROCEDURE: Blood samples were obtained from horses and tested for serum antibodies against S neurona by use of an immunoblot procedure with culture-derived S neurona merozoites as antigen, and for serum antibodies against T gondii and N caninum by use of a modified agglutination test with formalin-preserved tachyzoites and mercaptoethanol. RESULTS: Antibodies against S neurona and T gondii were detected in 36 and 16 of 101 horses, respectively. Cross-reactivity between antibodies against T gondii and S neurona was not detected. Antibodies against N caninum were not detected in any samples. CONCLUSIONS AND CLINICAL RELEVANCE: The high prevalence of antibodies against S neurona detected in clinically normal horses emphasizes the importance of examining CSF for antibodies when establishing a diagnosis of equine protozoal myeloencephalitis.  相似文献   

10.
A 3-month-old male Golden Retriever puppy was evaluated for lethargy and fever of 2-days duration. Results of a CBC and biochemical profile revealed marked eosinophilia (6.3 X 10(3)/microL; reference interval 0.1-1.2 X 10(3)/microL), moderate thrombocytopenia, and increased activities of alanine aminotransferase, aspartate aminotransferase, and creatine kinase. Hepatomegaly and peritoneal effusion were found using abdominal ultrasound. Peritoneal fluid analysis revealed eosinophilic inflammation (23,000 nucleated cells/microL with 88% eosinophils). Despite supportive treatment the puppy's condition deteriorated rapidly; euthanasia was requested, and a necropsy performed. Microscopically, there was marked necrosuppurative and eosinophilic hepatitis with vasculitis. Numerous hepatocytes contained protozoal organisms suspected to be Toxoplasma gondii or Neospora caninum. However, serum was negative for both T gondii and N caninum antibodies; polymerase chain reaction assay on hepatic tissue was negative for both organisms; and immunohistochemical evaluation of hepatic tissue using serum raised against T gondii, N caninum, and Sarcocystis neurona also was negative. Schizont morphology suggested that merozoites replicated by endopolygeny, forming rosettes around a central residual body. Transmission electron microscopy revealed that merozoites lacked rhoptries. These findings were consistent with a diagnosis of Sarcocystis canis, an apicomplexan parasite with an unknown life cycle.  相似文献   

11.
Protozoal dermatitis was diagnosed in a 6-year-old female Great Dane dog from Rio de Janeiro, Brazil. The dog died because of a chronic illness with an Ehrlichia-like organism. Numerous apicomplexan parasites were identified histologically in the section of dermal lesions. The protozoan reacted with Toxoplasma gondii polyclonal rabbit serum but not with Neospora caninum or Sarcocystis neurona antibodies. Ultrastructurally, the protozoa was not T. gondii because it had schizont-like structures with merozoites arranged around a prominent residual body, and the merozoites had several rhoptries with electron-dense contents; rhoptries in T. gondii tachyzoites are electron-lucent and a residual body is not found in groups of tachyzoites. This is the first report of unidentified T. gondii-like protozoa in the skin of a dog.  相似文献   

12.
Equine protozoal myeloencephalitis (EPM) is a neurologic syndrome in horses from the Americas and is usually caused by infection with the apicomplexan parasite, Sarcocystis neurona. A horse model of EPM is needed to test the efficacy of chemotherapeutic agents and potential vaccines. Five horses that were negative for antibodies to S. neurona in their serum and cerebrospinal fluid (CSF) were injected in the subarachnoid space with living merozoites of the SN2 isolate of S. neurona. None of the horses developed clinical disease or died over a 132-day observation period. All five horses developed antibodies to S. neurona in their CSF and serum 3-4 weeks after injection. Two of the horses were examined at necropsy and no parasite induced lesions were observed in their tissues and no parasites were recovered from portions of their spinal cords inoculated on to cell cultures. Results of this study demonstrate that merozoites of the SN2 isolate of S. neurona will induce seroconversion but not clinical disease when inoculated directly into the CSF of nonimmune horses.  相似文献   

13.
14.
Sarcocystis neurona associated granulomatous encephalitis was found in 2 of 84 adult raccoons. Both raccoons also had an extensive nonsuppurative myocarditis and one had S. neurona schizonts and merozoites in the myocardium. Only the asexual stages (schizonts and merozoites) of S. neurona are found in tissues of naturally infected animals (horse, mink, raccoons, cats, skunk, pony, seals, sea otters) and since these have not been reported outside the central nervous system, the presence of concurrent myocarditis in raccoons with the presence of S. neurona in the current study is of interest. Pathologists should consider the possible association of S. neurona with myocardial inflammation in other S. neurona susceptible animals.  相似文献   

15.
弓形虫P30基因及其功能   总被引:1,自引:0,他引:1  
弓形虫 P30基因所编码的蛋白为弓形虫主要表面抗原 SAG1 ,其约占速殖子总蛋白量的 5 %,SAG1对虫体侵入宿主细胞及其毒力具重要性 ,并有高度免疫原性和免疫保护性 ,被用于弓形虫疫苗的研制和弓形虫感染的分子诊断  相似文献   

16.
Sera from 76 horses from Argentina were examined for antibodies to Sarcocystis neurona, Toxoplasma gondii and Neospora caninum. Antibodies to S. neurona were found in 27 (35.5%) of 76 horses using immunoblots with culture derived merozoites as antigen. Antibodies to T. gondii were found in 10 (13.1%) of 76 horses by using the modified agglutination test with formalin-fixed tachyzoites and mercaptoethanol; titers were 1:25 (two horses), 1:50 (six horses), 1:100 (two horses), and 1:200 (one horse). Antibodies to N. caninum were not found in any of the 76 horses by the use of N. caninum agglutination test. This is the first report of S. neurona infection in horses in Argentina.  相似文献   

17.
Sarcocystis neurona was isolated from sporocysts from two of eight South American opossums, Didelphis albiventris, from Brazil. Interferon gamma gene knock out (KO) mice fed sporocysts from two opossums developed neurologic sarcocystosis. S. neurona was demonstrated in the brains of infected KO mice by immunohistochemical staining with anti-S. neurona antibody. The parasite was cultivated in cell culture and S. neurona DNA was isolated from cultured merozoites. This is the first report of isolation of S. neurona from Brazil and the first report from its new host, D. albiventris.  相似文献   

18.
An isolate of Sarcocystis neurona (SN7) was obtained from the spinal cord of a horse with neurologic signs. The parasite was isolated in cultures of bovine monocytes and equine spleen cells. The organism divided by endopolygeny and completed at least one asexual cycle in cell cultures in 3 days. The parasite was maintained by subpassages in bovine monocytes for 10 months when it was found to be non-pathogenic to gamma interferon knockout (KO) mice. Revival of a low passage (10th passage) of the initial isolate stored in liquid nitrogen for 18 months retained its pathogenicity for KO mice. Merozoites (10(6)) of the late passage (22nd passage) were infective to only one of four KO mice inoculated. Similar results were obtained with SN6 isolate of S. neurona. No differences were found in Western blot patterns using antigens from the low and high passage merozoites of the SN7 and SN6 isolates. These results suggest that prolonged passage in cell culture may affect the pathogenicity of some isolates of S. neurona.  相似文献   

19.
Parasite-specific incorporation of (3)H-uracil was used to assess the replication of Sarcocystis neurona, a protozoal parasite associated with equine protozoal myeloencephalitis (EPM). Anti-protozoal drugs, pyrimethamine (0.01, 0.1 and 1.0microg/ml PYR), sulfadiazine (5microg/ml; SDZ), sulfamethoxazole (5microg/ml; SMZ), diclazuril (100ng/ml; DCZ), atovaquone (0.04ng/ml; ATQ), tetracycline (5microg/ml; TET) and the herbicide glyphosate (1.5 and 4.5mM; GLY) were studied with varying S. neurona parasite densities (2x10(1)-1.2x10(6)merozoites/well). A microtiter plate format was used to test these compounds, and incorporation of (3)H-uracil was determined using a semi-automated plate harvester and liquid scintillation counter. When PYR, DCZ, ATQ, SMZ, SDZ, and TET were tested, the assay was most reliable when parasite densities were greater than 9.0x10(4) individual merozoites per well. When the herbicide GLY was tested, as few as 900 individual merozoites were sufficient to demonstrate reduction in parasite proliferation. Of the anti-protozoal drugs commonly used to treat EPM, PYR was the most potent anti-S. neurona agent tested. The herbicide GLY appears to be more potent than all of the other compounds tested in vitro; however information regarding in vivo use of GLY is not available, and central nervous system penetration by this compound is unlikely. Incorporation of (3)H-uracil by replicating S. neurona is quantitative and can be used in a semi-automated assay. This in vitro assay is capable of high throughput screening of candidate drugs that may have applications in a clinical setting. Further studies using a wider range of drug concentrations with optimal numbers of merozoites are necessary to determine true potency of these agents.  相似文献   

20.
Sarcocystis neurona is the most important cause of a neurologic disease of horses, equine protozoal myeloencephalitis (EPM). Cats and other carnivores can act as its intermediate hosts and horses are aberrant hosts. Little is known of the sero-epidemiology of S. neurona infections in cats. In the present study, antibodies to S. neurona were evaluated by the S. neurona agglutination test (SAT). Cats fed sporocysts from the feces of naturally infected opossums or inoculated intramuscularly with S. neurona merozoites developed high levels (> or =1:4000) of SAT antibodies. Antibodies to S. neurona were not found in a cat inoculated with merozoites of the closely related parasite, Sarcocystis falcatula. These results should be useful in studying sero-epidemiology of S. neurona infections in cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号