首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of sap flow variability in tree trunks is important for up-scaling transpiration from the measuring point to the whole-tree and stand levels. Natural variability in sap flow, both radial and circumferential, was studied in the trunks and branches of mature olive trees (Olea europea L., cv Coratina) by the heat field deformation method using multi-point sensors. Sapwood depth ranged from 22 to 55 mm with greater variability in trunks than in branches. Two asymmetric types of sap flow radial patterns were observed: Type 1, rising to a maximum near the mid-point of the sapwood; and Type 2, falling continuously from a maximum just below cambium to zero at the inner boundary of the sapwood. The Type 1 pattern was recorded more often in branches and smaller trees. Both types of sap flow radial patterns were observed in trunks of the sample trees. Sap flow radial patterns were rather stable during the day, but varied with soil water changes. A decrease in sap flow in the outermost xylem was related to water depletion in the topsoil. We hypothesized that the variations in sap flow radial pattern in a tree trunk reflects a vertical distribution of water uptake that varies with water availability in different soil layers.  相似文献   

2.
The compensation heat pulse (CHP) method is widely used to estimate sap flow and transpiration in conducting organs of woody plants. Previous studies have reported a natural azimuthal variability in sap flow, which could have practical implications in locating the CHP probes and integrating their output. Sap flow of several olive trees (Olea europaea L. cv. 'Arbequina') previously grown under different irrigation treatments were monitored by the CHP method, and their xylem anatomical characteristics were analyzed from wood samples taken at the same location in which the probes were installed. A significant azimuthal variability in the sap flow was found in a well-irrigated olive tree monitored by eight CHP probes. The azimuthal variability was well related to crown architecture, but poorly to azimuthal differences in the xylem anatomical characteristics. Well-irrigated and deficit-irrigated olive trees showed similar xylem anatomical characteristics, but they differed in xylem growth and in the ratio of nocturnal-to-diurnal sap flow (N/D index). The results of this work indicate that transpiration cannot be accurately estimated by the CHP method in olive trees if a small number of sensors are employed and that the N/D index could be used as a sensitive water status indicator.  相似文献   

3.
Becker P 《Tree physiology》1998,18(3):177-184
Unlike an ideal system, the return time to thermal balance (t(b)) between upstream and downstream thermistors, as measured by the (compensation) heat pulse velocity method, effectively depends on the heat input and the water content of the wood at zero and low sap flow. Even when these factors were held constant and ambient temperature was stabilized, a twofold variation in t(b) at zero flow was observed within and among Greenspan Technology sensors implanted in wooden posts, making it impossible to distinguish zero flow from low sap velocities (< 0.01-0.02 mm s(-1)). This limitation has serious consequences because the contribution of low flow rates to water movement is important during both daytime and nighttime in tropical understory and overstory trees. Measurements in an artificial flow system showed that this technical limitation is exacerbated by erratic variation in sensor response at both zero and low flow rates. The limited sensitivity of the tested sap flow sensors may be caused by their poor thermal contact with wood. Interim procedures are suggested for estimating minimum detectable sap flow and delimiting the hydroactive zone until the sensitivity and interchangeability of sap flow probes are improved.  相似文献   

4.
Sap flow rates were measured simultaneously by the heat pulse and deuterium tracing techniques in nine Eucalyptus grandis W. Hill ex Maiden. trees at two sites (1) to compare results from the two techniques and (2) to assess the impact of the assumptions underlying the deuterium tracing method on the calculation of sap flow for a range of tree sizes. The trees ranged in height from 4 to 14 m with leaf areas of 5 to 35 m(2). In all trees, sap flow estimated by the deuterium tracing technique was higher than sap flow estimated by the heat pulse method, with differences of 11 to 43% in eight of the trees and 113% in one tree. The largest difference was attributed to errors in the heat pulse method, as indicated by aberrant relationships between sap flow measured by the heat pulse method and tree size characteristics (i.e., diameter, sap wood area, leaf area) for that tree compared with the other experimental trees. Drilling holes in the trees to allow injection of deuterium had no significant effect on sap flow, even when 32 holes were drilled. Sap flow measured by the heat pulse method was only lower after drilling than before drilling in three trees, and the difference only persisted for about 1 h. Deuterium concentrations of water collected from the tree canopies had not returned to background values 17 days after injection. Twenty-one days after injection, sapwood and heartwood samples taken from trunks near the injection sites contained considerable concentrations of deuterium, indicating that some of the deuterium injected into the trees was still present. An experiment performed on two trees showed that deuterium was stored in the heartwood and sapwood throughout the trees, and its distribution within the trees four days after injection was similar whether it was injected into only the sapwood (where it should mix with sap and be transported from the tree most readily) or into both the sapwood and heartwood, indicating that there was considerable movement of deuterium between the heartwood and sapwood. Deuterium storage was accounted for by an approximate means in the sap flow calculations, and may have resulted in an error of about 10% in sap flow estimated by this method. We conclude that the heat pulse and deuterium tracing techniques can be used simultaneously to increase the number of sap flow measurements obtained from a forest, thereby increasing the precision of forest water use estimates. Their combination would be most effective in stands with a wide range of tree sizes and sap flow rates, where the relative differences in sap flux estimates between the methods is small compared with differences in sap flow between trees.  相似文献   

5.
Thermal dissipation probes (the Granier method) are routinely used in forest ecology and water balance studies to estimate whole-tree transpiration. This method utilizes an empirically derived equation to measure sap flux density, which has been reported as independent of wood characteristics. However, errors in calculated sap flux density may occur when large gradients in sap velocity occur along the sensor length or when sensors are inserted into non-conducting wood. These may be conditions routinely associated with ring-porous species, yet there are few cases in which the original calibration has been validated for ring-porous species. We report results from laboratory calibration measurements conducted on excised stems of four ring-porous species and two diffuse-porous species. Our calibration results for ring-porous species were considerably different compared with the original calibration equation. Calibration equation coefficients obtained in this study differed by as much as two to almost three orders of magnitude when compared with the original equation of Granier. Coefficients also differed between ring-porous species across all pressure gradient conditions considered; however, no differences between calibration slopes were observed for data collected within the range of expected in situ pressure gradients. In addition, dye perfusions showed that in three of the four ring-porous species considered, active sapwood was limited to the outermost growth ring. In contrast, our calibration results for diffuse-porous species showed generally good agreement with the empirically derived Granier calibration, and dye perfusions showed that active sapwood was associated with many annual growth rings. Our results suggest that the original calibration of Granier is not universally applicable to all species and xylem types and that previous estimates of absolute rates of water use for ring-porous species obtained using the original calibration coefficients may be associated with substantial error.  相似文献   

6.
Comparisons of tree water relations between treatments, species and sites are facilitated by the use of simple and low-cost measurements of xylem sap flow rates. The transient thermal dissipation (TTD) method is a variant of the constant thermal dissipation (CTD) method of Granier. It has the advantages of limiting thermal interference and of saving electrical energy. Here, our concern was to test a new step towards simplicity and low cost: the applicability of the TTD method with a single probe, i.e., without a reference sensor, following a cycle of 10 min heating and 10 min cooling, and using the same thermal index and multi-species calibration previously assessed with a dual probe. First, the responses of the dual and single probes were compared in an artificial hydraulic column of sawdust in the laboratory over a complete range of flux densities, from 0.3 to 4.0 l dm?2 h?1. Second, diurnal kinetics were compared in a young tree with rapid changes in the sapwood reference temperature of up to 5 °C h?1 for 5 consecutive days. With a relatively stable reference temperature, laboratory results showed that a single probe yielded the same temperature signal and thermal index as a dual probe for the full range of sap flux densities. Within the tree, the cooled temperature of the heated probe, linearly interpolated, proved to be an accurate indicator of the change in the reference temperature over time. Logically, the temperature signals and estimates of sap flux density with the single probe did not differ from the dual-sensor measurements when the cooled temperature was interpolated. Additionally, the responses of the thermal index, yielded in the hydraulic experiment with the sawdust column, fell within the variability of the multi-species calibration. This result supports the previous assessment of a non-species-specific calibration for the TTD method with diffuse porous media. In conclusion, our results showed that the TTD method can be directly applied with a single probe. Limitations and possible future progress are pointed out. This measurement system is probably the simplest technique currently available to measure xylem sap flow.  相似文献   

7.
The sap flow of the sampled Populus euphratica stems at different radial depths and directions had been studied in Ejina Oasis, in the lower reaches of the Heihe River. Based on sap flow measurements, the transpiration of the entire canopy was calculated. Results showed a linear correlation between the sap flow and the sapwood area of the P. euphratica. Through the analysis of the diameter at breast height in the sample plot, it was found that the distribution of the diameters and the corresponding sapwood area was exponentially correlated, with the coefficient of correlation being 0.976,7. The calculated transpiration of the Populus euphratica canopy was 214.9 mm based on the specific conductivity method. Translated from Scientia Silvae Sinicae, 2006, 42(7): 28–32 [译自: 林业科学]  相似文献   

8.
The compensation heat pulse method (CHPM) is of limited value for measuring low rates of sap flow in woody plants. Recent application of the CHPM to woody roots has further illustrated some of the constraints of this technique. Here we present an improved heat pulse method, termed the heat ratio method (HRM), to measure low and reverse rates of sap flow in woody plants. The HRM has several important advantages over the CHPM, including improved measurement range and resolution, protocols to correct for physical and thermal errors in sensor deployment, and a simple linear function to describe wound effects. We describe the theory and methodological protocols of the HRM, provide wound correction coefficients, and validate the reliability and accuracy of the technique against gravimetric measurements of transpiration.  相似文献   

9.
《林业研究》2021,32(4)
The tropical arboreal species Brazilian mahogany(Swietenia macrophylla) is very important economically and ecologically,for which understanding ecophysiological variables such as sap flow will improve understanding of the species and its cultivation.This paper aims to measure uncertainties(U) involved in the application of the heat ratio method for determining sap flow in Brazilian mahogany using sets of heating probes and thermometers installed on plants of 18 months of age,cultivated in Yellow Latosol,under a weighing lysimeter and located in a protected environment.The uncertainty in sap flow was calculated as the combination of uncertainty in the thermal diffusivity(U_k),conductive section(U_(Sc)) and corrected sap velocity(U_(Vc)).U_k had greater weight in determining the flow of sap in Brazilian mahogany,when compared to U_(Sc) and U_(Vc).The thermal diffusivity during the cycle,or period evaluated,must be adjusted to improve the accuracy of the heat ratio method because the sap flow overestimated transpiration by 15.0%.When soil water was optimal In addition,the vapor pressure deficit linearly and indirectly influenced the SF with a difference of 14.6%.  相似文献   

10.
Temporal changes in inorganic and organic sulfur compounds (sulfate, glutathione, cysteine, methionine) were analyzed in xylem sap of 40-year-old Norway spruce (Picea abies (L.) Karst.) trees growing on acidic soils at a healthy and a declining stand in the Fichtelgebirge (North Bavaria, Germany). Studies were carried out (1) to quantify glutathione (GSH) transport in the xylem of spruce, (2) to study the significance of reduced sulfur versus sulfate (SO(4) (2-)) transport in the xylem, and (3) to compare total sulfur (S) transport in the xylem with the amount of foliar uptake of SO(2) in an air-polluted environment. Glutathione was the main reduced S compound in the xylem ranging in concentration from 0.5 to 5 &mgr;mol l(-1). Concentrations of inorganic SO(4) (2-) in the xylem sap were up to 50 times higher than those of GSH ranging from 60 to 230 &mgr;mol l(-1). During the growing season, concentrations of all S compounds in the xylem were highest in May (up to 246 &mgr;mol l(-1)) and decreased during summer and fall (up to 21 &mgr;mol l(-1)). On average, SO(4) (2-) concentrations in xylem sap were 30% higher at the declining site compared with the healthy site. Diurnal changes in organic S compounds were significant for GSH and cysteine with high concentrations during the night and low concentrations during the day. Diurnal changes in inorganic concentrations were not significant. Xylem sap concentrations of SO(4) (2-) and cysteine were twice as high and GSH concentrations were tenfold higher in surface roots than in branches. At both sites, transport of organic S was low (up to 3% of total S) compared to transport of SO(4) (2-). Annual transport of total S in the xylem (SO(4) (2-) was the main component) ranged from 60 to 197 mmol tree(-1) year(-1) at the healthy site and from 123 to 239 mmol tree(-1) year(-1) at the declining site. Although gaseous uptake of SO(2) was estimated to be similar at both sites (38 mmol tree(-1) year(-1); Horn et al. 1989), the ratio between annual gaseous uptake of SO(2) and transport of S in the xylem was 1:4 and 1:5 at the healthy and declining sites, respectively.  相似文献   

11.
In a world of diminishing water reservoirs and a rising demand for food, the practice and development of water stress indicators and sensors are in rapid progress. The heat dissipation method, originally established by Granier, is herein applied and modified to enable sap flow measurements in date palm trees in the southern Arava desert of Israel. A long and tough sensor was constructed to withstand insertion into the date palm's hard exterior stem. This stem is wide and fibrous, surrounded by an even tougher external non-conducting layer of dead leaf bases. Furthermore, being a monocot species, water flow does not necessarily occur through the outer part of the palm's stem, as in most trees. Therefore, it is highly important to investigate the variations of the sap flux densities and determine the preferable location for sap flow sensing within the stem. Once installed into fully grown date palm trees stationed on weighing lysimeters, sap flow as measured by the modified sensors was compared with the actual transpiration. Sap flow was found to be well correlated with transpiration, especially when using a recent calibration equation rather than the original Granier equation. Furthermore, inducing the axial variability of the sap flux densities was found to be highly important for accurate assessments of transpiration by sap flow measurements. The sensors indicated no transpiration at night, a high increase of transpiration from 06:00 to 09:00, maximum transpiration at 12:00, followed by a moderate reduction until 08:00; when transpiration ceased. These results were reinforced by the lysimeters' output. Reduced sap flux densities were detected at the stem's mantle when compared with its center. These results were reinforced by mechanistic measurements of the stem's specific hydraulic conductivity. Variance on the vertical axis was also observed, indicating an accelerated flow towards the upper parts of the tree and raising a hypothesis concerning dehydrating mechanisms of the date palm tree. Finally, the sensors indicated reduction in flow almost immediately after irrigation of field-grown trees was withheld, at a time when no climatic or phenological conditions could have led to reduction in transpiration.  相似文献   

12.
Lu P  Müller WJ  Chacko EK 《Tree physiology》2000,20(10):683-692
Circumferential and radial variations in xylem sap flux density in trunks of 13-year-old mango (Mangifera indica L.) trees were investigated with Granier sap flow sensor probes under limiting and non-limiting soil water conditions. Under non-limiting soil water conditions, circumferential variation was substantial, but there was no apparent relationship between sap flux density and aspect (i.e., the radial position of the sensor probes on the trunk relative to the compass). Hourly sap flux densities over 24 hours at different aspects were highly pair-wise correlated. The relationships between different aspects were constant during well-watered periods but highly variable under changing soil water conditions. Sap flux density showed marked radial variation within the trunk and a substantial flux was observed at the center of the trunk. For each selected aspect on each tree, changes in sap flux densities over time at different depths were closely correlated, so flux at a particular depth could be extrapolated as a multiple of flux from 0 to 2 cm beneath the cambium. However, depth profiles of sap flux density differed between trees and even between aspects within a tree, and also varied in an unpredictable manner as soil water conditions changed. Nevertheless, over a period of non-limiting soil water conditions, depth profiles remained relatively constant. Based on the depth profiles obtained during these periods, a method is described for calculating total sap flow in a mango tree from sap flux density at 0-2 cm beneath the cambium. Total daily sap flows obtained were consistent with water use estimated from soil water balance.  相似文献   

13.
We studied the effect of temperature on the carbohydrate status of parenchyma cells during winter in relation to the efflux and influx of sugars between parenchyma cells and xylem vessels in 1-year-old twigs of walnut (Juglans regia L.). The mechanism of sugar transfer between contact cells and vessels was also investigated. We obtained new insights into the possible osmotic role of sugars, particularly sucrose, in stem pressure formation and winter embolism repair. Accumulation of sucrose in the xylem sap during winter was mainly influenced by: (1) abundant conversion of starch to sucrose in the symplast at low temperatures; (2) sucrose efflux into the apoplast at low temperatures (1 degrees C); and (3) inefficient sugar uptake at low temperatures, although efficient sugar uptake occurred at 15 degrees C. We hypothesize that a diethyl pyrocarbonate (DEPC)-sensitive protein mediates facilitated diffusion of sucrose from parenchyma cells to xylem vessels (efflux) in walnut. We discuss the possible occurrence of active H+-sucrose symports and the coexistence of both influx and efflux processes in walnut in winter and the modulation of the relative importance of these flows by temperature.  相似文献   

14.
We monitored the radial distribution of sap flux density (v; g H2O m(-2) s(-1)) in the sapwood of six plantation-grown Pinus taeda L. trees during wet and dry soil periods. Mean basal diameter of the 32-year-old trees was 33.3 cm. For all trees, the radial distribution of sap flow in the base of the stem (i.e., radial profile) was Gaussian in shape. Sap flow occurred maximally in the outer 4 cm of sapwood, comprising 50-60% of total stem flow (F), and decreased toward the center, with the innermost 4 cm of sapwood (11-15 cm) comprising less than 10% of F. The percent of flow occurring in the outer 4 cm of sapwood was stable with time (average CV < 10%); however, the percentage of flow occurring in the remaining sapwood was more variable over time (average CV > 40%). Diurnally, the radial profile changed predictably with time and with total stem flow. Seasonally, the radial profile became less steep as the soil water content (theta) declined from 0.38 to 0.21. Throughout the season, daytime sap flow also decreased as theta decreased; however, nighttime sap flow (an estimate of stored water use) remained relatively constant. As a result, the percentage of stored water use increased as theta declined. Time series analysis of 15-min values of F, theta, photosynthetically active radiation (PAR) and vapor pressure deficit (D) showed that F lagged behind D by 0-15 min and behind PAR by 15-30 min. Diurnally, the relationship between F and D was much stronger than the relationship between F and PAR, whereas no relationship was found between F and theta. An autoregressive moving average (ARIMA) model estimated that 97% of the variability in F could be predicted by D alone. Although total sap flow in all trees responded similarly to D, we show that the radial distribution of sap flow comprising total flow could change temporally, both on daily and seasonal scales.  相似文献   

15.
In large trees, the daily onset of transpiration causes water to be withdrawn from internal storage compartments, resulting in lags between changes in transpiration and sap flow at the base of the tree. We measured time courses of sap flow, hydraulic resistance, plant water potential and stomatal resistance in co-occurring tropical forest canopy trees with trunk diameters ranging from 0.34-0.98 m, to determine how total daily water use and daily reliance on stored water scaled with size. We also examined the effects of scale and tree hydraulic properties on apparent time constants for changes in transpiration and water flow in response to fluctuating environmental variables. Time constants for water movement were estimated from whole-tree hydraulic resistance (R) and capacitance (C) using an electric circuit analogy, and from rates of change in water movement through intact trees. Total daily water use and reliance on stored water were strongly correlated with trunk diameter, independent of species. Although total daily withdrawal of water from internal storage increased with tree size, its relative contribution to the daily water budget (approximately 10%) remained constant. Net withdrawal of water from storage ceased when upper branch water potential corresponded to the sapwood water potential (Psi(sw)) at which further withdrawal of water from sapwood would have caused Psi(sw) to decline precipitously. Stomatal coordination of vapor and liquid phase resistances played a key role in limiting stored water use to a nearly constant fraction of total daily water use. Time constants for changes in transpiration, estimated as the product of whole- tree R and C, were similar among individuals (~0.53 h), indicating that R and C co-varied with tree size in an inverse manner. Similarly, time constants estimated from rates of change in crown and basal sap flux were nearly identical among individuals and therefore independent of tree size and species.  相似文献   

16.
We studied seasonal variation in xylem sap pH of Juglans regia L. Our main objectives were to (1) test the effect of temperature on seasonal changes in xylem sap pH and (2) study the involvement of plasma membrane H+-ATPase of vessel-associated cells in the control of sap pH. For this purpose, orchard-grown trees were compared with trees grown in a heated (> or = 15 degrees C) greenhouse. During autumn, sap pH was not directly influenced by temperature. A seasonal change in H+-ATPase activity resulting from seasonal variation in the amount of protein was measured in orchard-grown trees, whereas no significant seasonal changes were recorded in greenhouse-grown trees. Our data suggest that H+-ATPase does not regulate xylem sap pH directly by donating protons to the xylem, but by facilitating secondary active H+/sugar transport, among other mechanisms.  相似文献   

17.
We investigated tree water relations in a lower tropical montane rain forest at 1950-1975 m a.s.l. in southern Ecuador. During two field campaigns, sap flow measurements (Granier-type) were carried out on 16 trees (14 species) differing in size and position within the forest stand. Stomatal conductance (g(s)) and leaf transpiration (E(l)) were measured on five canopy trees and 10 understory plants. Atmospheric coupling of stomatal transpiration was good (decoupling coefficient Omega = 0.25-0.43), but the response of g(s) and E(l) to the atmospheric environment appeared to be weak as a result of the offsetting effects of vapor pressure deficit (VPD) and photosynthetic photon flux (PPF) on g(s). In contrast, sap flow (F) followed these atmospheric parameters more precisely. Daily F depended chiefly on PPF sums, whereas on short time scales, VPD impeded transpiration when it exceeded a value of 1-1.2 kPa. This indicates an upper limit to transpiration in the investigated trees, even when soil water supply was not limiting. Mean g(s) was 165 mmol m(-2) s(-1) for the canopy trees and about 90 mmol m(-2) s(-1) for the understory species, but leaf-to-leaf as well as tree-to-tree variation was large. Considering whole-plant water use, variation in the daily course of F was more pronounced among trees differing in size and crown status than among species. Daily F increased sharply with stem diameter and tree height, and ranged between 80 and 120 kg day(-1) for dominant canopy trees, but was typically well below 10 kg day(-1) for intermediate and suppressed trees of the forest interior.  相似文献   

18.
Polle A  Glavac V 《Tree physiology》1993,13(4):409-413
Xylem sap was collected from trunk segments of adult beech (Fagus sylvatica L.) trees by water displacement. Peroxidase activity was analyzed in xylem saps collected in different phases of the yearly growth cycle and from different heights up the trunks (up to 14 m). The xylem saps contained two major peroxidase isozymes with acidic isoelectric points of 4.1 and 4.6, respectively. Mean peroxidase activity was low during the emergence of the new leaves and high in summer and in winter. In the cold season, peroxidase activity decreased from the stem base to the top, whereas significant gradients were not observed during the vegetative period.  相似文献   

19.
Robust thermal dissipation sensors of variable length (3 to 30 cm) were developed to overcome limitations to the measurement of radial profiles of sap flow in large-diameter tropical trees with deep sapwood. The effective measuring length of the custom-made sensors was reduced to 1 cm at the tip of a thermally nonconducting shaft, thereby minimizing the influence of nonuniform sap flux density profiles across the sapwood. Sap flow was measured at different depths and circumferential positions in the trunks of four trees at the Parque Natural Metropolitano canopy crane site, Panama City, Republic of Panama. Sap flow was detected to a depth of 24 cm in the trunks of a 1-m-diameter Anacardium excelsum (Bertero & Balb. ex Kunth) Skeels tree and a 0.65-m-diameter Ficus insipida Willd. tree, and to depths of 7 cm in a 0.34-m-diameter Cordia alliodora (Ruiz & Pav.) Cham. trunk, and 17 cm in a 0.47-m-diameter Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin trunk. Sap flux density was maximal in the outermost 4 cm of sapwood and declined with increasing sapwood depth. Considerable variation in sap flux density profiles was observed both within and among the trees. In S. morototoni, radial variation in sap flux density was associated with radial variation in wood properties, particularly vessel lumen area and distribution. High variability in radial and circumferential sap flux density resulted in large errors when measurements of sap flow at a single depth, or a single radial profile, were used to estimate whole-plant water use. Diurnal water use ranged from 750 kg H2O day-1 for A. excelsum to 37 kg H2O day-1 for C. alliodora.  相似文献   

20.
Patterns of water relations, xylem sap abscisic acid concentration ([ABA]) and stomatal aperture were characterized and compared in drought-sensitive black walnut (Juglans nigra L.), less drought-sensitive sugar maple (Acer saccharum Marsh.) and drought-tolerant white oak (Quercus alba L.) trees co-occurring in a second-growth forest in Missouri, USA. There were strong correlations among reduction in predawn leaf water potential, increased xylem sap [ABA] and stomatal closure in all species. Stomatal conductance was more closely correlated with xylem sap ABA concentration than with ABA flux or xylem sap pH and cation concentrations. In isohydric black walnut, increased concentrations of ABA in the xylem sap appeared to be primarily of root origin, causing stomatal closure in response to soil drying. In anisohydric sugar maple and white oak, however, there were reductions in midday leaf water potential associated with stomatal closure, making it uncertain whether drought-induced xylem sap ABA was of leaf or root origin. The role of root-originated xylem sap ABA in these species as a signal to the shoot of the water status of the roots is, therefore, less certain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号