首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mobility of hydrophobic organic compounds (HOCs) in soils can be influenced by the presence of dissolved organic matter (DOM). While numerous studies have determined interactions of HOCs with humic and fulvic acids, only few data exist on the partitioning of HOCs to natural, non‐fractionated DOM as it occurs in soil solutions. In this study, DOM was extracted from 17 soil samples with a broad range of chemical and physical properties, originating from different land uses. The partition coefficients of pyrene to DOM were determined in all soil extracts and for two commercial humic acids using the fluorescence quenching method. For the soil extracts, log KDOC values ranged from 3.2 to 4.5 litres kg?1. For the Aldrich and Fluka humic acids, log KDOC was 4.98 and 4.96 litres kg?1, respectively, thus indicating that they are not representative for soil DOM. After excluding these two values, the statistical analysis of the data showed a significant negative correlation between log KDOC and pH. This was also shown for one sample where the pH was adjusted to values ranging from 3 to 9. A multiple regression analysis suggested that ultraviolet absorbance at 280 nm (an indicator for aromaticity) and the E4:E6 ratio (an indicator for molecular weight) had additional effects on log KDOC. The results indicate that the partitioning of pyrene to DOM is reduced at alkaline pH, probably due to the increased polarity of the organic macromolecules resulting from the deprotonation of functional groups. Only within a narrow pH range was the KDOC of pyrene mainly related to the aromaticity of DOM.  相似文献   

2.
We investigated dissolved organic matter (DOM) from soil, sewage sludges, water from waste disposal sites, and composts as sorbents and potential carriers for hydrophobic polycyclic aromatic hydrocarbons (PAHs) in soil. Partition coefficients (expressed log KDOC) for two 5-ring compounds were 4·8–4·9 for DOM from soil, 4·5–47 from composts, and 4·3–4·4 from sewage sludges. The DOM from compost and sewage sludge can influence the transport of non-ionic organic contaminants because of the large concentrations of dissolved organic carbon (DOC) released from these materials. Leachates from waste disposal sites did not sorb PAHs. The DOM from compost contained a large percentage of organic molecules > 14 000 Da (32–46%), whereas DOM from waste disposal leachates contained only 7-lo%, and so bound less PAHs. The percentage of total hydrophobic components, as characterized by XAD-8 chromatography, was 50 ± 9% for most of the DOM solutions and did not express the differences in affinity of the organic sorbents to PAHs in the same way as the KDOC values. Isolated molecular-weight fractions of DOM from composts sorbed benzo(k)fluoranthene in each fraction. The log KDOC values were 4·1–4·3 for both fractions, < 1000 and 1000–14 000 Da, and 4·8–5·0 for the fraction > 14 000 Da. The interaction of PAHs with DOM < 1000 Da cannot be explained by partitioning within intramolecular nonpolar environments of dissolved macromolecules; rather it seems to be due to the amphoteric properties of DOM. This type of interaction of PAHs with small DOM molecules might affect the mobility of hydrophobic organic chemicals in soils.  相似文献   

3.

Purpose  

Polycyclic musk compounds (PMC) are used as fragrances in cosmetics and detergents and enter rivers via domestic wastewater and sewage treatment plants. Soils can be contaminated by PMC through application of sewage sludge. Accumulation of PMC occurs in sediments and biota due to their persistence and lipophilicity. Dissolved organic matter (DOM) is of special relevance for their transport and behavior in the environment as it acts as solubilizer and carrier in aquatic and terrestrial systems. With the distribution coefficient KDOC, one can predict their affinity to DOM. Different approaches exist to determine KDOC, resulting in a range of coefficients for a number of organic pollutants. The objective of this study was to determine KDOC values for PMC using solid-phase microextraction (SPME).  相似文献   

4.
Laboratory studies were conducted to characterize the 1-octanol/water partition coefficients of pharmaceutically active substances carbamazepine, clofibric acid, diclofenac, ibuprofen, and propyphenazone. Partition coefficients determined by shake flask experiments (OECD guideline 107) varied between log K OW 1.51 for carbamazepine, 2.88 for clofibric acid, 1.90 for diclofenac, 2.48 for ibuprofen, and 2.02 for propyphenazone. Comparison of these values with the literature values revealed rather significant differences for most of the compounds. The partitioning coefficients of the acidic compounds diclofenac and ibuprofen agreed much better with sorption and mobility data from previously conducted experiments, whereas K OW values for carbamazepine were lower and for clofibric acid higher than expected from experiments. Only K OW values for propyphenazone were in the same range as reported in the literature and expected from column experiments.  相似文献   

5.
On the relation of herbicide adsorption and soil organic fraction Freundlich adsorption isotherms were measured for four herbicides (atrazine, terbuthylazine, chlorotoluron, isoproturon) and 24 soil horizons, which are typical of Schleswig-Holstein, northern Germany. The relationship between the adsorption constant (KFr) of a chemical and the fraction of organic carbon (fOC) of the soil horizons was evaluated. Chemical specific K'OC-values, that are independent of soil organic carbon fraction varied considerably for each herbicide (CV about 50%); therefore these values as well as KOC-values, that are determined by linear regression of KFr and fOC should be evaluated critically before application. K'OC- and KOC-values derived from experiments showed decreasing affinity of the herbicides to soil horizons in the order terbuthylazine > chlorotoluron > atrazine ? isoproturon. Calculation of KOC from KOW or water solubility of each herbicide, however, led to changes in the above mentioned ranking. Hence, especially KOW or water solubility based KOC-values may lead to false conclusions concerning chemical mobility. For atrazine, terbuthylazine and isoproturon Freundlich adsorption constants increased overproportionally with increasing organic carbon content of soils. The relationships between KFr and fOC therefore were described better by a non-linear equation (second order polynom) than by a linear approach. Contrary, for chlorotoluron a linear relation between KFr and fOC holds at least for the range of fOC investigated in this study.  相似文献   

6.
Many persistent organic pollutants (POPs), notably hexachlorocyclohexanes (HCHs), chlorinated cyclodienes, and dichlorodiphenyltrichloroethanes (DDTs), remain in Japanese farming soils, more than 40 years after their use as insecticides was prohibited. In recent years, residues of chlorinated cyclodienes in cucurbit fruits have become a problem. But, though HCHs and DDTs have been staying in the soil, residues of these chemicals in crops have not been a problem. So we compared the fates of HCHs (α-, β-, γ-HCHs), chlorinated cyclodienes (dieldrin, endrin, heptachlor exo-epoxide), and DDTs (DDE, dichlorodiphenyldichloroethylene; DDD, dichlorodiphenyldichloroethane) in soil and investigated their uptake by several non-cucurbits and cucurbits. As for the fate of POPs in soil, not only the total concentrations but also the concentrations in soil solution as bioavailable POPs were determined. The half-lives of total β-HCH and DDTs in soil were the longest, and α- and γ-HCHs the shortest. On the other hand, the half-lives of bioavailable POPs ranged from 1/3 to 1/20 of those of total POPs. The ratio of the half-lives of bioavailable POPs to those of total POPs decreased in the order of HCHs > chlorinated cyclodienes > DDTs. Because hydrophobic chemicals were adsorbed strongly to the soil, the bioavailable POPs in soil are controlled by their hydrophobicity, indicated by the values of log K OW (K OW: n-octanol-water partition coefficient). The shoot concentrations of chlorinated cyclodienes and DDTs were higher in cucurbits than in non-cucurbits. However, among POP insecticides, HCHs did not show clear differences. As for the root concentrations, all tested POPs were higher in cucurbits than in non-cucurbits. Through the determination of POPs in soil solution, we could compare the abilities of plants to take up the chemicals using soil solution bioconcentration factors (BCFSS). The values of BCFSS increased with the magnitude of log K OW, in the order of HCHs < chlorinated cyclodienes < DDTs. In addition, BCFSS did not show marked differences among isomers or chemicals with similar structure. Therefore, plant uptake ability was influenced mainly by log K OW. After being applied to agricultural land, α- and γ-HCHs seemed to disappear quickly, β-HCH persisted longer but the uptake in roots was low because of the low log K OW, and DDTs also persisted longer but the bioavailability decreased rapidly in the soil because of their high log K OW. Chlorinated cyclodienes have remained in the soil and have remained available, because they are less likely than HCHs (except β-HCH) to disappear and less likely than DDTs to become adsorbed to the soil. In addition, their higher log K OW than that of HCHs makes them more easily taken up by roots. However, shoot concentrations were high only in cucurbits, for which they remain a problem in Japan.  相似文献   

7.
In vegetative filter strips used to intercept pesticides present in run‐off, particulate organic matter derived from the vegetation plays an important function in pesticide sorption processes, because it accumulates at the soil surface and quickly responds to changes in land use. Two herbicides with contrasted properties: isoproturon, moderately hydrophobic (log Kow= 2.5), diflufenican, strongly hydrophobic (log Kow= 4.9), and isopropylaniline, a metabolite of isoproturon, were used to characterize the sorption and desorption properties of POM originating from soils under three different land uses: a cropped plot under conventional wheat/maize rotation, an adjacent 10‐year‐old grassed strip and a nearby 80‐year‐old oak/chestnut forest. Chemical structural composition information obtained from solid‐state 13C CPMAS NMR and estimation of hydrophobicity from contact angle measurements were used to explain the different sorption capacities of POM according to their size and origins. Sorption of isoproturon and diflufenican increased with hydrophobicity of POM, which was greater in the forest soil. Aromaticity of POM was positively correlated to sorption coefficients (Koc). Desorption of the more hydrophobic compounds, diflufenican and isopropylaniline was weak for all POM fractions, regardless of their origin and size. On the other hand, desorption of isoproturon depended on land use and POM characteristics. The sorption capacities of POM were not only controlled by their chemical composition, but also by their size, due to a greater number of sorptive sites related to a greater surface area with decreasing particle‐size.  相似文献   

8.
Most methods to fractionate natural dissolved organic matter (DOM) rely on sorption of acidified DOM samples onto XAD‐8 or DAX‐8 resin. Procedural differences among methods are large and their interpretation is limited because there is a lack of calibration with DOM model molecules. An automated column‐based DOM fractionation method was set up for 10‐ml DOM samples, dividing DOM into hydrophilic (HPI), hydrophobic acid (HPOA) and hydrophobic neutral (HPON) fractions. Fifteen DOM model components were tested in isolation and in combination. Three reference DOM samples of the International Humic Substances Society were included to facilitate comparison with other methods. Aliphatic low‐molecular‐weight acids (LMWAs) and carbohydrates were classified as HPI DOM, but some LMWAs showed also a partial HPO character. Aromatic LMWAs and polyphenols partitioned in the HPOA fraction, menadione (quinone) and geraniol (terpenoid) in HPON DOM. Molecules with log Kow > 0.5 had negligible HPI fractions. The HPO molecules except geraniol had specific UV absorbance (SUVA, measure for aromaticity) >3 litres g−1 cm−1 while HPI molecules had SUVA values <3 litres g−1 cm−1. Distributions of DOM from eight soils ranged from 31 to 72% HPI, 25 to 46% HPOA and 2 to 28% HPON of total dissolved organic carbon. The SUVA of the HPI DOM was consistently smaller compared with the HPOA DOM. The SUVA of the natural DOM samples was not explained statistically by fractionation and the variation coefficient of SUVA among samples was not reduced by fractionation. Hence, fractionation did not reduce the variability in this DOM property, which casts some doubts on the practical role of DOM fractionation in predicting DOM properties.  相似文献   

9.

Purpose

The desorption behaviour of 16 polycyclic aromatic hydrocarbons (PAHs) in sludges from two sites of the port of Rotterdam, The Netherlands, which are designated to be stored in a subaqueous sludge depository, was investigated after a storage time of 14 years at 4 °C under anaerobic conditions in the dark, mimicking depository conditions. Such long-term storage is believed to effect the desorption of the PAHs.

Materials and methods

Batch desorption experiments over a time period of 130 days were performed with the brackish Beerkanaal (BK) sludge and the freshwater Beneden Merwede River (BMR) sludge. The organic carbon–water partitioning coefficient (K OC) values were calculated and compared to values of a previous study on the same sludges after a storage time of 3 years and to values obtained from calculations based on octanol–water partitioning coefficient (K OW) values. Additionally, the organic matter of the sludges was characterised by C and N elemental analysis and solid-state 13C nuclear magnetic resonance spectroscopy.

Results and discussion

Only desorption of low molecular weight PAHs up to pyrene was detected. Several K OC values were higher compared to the values from the previous study, and all were increased compared to values based on K OW values. It is assumed that the increase in K OC was an effect of the prolonged contact time, causing slow intradomain diffusion of PAHs into the condensed carbon domains. Desorption was higher in BK than in BMR, which is explained by differences in organic matter composition because BMR (containing predominantly aromatic carbon) and BK (which was dominated by lipids) contained the same amount of organic carbon. It is inferred that lipids compete with PAHs for sorption sites on the aromatic carbon, so that lipids block these sorption sites, and the PAHs are adsorbed to the lipids.

Conclusions

Since the amounts of PAHs desorbed from both sludges in this study were so low, it is supposed that long-term storage of these sludges in subaqueous depositories will likely result in increased sorption and thus a reduced release of these contaminants into the environment over time.  相似文献   

10.
Sorption by soil organic matter (SOM) is considered the most important process affecting the bioavailability of hydrophobic organic chemicals (HOCs)in soil.The sorption capacity of SOM for HOCs is affected by many environmental factors.In this study,we investigated the effects of soil pH and water saturation level on HOC sorption capacity of SOM using batch sorption experiments.Values of soil organic carbon-water partition coefficient (KOC) of six selected polycyclic aromatic hydrocar...  相似文献   

11.
The mobility of polycyclic aromatic hydrocarbons (PAH) in soils can be influenced by the presence of dissolved organic matter. Partition coefficients of selected polycyclic aromatic hydrocarbons, ranging from 3-ring to 6-ring compounds, to water-soluble soil organic matter (WSSOM) were determined. Partition coefficients were determined for WSSOM obtained from two soils under agricultural use and forest and for commercially available humic acid (Aldrich), taking advantage of a reversed phase (C18) separation method. The WSSOM was characterised with regard to charge and hydrophilic/hydrophobic properties with a dissolved organic matter (DOM) fractionation method. No sorption to WSSOM was found for the tri- and tetracyclic PAH, whereas the penta- and hexacyclic PAH showed a significant binding to both types of WSSOM and to Aldrich humic acid. The affinity of penta- and hexacyclic PAH to WSSOM was considerably lower compared to the affinity to Aldrich humic acid. This is suggested to be due to the lower amount of hydrophobic fractions, c. 30%, in the natural WSSOM as compared to Aldrich humic acid. Effective partition coefficients (Koceff) for the sorption of PAH to bulk soil calculated from KDOC and DOM in the naturally occurring concentration range were only 60–70% of the Koc values in pure water. The impact of DOM on pollutant transport is further influenced by non-equilibrium behaviour of PAH in soils and by sorption of DOM to the solid-soil matrix. Several scenarios are described in which the effect of DOM on pollutant transport may become important.  相似文献   

12.
Prediction of the fate of metals in soil requires knowledge of their solid–liquid partitioning. This paper reviews analytical methods and models for measuring or predicting the solid–liquid partitioning of metals in aerobic soils, and collates experimental data. The partitioning is often expressed with an empirical distribution coefficient or Kd, which gives the ratio of the concentration in the solid phase to that in the solution phase. The Kd value of a metal reflects the net effect of various reactions in the solid and liquid phases and varies by orders of magnitude among soils. The Kd value can be derived from the solid–liquid distribution of added metal or that of the soil‐borne metal. Only part of the solid‐phase metal is rapidly exchangeable with the solution phase. Various methods have been developed to quantify this ‘labile’ phase, and Kd values based on this phase often correlate better with soil properties than Kd values based on total concentration, and are more appropriate to express metal ion buffering in solute transport models. The in situ soil solution is the preferred solution phase for Kd determinations. Alternatively, water or dilute‐salt extracts can be used, but these may underestimate in situ concentrations of dissolved metals because of dilution of metal‐complexing ligands such as dissolved organic matter. Multi‐surface models and empirical models have been proposed to predict metal partitioning from soil properties. Though soil pH is the most important soil property determining the retention of the free metal ion, Kd values based on total dissolved metal in solution may show little pH dependence for metal ions that have strong affinity for dissolved organic matter. The Kd coefficient is used as an equilibrium constant in risk assessment models. However, slow dissociation of metal complexes in solution and slow exchange of metals between labile and non‐labile pools in the solid phase may invalidate this equilibrium assumption.  相似文献   

13.
Soil adsorption and the toxicity of four chloroanilines for earthworms were investigated in two soil types. The toxicity tests were carried out with two earthworm species, Eisenia andrei and Lumbricus rubellus. LC50 values in mg kg?1 dry soil were recalculated towards molar concentrations in pore water using data from soil adsorption experiments. An attempt has been made to develop Quantitative Structure Activity Relationships (QSAR's) using these results and data on five chlorophenols and dichloroaniline in four soils and five chlorobenzenes in two soils published previously (Van Gestel and Ma, 1988, 1990; Van Gestel et al., 1991). Significant QSAR relationships were obtained between 1) adsorption coefficients (log K om ) and the octanol/water partition coefficient (log k ow ), and 2) LC50 values (in itμmol L?1 soil pore water) and log K ow . It can be concluded that both earthworm species tested are equally sensitive to chlorobenzenes and chloroanilines, E. andrei is more sensitive than L. rubellus to chlorophenols.  相似文献   

14.
The prediction of the mobility of arsenic (As) is crucial for predicting risks in soils contaminated with As. The objective of this study is to predict the distribution of As between solid and solution in soils based on soil properties and the fraction of As in soil that is reversibly adsorbed. We studied adsorption of As(V) in suspensions at radiotrace concentrations for 30 uncontaminated soils (pH 4.4–6.6). The solid–liquid distribution coefficient of As (Kd) varied from 14 to 4430 l kg?1. The logarithm of the concentration of oxalate‐extractable Fe explained 63% of the variation in log Kd; by introducing the logarithm of the concentration of oxalate‐extractable P in the regression model, 85% of the variation in log Kd is explained. Double labelling experiments with 73As(V) and 32P(V) showed that the As to P adsorption selectivity coefficient decreased from 3.1 to 0.2 with increasing degree of P saturation of the amorphous oxides. The addition of As(V) (0–6 mmol kg?1) reduced the Kd of 73As up to 17‐fold, whereas corresponding additions of P(V) had smaller effects. These studies suggest that As(V) is adsorbed to amorphous oxides in soils and that sites of adsorption vary in their selectivity in respect of As and P. The concentration of isotopically exchangeable As in 27 contaminated soils (total As 13–1080 mg kg?1) was between 1.2 and 19% (mean 8.2%) of its total concentration, illustrating that a major fraction of As is fixed. We propose a two‐site model of competitive As(V)–P(V) sorption in which amorphous Fe and Al oxides represent the site capacity and the isotopically exchangeable As represents the adsorbed phase. This model is fitted to 73As adsorption data of uncontaminated soils and explains 69% of the variation of log Kd in these soils. The log Kd in contaminated soils predicted using this two‐site model correlated well with the observed log Kd (r = 0.75). We conclude that solubility of As is related to the available binding sites on amorphous oxides and to the fraction of As that is fixed.  相似文献   

15.
Soil adsorption and the effect of four chlorophenols and three chloroanilines on the growth of lettuce (Lactuca sativa) were determined in two soil types differing in organic matter content and pH. Adsorption increased with increasing organic matter content of the soils. Phytotoxicity, based on dosed amounts, was significantly higher in the soil with the low level of organic matter. This difference could be reduced by recalculating the EC50 values for the effect of the test substances on plant growth in mg kg-1 dry soil towards concentrations in mg L-1 pore water using data from soil adsorption experiments. For pentachlorophenol only this recalculation increased rather than decreased the difference between the two soils, however, when the EC50 values for pentachlorophenol were corrected for the difference in soil pH, almost the same values resulted for both soils. Calculated EC50 values on the basis of pore water concentrations appeared to be in good agreement with values determined in nutrient solution tests. These results indicate that, for plants, the toxicity and therefore the bioavailability of organic chemicals in soil mainly depend on the concentration in the soil solution, and can be predicted on the basis of sorption data. Attempts to develop QSARs relating log EC50 values in μmol L?1 pore water with lipophilicity (expressed as the octanol/water partition coefficient: log Kow,) of the test substances resulted in a statistically significant relationship. This relationship was further improved by correcting the chlorophenol data for dissociation effects.  相似文献   

16.
Adsorption to biomass is a key mechanism which results in the elimination of natural estrogens and their conjugates from sewage. Freundlich model showed that the adsorption capacities of estrone and 17β-estradiol to activated sludge were the highest at neutral pH. The lower capacities at pH 2 and 11.5 could be due to the competition of sludge adsorption sites by cations or electrostatic repulsion from particles of similar charges. The lowest adsorption capacity at pH 11.5 was attributable to electrostatic repulsion, and the highest capacity at pH 2 might be due to the increased sulfate adsorbability. For estrogen conjugates such as estrone-3-sulfate and 17β-estradiol-3-sulfate, adsorption performances were similar at pH 5, 7, and 9. It was observed that mean values of log K D were 2.78, 2.61, 1.67, and 1.94 l kg TSS?1; log K OM were 2.96, 2.79, 1.77, and 2.04 l kg VSS?1 and those of log K OC were 3.31, 3.12, 2.21, and 2.46 l kg OC?1 for estrone, 17β-estradiol, estrone-3-sulfate, and 17β-estradiol-3-sulfate, respectively.  相似文献   

17.
Dissolved organic matter (DOM) is involved in many important biogeochemical processes in soil. As its collection is laborious, very often water‐soluble organic matter (WSOM) obtained by extracting organic or mineral soil horizons with a dilute salt solution has been used as a substitute of DOM. We extracted WSOM (measured as water‐soluble organic C, WSOC) from seven mineral horizons of three forest soils from North‐Rhine Westphalia, Germany, with demineralized H2O, 0.01 M CaCl2, and 0.5 M K2SO4. We investigated the quantitative and qualitative effects of the extractants on WSOM and compared it with DOM collected with ceramic suction cups from the same horizons. The amounts of WSOC extracted differed significantly between both the extractants and the horizons. With two exceptions, K2SO4 extracted the largest amounts of WSOC (up to 126 mg C kg–1) followed by H2O followed by CaCl2. The H2O extracts revealed by far the highest molar UV absorptivities at 254 nm (up to 5834 L mol–1 cm–1) compared to the salt solutions which is attributed to solubilization of highly aromatic compounds. The amounts of WSOC extracted did not depend on the amounts of Fe and Al oxides as well as on soil organic C and pH. Water‐soluble organic matter extracted by K2SO4 bore the largest similarity to DOM due to relatively analogue molar absorptivities. Therefore, we recommend to use this extractant when trying to obtain a substitute for DOM, but as WSOM extraction is a rate‐limited process, the suitability of extraction procedures to obtain a surrogate of DOM remains ambiguous.  相似文献   

18.
Sorptive retention of organic matter is important in maintaining the fertility and quality of soils in agricultural ecosystems. However, few sorption studies have been conducted that use dissolved organic matter (DOM) characteristic of agricultural amendments. We investigated the sorption to goethite (α‐FeOOH) of DOM extracted from: (i) above‐ground biomass of wheat straw (Triticum aestivum L.), maize residue (Zea mays L.), soybean residue (Glycine max (L.) Merr.), and hairy vetch residue (Vivia billosa L.); (ii) below‐ground biomass from maize, soybean, canola (Brassica napus L.), and green bean (Phaseolus vulgaris L.); and (iii) beef, dairy, poultry, and pig animal manures. The apparent molecular weight (MWAP) of the DOM was measured by high performance‐size exclusion chromatography and ranged from 312 to 1074 g mol−1. The carboxyl‐group content of the DOM measured by potentiometric titration ranged from 4.84 to 21.38 mmol(−) g−1 carbon. The humification index (HIX) determined by fluorescence spectrometry varied from 1.15 to 4.33. Sorption was directly related to both MWAP and HIX values of the DOM. Molecular weight analysis of the solution prior to and after sorption indicated that the DOM molecules > 1800 g mol−1 were preferentially sorbed, resulting in fractionation of the DOM upon reaction with goethite. The multiple regression equation, based only on MWAP and HIX parameters, explained 76% of the variance in amount of DOM sorbed. The results indicate that MWAP and HIX are important factors in controlling the sorption of DOM to mineral surfaces. Amendment with materials that release DOM of higher molecular weight and greater humification will result in enhanced initial sorption of DOM to soil solids, thereby contributing to accumulation of a larger soil organic C pool.  相似文献   

19.

Goal, Scope and Background

Distribution of hydrophobic organic contaminants in abiotic compartments is essential for describing their transfer and fate in aquatic ecosystems. Taihu Lake is the third largest freshwater lake in China. Water quality of Taihu Lake has deteriorated greatly during the last decades and has threatened the water supply. The aim of the present study was to investigate the partitioning of polycyclic aromatic hydrocarbons (PAHs) among overlying water, suspended particulate matter (SPM), sediments, and pore water in Meiliang Bay, Taihu Lake and to provide useful information for the ecological engineering in this area.

Materials and Methods

Overlying water and surface sediment were sampled from six sites in Meiliang Bay, Taihu Lake, China. Within 72 h of sampling, sediments were centrifuged to obtain the pore water. Overlying water samples were filtered to separate dissolved and SPM samples. After extraction, samples were purified following a clean-up procedure. PAH fraction was obtained by elution with a mixture of hexane: DCM (7:3, V/V) and analyzed by GC/MS.

Results

PAHs concentrations in overlying water varied from 37.5 ng/L to 183.5 ng/L. Concentrations of PAHs in pore water were higher than those in overlying water. The total concentrations of 16 priority PAHs in sediments ranged from 2091.8 ng/g-dw to 4094.4 ng/g-dw. PAHs concentrations on SPM were decreased with suspended solid concentrations (SSC). Total PAHs concentrations on SPM varied in the range of 3369.6 ng/g-dw to 7531.1 ng/g-dw. The partition coefficients between sediment and overlying water (log K oc) for PAHs with log K ow<5 were positively correlated with their octanol-water partition coefficients (log K ow) (n=39, r=0.79, p<0.0001). Partition coefficients between sediment and pore water (log K oc′) for all PAHs were also significantly correlated with their log K ow values (n=48, r=0.82, p<0.0001).

Discussion

In general, PAHs derived from combustion sources tend to bind strongly to soot particles in natural sediment. Consequentially, K oc values observed in the natural environment could be orders of magnitude higher than those predicted by linear correlation relationships under laboratory conditions. In the present study, the ratio of log K oc values to log K ow values falls consistently above 1, indicating that the sediment soot carbon in the bay was more attractive for PAHs than n-octanol. The log K oc′ was also higher than that predicted under laboratory conditions, suggesting that the measured pore water PAH concentrations were lower than those predicted. That is to say, not all the sediment PAHs can be available to partition rapidly into sediment pore waters. A variation in soot content is a possible reason. Furthermore, concentrations of PAHs on SPM were higher than those in sediments. The compositions of PAHs on SPM and in sediments were similar, indicating the importance of re-suspension process of sediments in the partitioning process of the shallow lake.

Conclusions

The results indicated the equilibrium partitioning model could be used to predict PAHs distribution in various phases of a shallow lake in the stagnation period, but re-suspension processes should be considered to modify the relationship between log K ocs and log K ows.

Recommendations and Perspectives

Concentration, particle size and composition of resuspended particles could affect the relationship between log K ocs and log K ows. Further work should be done under field conditions, especially where a steady thermodynamic equilibrium state could be assumed.
  相似文献   

20.
The Gaines–Thomas selectivity coefficient, K, was used to express the relation between the cations in solution and the cations in exchange sites in podzolic forest soils. Soil solution was obtained by centrifuging a fresh bulked soil sample. Exchangeable cations HX, AlX, CaX, MgX and KX and effective cation-exchange capacity, CECe, were determined with 0.1 m BaCl2. Apparent values of K indicated a preference of Ca2+ over Mg2+ and over Al3+ in O, A and B horizons (log KAl–Ca < 0 and log KMg–Ca < 0), whereas log KK–Ca and log KH–Ca exceeded zero. The horizons were similar with respect to log KH–Ca, and the differences in log KMg–Ca were small. Log KK–Ca and log KAl–Ca increased in the horizons in the order O < A < B. Log KAl–Ca was not significantly correlated with the fraction AlX/CECe. Log KMg–Ca was positively correlated with the fractions HX/CECe and AlX/CECe, and negatively correlated with log (CaX/MgX). The selectivity coefficient of binary cation exchange seemed to be applicable to in situ soil solutions. However, the fraction of each cation on exchange sites should be based on the CECe rather than on the sum of the two cations. The latter, also, seemed to be acceptable in cases of exchangeable cations with a large relative content in soil, e.g. in Al3+–Ca2+ exchange in A and B horizons, and in H+–Ca2+ exchange in O and A horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号