首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
为了研究泵系统调阀过程的瞬态特性和内流机理,在一维分析软件Flowmaster中建立了包含管路、阀门和泵在内的仿真模型,并以三维简化闸阀为模型,采用Fluent 6.2进行计算,对开启过程的非定常内部流动进行数值模拟研究.采用动网格的方法分析了阀门开启过程中阀芯运动引起的流场变形.结果表明:直线特性和对数特性的调节阀都具有快开特性,即流量变化对阀门的相对开度相当敏感,当阀门开度为10%~20%时,水击压力迅速下降;而通过内部流态分析可知,在阀门开度较小的工况下,阀后流场紊乱,造成较大的水力损失,使阻力系数值增加,当阀门开度小于50%时,稳态和瞬态工况下阀门的阻力系数值有较大的区别.由分析可知,研究阀门开启过程的瞬态特性,以及建立内部流态模型,都不能完全按照通常的稳态理论进行,尤其对阀门开度较小的工况,应对其进行一定程度的修正,以保证计算结果的正确性.  相似文献   

2.
正确的参数计算是确保调节阀使用效果的重要环节.通过对流经阀门介质参数的计算,确定阀门的流通能力,选择正确的阀门形式和规格等参数,包括公称通径、阀座直径和公称压力等.选择合适的调节阀应用于喷灌系统中,既可省工省料,又可降低工程建设造价.调节阀不仅在喷灌系统中具有无可比拟的优点,而且在农业领域的许多方面都有广泛的应用.可见,将调节阀应用在农业生产自动化中有着广阔的前景.  相似文献   

3.
基于流固耦合的多级潜水泵叶轮结构强度分析   总被引:2,自引:0,他引:2  
利用ANSYS的Workbench平台,通过单向流固耦合模型对叶轮的应力应变进行了数值研究.分别计算出叶轮受流体压力及离心力载荷作用所产生的最大等效应力及变形量,进一步获得2种载荷共同作用时的效果.在此基础上,研究了叶轮最大等效应力及变形量随流量的变化特征,并对叶轮进行结构强度校核.结果表明,叶轮最大等效应力及变形量主要受流体压力作用影响,而受离心力的影响较小.当流量逐渐增加,叶轮最大等效应力先增大后减小,叶轮变形量则逐渐减小.强度校核结果表明,叶轮符合强度要求.  相似文献   

4.
冲压焊接离心泵叶轮有限元计算   总被引:4,自引:0,他引:4  
王洋  王洪玉  徐小敏  张翔 《排灌机械》2011,29(2):109-113
为计算叶轮的应力及变形情况,在ANSYS软件中采用流固耦合方法将流场计算得到的分布压力施加到叶轮结构上,对冲压焊接离心泵叶轮进行有限元分析.首先对不同网格密度的叶轮模型进行计算,在此基础上,分别计算了设计工况下叶轮在离心载荷、流场压力载荷及两者共同作用下的等效应力及变形情况,并分析了叶轮最大应力及最大总变形随流量的变化情况.结果表明:离心载荷引起的应力及变形明显小于流场压力载荷引起的应力及变形.叶轮在流场中的应力及变形主要由流场压力载荷引起,但在考虑离心载荷后叶轮的最大应力和变形均略有增大.各种载荷作用下叶轮的等效应力在小流量工况下最大,随流量的增大不断减小.叶轮的最大总变形在小流量工况下最大,随流量的增大先减小后增大,在最高效率工况下出现最小值.  相似文献   

5.
为了探究旋塞阀内部流动规律,文章采用ANSYS-FLUENT软件,模拟了旋塞阀全开状态下的流动情况,通过对比分析不同位置流体介质的速度、压力以及速度矢量的变化,发现了阀门中部进口处由于流速的急剧增加,导致局部低压区域的产生,该区域极易产生空化现象,对阀门中部的流动造成不利影响。而阀门扩散段与出口段前端靠近壁面位置会产生低流速漩涡区,造成水力损失,使得该区域流动变得更加紊乱。  相似文献   

6.
为实现核主泵叶轮疲劳寿命预测,考虑叶轮高温高压的恶劣运行工况建立流-热-固耦合计算模型,应用ANSYS CFX软件对核主泵叶轮内部流动的压力载荷和温度载荷进行非定常数值计算,在ANSYS Workbench中实现载荷向结构的传递,并对叶轮动力响应疲劳载荷开展研究.利用雨流计数法对叶片危险部位的载荷数据进行统计分析,进一步结合Palmgren-Miner理论对核主泵叶轮的最小疲劳寿命周期进行预测.研究结果表明:叶轮在旋转过程中承受周期性交变应力的作用;叶轮叶片进、出口边与前、后盖板交接处容易发生内部应力集中,最大应力出现在叶片出口边与前盖板交接处,为142.57 MPa;叶片各危险部位承受应力波峰和波谷的时间基本一致;叶轮产生的疲劳为应力疲劳,疲劳破坏首先发生在叶片进口边与后盖板交接处;计算得到叶轮的疲劳寿命为277.94 a.研究结果可为叶轮的动态强度优化和疲劳设计提供一定参考.  相似文献   

7.
为了进一步提高供水管网的优化性能,利用 Flowmaster仿真软件,给出了管道、闸阀、阀门开度控制器等原件的建模过程,研究了阀门在不同程度下开启度对优化供水管网系统的影响,并建立多组对比模型参数进行仿真且着重分析了在阀门不同开启度下系统中管道阻力系数的变化.首先以流体管路系统为研究对象,对系统整体进行建模,其次对闸阀、管道的阻力损失规律进行优化分析,最后针对不同供水工况分别探究了阀门开启度对管道阻力损失的影响,得出最佳阀门开启度.结果表明,当供水管网系统分别处于大、小流量运行工况时,此时应根据用户实际用水需求量、阀门阻力系数、管道损失系数等方面因素综合调节各阀门开度,从而可以适当降低管网中的水力阻力损失,优化供水管网系统.  相似文献   

8.
离心泵流场流固耦合数值模拟   总被引:7,自引:0,他引:7  
离心泵叶轮在流场中受到的应力及产生的变形对速度场和压力场有一定的影响。采用双向同步求解方法对离心泵流场和叶轮结构响应进行联合求解,分析叶轮流固耦合作用对其内部流场的影响。对不同工况进行的计算结果表明,叶轮和叶片中应力分布明显不均,局部出现应力集中;叶轮出口后盖板在偏离设计工况时变形较大,影响叶轮出口速度,使蜗壳出现分流的部位向出口移动;导致叶轮出口压力不对称状态、不稳定性更严重;各监测点上压力变化较明显。  相似文献   

9.
为探究压力补偿滴头流动阻力产生的主要部位、变化及对滴头流量的影响,采用基于雷诺平均维纳-斯托克斯(RANS)模型的瞬态和稳态流固耦合计算方法,模拟研究了压力补偿滴头流体与弹性片之间的相互作用,分析了工作压力0~300kPa范围内弹性片变形、流动阻力与流量之间的关系。结果表明:数值模拟能够准确预测一定工作压力范围内压力补偿滴头的流量,不同工作压力下滴头流量模拟值与实测值的平均误差为12.32%。弹性片的变形经历快速变形、缓慢变形和长期微小变形3个阶段。随着弹性片变形程度增加,迷宫流道压力损失占比逐渐减小,压力补偿腔和副流道压力损失明显增加。流动阻力主要发生在迷宫流道、弹性片与凸台之间,弹性片接触凸台前,流动阻力主要取决于迷宫流道的能耗,滴头流量随工作压力的增加而增长。弹性片接触凸台后,流动阻力为工作压力的线性函数,滴头流量在一定压力范围内保持恒定;主流道结构影响压力补偿滴头的最小补偿压力,副流道结构对压力补偿滴头的流量调节作用具有重要影响。  相似文献   

10.
为计算船式拖拉机的船壳在实际工况下的应力及应变,运用流固耦合理论和有限元方法对船壳进行结构强度分析。分别计算船壳在不同载荷下的最大等效应力及变形量,进一步研究船式拖拉机工作速度对船壳最大等效应力和总变形量的影响,并对船壳进行强度校核和刚度评价。结果表明:船壳最大等效应力和变形量受水田支反力影响较大,受流体压力影响较小;船壳的最大等效应力及变形量随着速度的增加而增大,船壳的最大等效应力增大的速率较大。强度校核结果表明:当速度超过7m/s时,船壳在工作时有可能发生破坏;船壳刚度评价都符合标准要求。  相似文献   

11.
从理论上研究了局部节流损失、沿程节流损失、起始段填充和常通孔等影响因素,建立了减振器开阀后的节流公式。研究了阀片与弹簧座的3种接触方式:集中接触、部分受液压作用的分布接触和全部受液压作用的分布接触,并基于板壳理论建立了相应的阀片变形计算公式。完成了阻尼力-速度特性测试,获得了节流通道的压力-速度特性曲线,验证了瞬态双向流固耦合分析的仿真结果;采用流固耦合仿真分析了阀片应力和位移分布、筒内流场分布及其变化特点,与Java数值计算的理论结果吻合。  相似文献   

12.
基于双向流固耦合水轮机转轮应力特性分析   总被引:2,自引:0,他引:2  
为了开展基于双向流固耦合的水轮机转轮叶片应力特性分析,通过坐标变换将直角坐标系下的连续方程和动量方程变换到任意拉格朗日坐标系下,建立流场控制方程,采用FCBI-C方法得到离散方程.在旋转坐标系下建立结构静力学方程,采用有限元法进行离散,得到转轮的有限元方程.使用迭代法双向流固耦合,对流体方程和结构方程进行迭代,直到流固耦合系统收敛.通过基于双向流固耦合的混流式水轮转轮应力场计算可得:单、双向耦合条件下转轮应力和位移分布趋势基本一致,最大点位置相同;转轮的有效应力相对差值随着变形的增大而增大,均在位移变形值最大点最大;变形量大小是单、双向耦合计算结果差别的重要因素,在小变形情况下,精度要求不高时可用单向耦合代替双向耦合进行计算.  相似文献   

13.
流固耦合作用对离心泵内部流场影响的数值计算   总被引:10,自引:1,他引:9  
采用双向同步求解的方法对离心泵内流场和叶轮结构响应进行联合求解,研究了叶轮流固耦合作用对离心泵内部流场的影响.流场模拟基于Reynolds时均化N-S方程和标准k-ε两方程湍流模型,采用多重坐标系法;结构响应基于弹性体结构动力学方程.并将计算所得的流道网格变形、流场静压和速度的分布以及径向力等结果与非流固耦合计算的流场进行对比分析.分析结果表明,流固耦合作用使得流体和固体区域计算网格发生微小变形,这不仅会改变流体对固体载荷的分布,而且会影响结构对流体的做功作用,从而影响流场的分布;叶片相对隔舌不同位置时,叶轮出口处和蜗壳流道内流场的静压分布变化趋势不同;流场速度变化主要出现在叶片和叶轮出口附近;各时间点上径向力的大小和方向变化较明显.  相似文献   

14.
研究了磁流变减振器电磁-流和流-固耦合的建模方法及求解方法。基于电磁-流和流-固耦合有限元方法,利用Adina软件建立高精度的流-电磁有限元网格模型和固体有限元网格模型,并在Adina软件后处理中进行求解分析,分别得到了磁流变减振器非控状态和通电状态的阻尼力-速度特性、示功特性、磁场分布特性、核心区域流场压力场和速度场特性。仿真结果表明:在高速磁流变液的冲击下,核心区域流场压力场变化明显;根据磁场分布特性,说明设计的单筒磁流变减振器结构能增大阻尼力调节范围。在电磁-流和流-固耦合计算中考虑了流体湍流流动,尽量使仿真模型与物理模型保持一致,试验结果与仿真结果吻合较好。  相似文献   

15.
基于RNG k-ε湍流模型,应用Ansys Workbench软件,对前置竖井式贯流泵内部湍流流动和结构静应力进行数值分析.模拟显示不同工况下泵的外特性曲线和试验值总体变化趋势一致,模拟的扬程比试验值稍高,效率稍低,但误差都保持在10%内;除出水流道隔断前部外,贯流泵整个流道流态均匀;出水流道前段的螺旋线分布的流线表明,水流在经过导叶后存在未回收的速度环量;在设计工况下,压力最小值出现在吸力面靠近进口边,此处最易导致空化.进一步采用单向流固耦合方法,对叶轮在不同工况下的静应力和总变形量进行分析,结果表明:设计工况下,叶轮的最大等效应力出现在叶片压力面和轮毂相交处,叶轮变形的总位移随着半径增大而不断增大,最大变形量出现在轮缘附近.计算结果将为贯流泵的优化设计提供一定参考.  相似文献   

16.
插装阀在静止状态下,由于静摩擦的原因,导致阀芯与阀套出现卡滞现象;在运动状态下,由于压差和阀芯微偏移的原因造成阀芯与阀套发生磨损;为此提出一种新型的带有导流槽的插装阀阀芯。基于缝隙流动和液压卡紧分析,建立插装阀阀芯与阀套间隙的CFD优化仿真模型,通过N-S方程、伯努利方程和卡紧力方程联立得到阀芯与阀套间卡紧力的推导公式。基于CFD仿真模拟分析,比较新型阀芯与原阀芯不同模型间隙的切线应力、压力分布规律,结果表明:在入口压力为12 MPa时,原阀芯的切线应力在12 000 Pa上下波动,大于新型阀芯切线应力4 200 Pa;在入口压力为8 MPa时,原阀芯的切线应力在7 200 Pa上下波动,大于新型阀芯切线应力3 000 Pa;且原阀芯切线应力的波动范围远大于新型阀芯。新型阀芯在阀套间的受力更加平稳,磨损更小。研究结果为插装阀优化以及减少能量损失和改善润滑条件提供理论指导和依据。  相似文献   

17.
基于流固耦合方法,以DG-350型多级离心泵次级叶轮为研究对象,研究了口环间隙泄漏对水泵次级叶轮变形和强度的影响。通过单向流固耦合分析和双向流固耦合分析得到了叶轮的等效应力和变形分布图,并对结果进行了对比分析。结果表明,在考虑间隙泄漏时,叶轮的最大总变形幅度为0.021 4 mm,最大等效应力为21.51 MPa。在不考虑间隙泄漏时,叶轮的最大总变形幅度为0.053 6 mm,最大等效应力为87 MPa。口环间隙的存在使得叶轮与导叶间的间隙流体产生较大的压力并作用于叶轮的前后盖板,从而抵消了一部分叶轮内腔的流体压力,减小了叶轮的变形幅度和应力集中。在叶轮最大变形和等效应力的最大集中区域附近随机选择A、B节点,通过瞬态分析,在最后1个旋转周期内,节点A、B处的等效应力随时间呈周期性变化。节点B处的等效应力始终大于节点A处,并且接近于最大等效应力,说明节点B附近的区域为应力集中的高发区。而节点A处的等效应力虽低于节点B处,但应力的变化幅度高于节点B处,说明节点A处更容易发生疲劳破坏。  相似文献   

18.
传统的阀控液压系统是利用液压阀节流孔来控制流量,存在很大的节流损失。基于数字液压的思想及受高速开关阀全开和全关状态理论上无节流损失的启发,本文提出二维脉宽调制转阀构型,将液压系统流量以流体脉宽调制的方式进行控制及分配,降低节流损失,同时通过主动溢流方式极大地消除溢流损失。在高压(负载)支路和低压(油箱)支路之间通过阀芯旋转快速高频切换输出离散流量;通过阀芯轴向位移控制占空比(恒定转速下,负载支路连通时间与回油支路总连通时间的比)以实现输出平均流量的控制。通过数学模型、仿真以及实验验证了高频二维脉宽调制转阀可将流体连续性流动转变为离散、可控的流动,从流体系统工作介质离散化的角度实现了一种新的流量控制方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号