首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
离心泵用赫姆霍兹水消声器试验研究   总被引:1,自引:0,他引:1  
为研究离心泵用赫姆霍兹水消声器的性能,基于传递函数法测量了不同连接管长度的赫姆霍兹水消声器声学特性,并与声学仿真计算结果进行对比和试验验证.试验中采用共振腔为单腔半圆柱形的赫姆霍兹水消声器,在消声器的前后分别安装2个水听器和1个压力脉动传感器,水听器用于测量消声器前后的动态声压信号,压力脉动传感器用于测量水消声器前后的静压,然后采用求平均的方法计算水消声器前后平均压力之差,得到水消声器在不同工况下的压力损失.连接管的原始长度为12 cm,然后改变连接管长度,使其安装长度分别为20,30,40和50cm.试验结果表明:赫姆霍兹水消声器的共振频率随连接管长度的增大而降低,传递损失呈现出先增大后减小的趋势,与声学仿真计算结果趋势一致;连接管长度对赫姆霍兹水消声器压力损失的影响不大,但与系统的运行工况有关,随流量的增大而增大.  相似文献   

2.
多腔共振式消声器的声学特性分析   总被引:3,自引:0,他引:3  
多腔赫姆霍兹共振消声器的内部结构比较复杂,一维平面波理论无法准确预测其声学性能,利用三维声学软件分别对不同组合形式的多腔赫姆霍兹共振消声器进行数值仿真,分析不同组合结构对共振消声器传递损失的影响.结果表明:并联或串联形式共振消声器,可以消除多个频率处噪声值,或增加某个频率处的消声量,串并联组合结构有效地扩展共振消声器的消声频带,提高消声性能.  相似文献   

3.
对某型号喷雾喷粉机的复杂多腔排气消声器进行减噪优化,提出了增加穿孔板和增加共振腔两套改进方案。利用理论计算设计共振腔,并采用LMS Virtual.Lab声学仿真软件分析共振腔消声器的传递损失。最后利用声学测试系统分别测试了安装两种改进消声器的喷雾喷粉机的噪声频谱,验证了共振腔消声器仿真分析的结果,得出增加穿孔板能够提高复杂多腔消声器的高频消声性能的结论。  相似文献   

4.
分别运用一维平面波法和三维有限元法对单腔扩张式消声器进行传递损失仿真分析,通过改变扩张腔长度以及扩张腔直径建立不同的消声器模型来分析扩张腔长度、扩张比对传递损失影响,结果表明,一维平面波法和有限元法具有很好的吻合性,同时用三维有限元法预测了复杂结构消声器的传递损失。  相似文献   

5.
离心泵叶轮出口宽度对泵腔内压力脉动分布的影响   总被引:1,自引:0,他引:1  
在试验和数值模拟相互验证的基础上,开展叶轮出口宽度对离心泵泵腔内压力脉动分布影响的研究.通过试验和数值计算获得离心泵的外特性、泵腔内静压分布、泵腔内压力脉动分布及泵体表面的压力脉动幅值分布,并进行对比分析,结果表明:前泵腔内静压和压力脉动幅值随出口宽度的增大而增大,随半径的减小而增大;后泵腔内静压和压力脉动随出口宽度和半径的变化不十分明显.综合考虑外特性和压力脉动,在比转数 ns =97时叶轮出口宽度与叶轮出口直径之比应小于0.06;为了使压力脉动在泵腔内有效地衰减,出口宽度与前腔间隙的比值在1.81附近时最佳.研究结果可用于指导离心泵叶轮的优化设计.  相似文献   

6.
运用声学有限元法对某型号喷雾喷粉机的排气消声器进行减噪优化,采用LMS Virtual.Lab声学仿真软件分析介质流动效应和排气温度对消声器传递损失的影响,研究排气管位置和消声器消声性能之间存在的规律,并通过增加腔室数来研究消声器传递损失的变化规律,由仿真分析可以得出,在低频段三腔消声器的消声性能较好。最后利用声学测试系统分别测试未安装消声器以及安装有原消声器和两种通过增加腔室数改进的消声器的喷雾喷粉机的噪声频谱,验证仿真分析的结论。  相似文献   

7.
针对车辆的排气噪声进行分析。排气噪声是车辆发动机的主要噪声源,属于低频噪声,目前对排气噪声的分析很难形成精确的理论结果。本文以平面波理论和三维数值方法计算简单扩张腔式消声器在不同结构参数下的传递损失,利用三维建模软件Solidworks和专业声学软件Sysnoise分析简单扩张腔式消声器的声学性能,从而来评估消声器的降噪性能。结果表明,在一定范围内,扩张比在增大时,传递损失也会随着增加,但扩张比过大会产生再激励噪声,形成负面效果。扩张腔的长度对传递损失的影响不大,但决定了频率特性。插入管的插入长度在一定的频率范围内影响传递损失。  相似文献   

8.
为探究双排结构对抗性消声器的影响,以HT01001-A内插偏置式消声器为研究对象,对其5种不同结构参数的双排消声器性能进行对比研究。在UG和Hypermesh建模软件基础上,利用ANSYS CFX平台对单双排消声器进行流场数值模拟分析,应用LMS Virtual.Lab声学软件得到了单双排消声器的传递损失曲线。结果表明:双排消声器压力损失的增长主要来源于进气弯管,压力损失的变化受扩张比影响较大,存在临界扩张比并遵循单排消声器中扩张比与压力损失的变化规律。与单排消声器相比,扩张比M变化时,5组双排消声器传递损失总量增幅分别是:M=12.25为1%;M=12.88为8%;M=13.5为20%;M=14.2为-12%;M=15为13.8%,且扩张比接近13.5时的双排消声器声学性能提升最为明显。  相似文献   

9.
鉴于离心泵内部流动声场边界条件复杂,直接求解需要高昂的计算资源且数值模拟难度大,采用间接混合算法,基于CFD+Lighthill 声比拟理论对蜗壳内部流场进行声学求解.在分析离心泵蜗壳内部流场主要噪声源是偶极子的基础上,采用基于S-A模型的分离涡模拟(DES)方法进行三维非定常流场计算.提取作用在蜗壳内表面的脉动力作为偶极子声源导入声学求解器SYSNOISE5.6,采用直接边界元法(DBEM)进行内声场求解,得到偶极子声源和内声场的声压分布图.积分求得蜗壳及出口管道表面监测点的声压级大小.声场计算的结果表明:离心泵蜗壳内部流动诱导噪声源的分布与压力脉动直接相关,在主要产生压力脉动的隔舌附近,有较强的偶极子源分布,其频率特性与压力脉动相似.场点声压值与偶极子源的大小之间不是简单的线性关系,叶频下最强.用管道法进行离心泵出口流动噪声的测试是可行的,流量是声场辐射的主要影响因素之一.  相似文献   

10.
带小叶片螺旋离心泵压力脉动特性分析   总被引:5,自引:0,他引:5  
为了研究带小叶片的单叶片螺旋离心泵压力脉动特性,采用Navier-Stokes方程和标准的k-ε湍流模型对带小叶片和单叶片的螺旋离心泵的内部流场进行非定常数值计算。通过模拟分别获得了带小叶片和单叶片的螺旋离心泵蜗壳出口以及蜗壳内部压力脉动特性,并对其进行对比分析。结果表明:各个工况下,带小叶片和单叶片的螺旋离心泵蜗壳出口以及蜗壳内部压力脉动特性呈周期性变化,且主频均为各自叶片通过频率,压力波动的幅度大部分集中在低频区域;采用小叶片后周期变为原模型周期的一半,蜗壳及蜗壳内部出口压力波动的幅度明显减小,脉动幅值也明显减小,且高频脉动有所减少。研究表明单叶片螺旋离心泵叶轮小叶片的添加可以有效改善泵内部压力脉动特性,且对降低蜗壳上的振动噪声有一定积极作用。  相似文献   

11.
为实现从自然环境中自动获取清洁能源,并给无线传感器和通讯模块供电,基于涡激振动及共振声学放大原理,设计了一种压电自发电装置。首先对位于该自发电装置内的压电悬臂梁复合结构进行力学分析;其次基于计算流体力学数值方法,对绕流圆柱后附加不同板长条件下的流场动力学特性进行分析,以明确悬臂梁长度对脱涡频率和升力、阻力系数的影响规律。利用有限元软件ANSYS对压电悬臂梁复合结构的横向往复振动进行数值模拟,确定了复合结构的横向振动频率随板长L的变化规律。最后对位于该装置两侧的亥姆霍兹共振器的结构尺寸进行优化设计,以使流场的脱涡频率、压电悬臂梁复合结构的一阶横向振动频率和共振器的谐振频率达到一致,从而使压电发电装置产生共振并输出最大的电能。试验结果表明,涡激振动自发电装置在5 m/s的风速下可产生两相峰峰值为6.0 V的开路电压,且上述3个频率达到一致。4~6.25 m/s为该自发电装置的自锁风速区间,在此风速范围内,自发电装置均能产生较大的电压。  相似文献   

12.
轴流泵流动噪声数值模拟   总被引:6,自引:0,他引:6  
为了研究轴流泵内部压力脉动和流动噪声在不同工况下的变化规律及其关系,采用数值模拟方法,应用计算流体动力学软件Fluent和声学软件LMS Virtual Lab分别模拟轴流泵流场和声场分布,并进行时域和频域分析.取叶片非定常脉动力作为声源,运用边界元法对比分析了有泵壳振动影响和无泵壳振动影响下泵壳体边界声场分布的不同.结果表明:叶轮叶片、导叶叶片和动静交界面处监测点的静压均表现出明显的离散频谱特性,叶片通过频率(BPF)是压力脉动和流动噪声的主频,这是由叶轮和导叶之间的动静干涉引起的;而流动噪声在2倍谐频(133.4 Hz)和3倍谐频(200.1 Hz)处也有明显峰值,这是由叶轮叶片和泵壳壳体振动引起的.忽略泵壳振动影响的情况下,噪声水平偏大,考虑声振耦合的噪声情况更接近于实际,所以结构振动是噪声辐射分析的重要因素.噪声指向性分布图表明了叶片噪声辐射具有明显的偶极子特性.  相似文献   

13.
低比转数混流泵导叶内部压力脉动特性研究   总被引:1,自引:0,他引:1  
对一比转数为148.8的设计混流泵进行试验和数值模拟研究,比较不同流量工况下混流泵性能的试验与数值计算结果,两者吻合较好。在流场内部设置监测点,捕捉压力脉动由动静干涉无叶区向导叶出口的发展过程。分析不同工况下的混流泵各测点的压力脉动,发现导叶内部各测点压力脉动主要受叶轮转动影响,主频为叶频;由动静干涉的无叶区到导叶出口,平均压力逐渐增大,而压力脉动的幅值强度越来越弱;非设计工况下的压力脉动变化更复杂。上述结果可为混流泵进一步的优化设计提供参考。  相似文献   

14.
为研究液下泵内部流动的非定常特性及噪声规律,通过采用计算流体动力学软件ANSYS CFX15.0与LMS Virtual.lab声学仿真软件相结合的一种间接混合计算方法,对液下泵内部流场及其声场进行求解.在该计算方法中,对流场进行求解得到监测点的非定常压力脉动,从而获得非稳态的压力脉动频域特性规律;基于声学边界元法,对液下泵蜗壳偶极子内场噪声和叶片偶极子内场噪声进行求解,获得了边界元表面的声压级分布以及典型场点的声压频率曲线.计算结果表明:叶片扫掠过程中与蜗壳隔舌的相互作用产生较大的压力脉动,隔舌附近的噪声是流动噪声的主要噪声源;声压级在叶片通过频率及其谐频时达到极大值,随频率的增大,声压级极大值都呈现衰减状态.研究结果可为液下泵的后续降噪分析提供一定的理论基础.  相似文献   

15.
以比转数为15.9的旋涡自吸泵为研究对象,结合CFX和LMS Virtual Lab中的Acoustic Harmonic BEM模块对旋涡自吸泵内流压力脉动和流致噪声进行仿真研究,旨在降噪优化.首先采用RNG k-ε湍流模型对旋涡自吸泵0.4Qd,0.6Qd,Qd这3个工况下的内部流场分别进行定常、非定常求解,捕捉蜗壳壁面以及进出口管道壁面的压力脉动数据,并以cgns文件导入Acoustic Harmonic BEM模块进行声场计算,求解旋涡自吸泵内部的声压级大小及其分布特性.结合内流压力脉动与声场计算结果综合分析可得:蜗壳隔舌与叶轮的间隙内的压力脉动是产生流致噪声的主要因素.为了降低旋涡自吸泵内部流致噪声,借鉴涡轮叶片锯齿尾缘结构,优化叶片以降低间隙内流压力脉动.通过流场和声场的数值模拟的对比分析发现:优化泵隔舌间隙处压力脉动幅度在设计工况下最大降低20.0%,在小流量工况下最大降低26.6%;较之原模型,设计工况下改进型泵进、出口管道监测点的声压级分别降低1.01,1.03 dB;小流量工况下,进、出口管道声压级最大幅值分别降低8.57,2.65 dB.  相似文献   

16.
基于涡致振动原理设计了一种风力型压电俘能器,通过串列配置的双绕流圆柱增加进气道内流场的压强波动,以Helmholtz共振腔作为尾流区域的风压谐振放大装置,利用PVDF压电薄膜直接将湍流引起的持续性压强波动转换为电能。采用计算流体力学数值方法,分析了在不同风速下压电俘能器内部流场的流体动力学行为。数值分析及试验结果表明:在相同风速下,当耦合因子L/D=2.2时,双绕流圆柱引起的压强波动最大,可达到单绕流圆柱的2倍;Helmholtz共振腔内气体在振荡流的作用下产生谐振后,腔内气体压强的幅值随风速的增加而增大,但振动频率均相同且为共振腔的固有频率。  相似文献   

17.
杜青  刘宁  张殿昌 《农业机械学报》2002,33(3):11-13,23
基于直喷式柴油机燃烧气体高频压力波与声波在燃烧室内传播特征的相似性,利用有限元法计算并实验研究了燃烧压力波动的共鸣特性。结果表明,随着活塞的不断下行,燃烧空腔各阶模式的特征频率向低频方向移动。在燃烧室空腔内不同位置测得的信号频率及幅值有明显不同。有限元计算结果和实验结果较为吻合,反映了燃烧室内共鸣频率变化的规律。上述结果经过修正可以得到柴油机燃烧室内压力波动各阶模式的特征频率随燃烧过程的瞬态变化规律。  相似文献   

18.
轴流泵多工况压力脉动特性试验   总被引:6,自引:0,他引:6  
为了掌握不同流量工况下的轴流泵压力脉动特性,在轴流泵叶轮段和导叶段外壁面布置了6个压力脉动监测点,对多个流量工况的压力脉动进行了动态测量,揭示了轴流泵内部不同位置处压力脉动规律。试验结果表明,叶轮进口监测点P1的波形为规则的正弦波形,叶轮内部中间测点P2的压力脉动峰峰值最大,叶轮进口监测点P1压力脉动次之。叶轮进口、叶轮中间和叶轮出口监测点由于受到叶轮内压力梯度的交替变化影响,时域脉动周期与叶片旋转周期一致,在小流量工况下叶轮内部涡流诱导了明显的二次谐波。基于快速傅里叶变换,获得了不同监测点压力脉动频域分布结果,并发现叶轮区域3个压力脉动测点在不同工况的主频均为叶片通过频率(BPF),谐频为叶频的倍数,其幅值呈指数形式衰减。但在导叶进口、导叶中间和导叶出口监测点的压力脉动频域中出现了撞击和回流诱导的低频信号,同时也存在叶轮的主频及其谐频。  相似文献   

19.
以某汽车抗性消声器为对象,在COMSOL Multiphysics中建立其几何模型,划分网格、设置材料属性及边界条件,通过压力声学模块和计算流体动力学(CFD)模块对该模型分别进行声场频域分析和流场稳态分析。通过(声学)传输损失以及(CFD)压力损失来对该抗性消声器的性能进行评价,并分析了消声管形状、孔隙率的变化对传输及压力损失的影响。仿真得到了抗性消声器内的声压级分布云图、声强场流线图以及流场压力分布云图、湍流速度流线图,为后续设计汽车抗性消声器提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号