首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A waxy spring wheat (Triticum aestivum L.) genotype was fractionated into flour and starch by roller and wet‐milling, respectively. The resultant flour and starch were evaluated for end‐use properties and compared with their counterparts from hard and soft wheats and with commercial waxy and nonwaxy corn (Zea mays L.) starches. The waxy wheat flour had exceptionally high levels of water absorption and peak viscosity compared with hard or soft wheat flour. The flour formed an intermediate‐strength dough that developed rapidly and was relatively susceptible to mixing. Analysis by differential scanning calorimetry and X‐ray diffractometry showed waxy wheat starch had higher gelatinization temperatures, a greater degree of crystallization, and an absence of an amylose‐lipid complex compared with nonwaxy wheat. Waxy wheat and corn starches showed greater refrigeration and freeze‐thaw stabilities than did nonwaxy starches as demonstrated by syneresis tests. They were also similar in pasting properties, but waxy wheat starch required lower temperature and enthalpy to gelatinize. The results show analogies between waxy wheat and waxy corn starches, but waxy wheat flour was distinct from hard or soft wheat flour in pasting and mixing properties.  相似文献   

2.
Resistant starches (RS) were prepared from wheat starch and lintnerized wheat starch by autoclaving and cooling and by cross‐linking. Heat‐moisture treatment also was used on one sample to increase RS. The experimental resistant starches made from wheat starch contained 10–73% RS measured as Prosky dietary fiber, whereas two commercial resistant starches, Novelose 240 and 330, produced from high‐amylose maize starch, contained 58 and 40%, respectively. At 25°C in excess water, the experimental RS starches, except for the cross‐linked wheat starch, gained 3–6 times more water than the commercial RS starches, and at 95°C gained 2–4 times more. Cross‐linked RS4 wheat starch and Novelose 240 showed 95°C swelling powers and solubilities of 2 g/g and 1%, and 3 g/g and 2%, respectively. All starches showed similar water vapor sorption and desorption isotherms at 25°C and water activities (aw) < 0.8. At aw 0.84–0.97, the resistant starches made from wheat starch, except the cross‐linked wheat starch, showed ≈10% higher water sorption than the commercial resistant starches.  相似文献   

3.
Granule bound starch synthase1 (GBSS1) is a key enzyme in amylose biosynthesis and is encoded by the A, B and D GBSS1 wx loci in wheat. Wheat lines with mutations at the three GBSS1 loci have been identified. We have characterized and compared the grain starch of CDCW6 wheat line (null B and D for GBSS1) with PI235238 (null A and B for GBSS1), waxy (null A, B and D for GBSS1), and AC Reed (wild type wheat) grain starches. The grain starch of waxy, CDCW6, PI235238, and AC Reed lines contained ≈0, 12, 23, and 25% amylose (w/w), respectively. Waxy, partially waxy, and wild wheat grain starches showed significant differences in onset and peak transition temperatures as determined by differential scanning calorimetric analysis. Grain starches extracted from waxy, CDCW6, and PI235238 also had higher enthalpy of gelatinization values than did wild wheat starch. X-ray diffraction analysis revealed the highest crystallinity for starch extracted from waxy wheat, followed by CDCW6. The starch produced from the CDCW6 line may find special food and industrial applications because of its relatively low amylose concentration.  相似文献   

4.
High‐intensity ultrasound (sonication) was investigated as a method to rapidly purify starch from sorghum and other cereal grains. To improve the process, buffers were optimized to solubilize sorghum proteins in combination with the sonication. Protein content and starch color were determined to evaluate the efficiency of the extraction process. Sonication times, SDS concentration, different types and concentrations of reducing agents (sodium metabisulfite, dithiothreitol, and β‐mercaptoethanol), and centrifugation speeds of the starch washing procedure were tested. Protein content of isolated sorghum starch was reduced to 0–0.14% (db) after 2 min of sonication (using any of the reducing agents tested). Sodium metabisulfite was chosen as the preferred reducing agent because of its lower toxicity and odor compared with other reducing agents tested. The optimum conditions for producing high‐purity sorghum starches (0.06% protein) were obtained using the following conditions: 2 min of sonication time with 12.5 mM sodium borate buffer, pH 10, containing 0.5% SDS (w/v) and 0.5% sodium metabisulfite (w/v) using 1,500 rpm centrifugation speed during starch washing. Starches separated by this method showed significantly less protein content and b values (yellowness) compared with starches separated by enzymatic methods or methods using NaCl solutions and protein extraction buffers with multiple washing steps, both of which take several hours to complete. Differential scanning calorimetry thermogram values for starches isolated by three different methods showed similar patterns, except that starches obtained with the enzymatic method had slightly higher values of To, Tp, and ΔH. Other cereal starches from whole wheat meal, wheat flour, corn, rice, and barley were also obtained rapidly using sonication.  相似文献   

5.
Physicochemical properties of starches from eight coix (Coix lachrymajobi L.) accessions were investigated. There was considerable variation in most measured traits, generally corresponding to the separation into waxy and normal amylose types. The amylose contents of five normal coix ranged from 15.9 to 25.8%, and those of three waxy coix were 0.7–1.1%. Swelling power of waxy coix starches varied between 28.6 and 41.0 g/g, generally higher than waxy maize. Normal coix starches had significantly higher gelatinization peak temperature (Tp) than the normal maize, 71.9–75.5°C. The Tp of waxy coix starches was 71.1–71.4°C, similar to waxy maize. Rapid Visco-Analyser (RVA) pasting profiles of normal coix showed little variation and closely matched the normal maize starch profile. Pasting profiles of waxy coix showed more variation and had lower peak viscosities than waxy maize starch. Waxy coix starches formed very weak gels, while the gel hardness of normal coix starches was 11.4–31.1 g. Amylose content was the main factor controlling differences in starch properties of the coix starches.  相似文献   

6.
Native starch granules of 11 selected cultivars (potato, waxy potato, sweet potato, normal maize, high‐amylose maize, waxy maize, wheat, normal barley, high‐amylose barley, waxy barley, and rice) were treated with a calcium chloride solution (4M) for surface gelatinization. The surface‐gelatinized starch granules were investigated using light microscopy and scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). In general, those starches with larger granule sizes required longer treatment time to complete the gelatinization. The salt solution treatment of starch was monitored by light microscopy and stopped when the outer layer of the granule was gelatinized. The surface gelatinized starch granules were studied using scanning electron microscopy. On the basis of the gelatinization pattern from calcium chloride treatments, the starches could be divided into three groups: 1) starches with evenly gelatinized granule surface, such as normal potato, waxy potato, sweet potato, maize, and high‐amylose maize; 2) starches with salt gelatinization concentrated on specific sites of the granule (i.e., equatorial groove), such as wheat, barley, and high‐amylose barley; and 3) starches that, after surface gelatinization, can no longer be separated to individual granules for SEM studies, such as waxy barley, waxy maize, and normal rice. The morphology of the surface gelatinized starch resembled that of enzyme‐hydrolyzed starch granules.  相似文献   

7.
We studied the effect of amylose content on the gelatinization, retrogradation, and pasting properties of starch using wheat starches differing in amylose content. Starches were isolated from waxy and nonwaxy wheat and reciprocal F1 seeds by crossing waxy and nonwaxy wheat. Mixing waxy and nonwaxy wheat starch produced a mixed starch with the same amylose content as F1 seeds for comparison. The amylose content of F1 seeds ranged between waxy and nonwaxy wheat. Nonwaxy‐waxy wheat had a higher amylose content than waxy‐nonwaxy wheat. Endothermic enthalpy and final gelatinization temperature measured by differential scanning calorimetry correlated negatively with amylose content. Gelatinization onset and peak temperature clearly differed between F1 and mixed starches with the same amylose content as F1 starches. Enthalpy for melting recrystallized starches correlated negatively with amylose content. Rapid Visco Analyser measurement showed that F1 starches had a higher peak viscosity than waxy and nonwaxy wheat starches. Mixed starches showed characteristic profiles with two low peaks. Setback and final viscosity correlated highly with amylose content. Some of gelatinization and pasting properties differed between F1 starches and mixed starches.  相似文献   

8.
Influence of botanical source and gelatinization procedure (autoclaving or boiling) on resistant starch (RS) formation was investigated in starches from wheat, corn, rice, and potato. RS yields did not vary within the same sample but differed among samples with different starch botanical sources. Differences also existed in RS contents in native and retrograded starches. Slight or minor variations in RS values were found after both gelatinization procedures, although no clear pattern was found in the behavior of samples based on gelatinization procedure. The degree of polymerization (DP) of retrograded samples was assigned using high-performance anion exchange chromatography with pulsed amperometric detector (average DP 50–60), with no differences between autoclaved and boiled samples.  相似文献   

9.
Pup‐loaf bread was made with 10, 30, and 50% substitution of flour with wheat starch phosphate, a cross‐linked resistant starch (XL‐RS4), while maintaining flour protein level at 11.0% (14% mb) by adding vital wheat gluten. Bread with 30% replacement of flour with laboratory‐prepared XL‐RS4 gave a specific volume of 5.9 cm3/g compared with 6.3 g/cm3 for negative control bread (no added wheat starch), and its crumb was 53% more firm than the control bread after 1 day at 25°C, but 13% more firm after 7 days. Total dietary fiber (TDF) in one‐day‐old bread made with commercial XL‐RS4 at 30% flour substitution increased 3–4% (db) in the control to 19.2% (db) in the test bread, while the sum of slowly digestible starch (SDS) plus resistant starch (RS), determined by a modified Englyst method, increased from 24.3 to 41.8% (db). The reference amount (50 g, as‐is) of that test bread would provide 5.5 g of dietary fiber with 10% fewer calories than control bread. Sugar‐snap cookies were made at 30 and 50% flour replacement with laboratory‐prepared XL‐RS4, potato starch, high‐amylose (70%) corn starch, and commercial heat‐moisture‐treated high‐amylose (70%) corn starch. The shape of cookies was affected by the added starches except for XL‐RS4. The reference amount (30 g, as‐is) of cookies made with commercial XL‐RS4 at 30% flour replacement contained 4.3 g (db) TDF and 3.4 g (db) RS, whereas the negative control contained 0.4 g TDF and 0.6 g RS. The retention of TDF in the baked foods containing added XL‐RS4 was calculated to be >80% for bread and 100% for cookies, while the retention of RS was 35–54% for bread and 106–113% for cookies.  相似文献   

10.
Starches from normal, waxy, and sugary‐2 (su2) corn kernels were isolated, and their structures and properties determined. The total lipid contents of normal, waxy, and su2 corn starches were 0.84, 0.00, and 1.61%, respectively. Scanning electron micrographs showed that normal and waxy corn starch granules were spherical or angular in shape with smooth surfaces. The su2 starch granules consisted of lobes that resembled starch mutants deficient in soluble starch synthases. Normal and waxy corn starches displayed A‐type X‐ray patterns. The su2 starch showed a weak A‐type pattern. The chain‐length distributions of normal, waxy, and su2 debranched amylopectins showed the first peak chain length at DP (degree of polymerization) 13, 14, and 13, respectively; second peak chain length at DP 45, 49, and 49, respectively; and highest detectable DP of 80, 72, and 76, respectively. The su2 amylopectin showed a higher percentage of chains with DP 6–12 (22.2%) than normal (15.0%) and waxy (14.6%) amylopectins. The absolute amylose content of normal, waxy, and su2 starches was 18.8, 0.0, and 27.3%, respectively. Gel‐permeation profiles of su2 corn starch displayed a considerable amount of intermediate components. The su2 corn starch displayed lower gelatinization temperature, enthalpy change, and viscosity; a significantly higher enthalpy change for melting of amylose‐lipid complex; and lower melting temperature and enthalpy change for retrograded starch than did normal and waxy corn starches. The initial rate of hydrolysis (3 hr) of the corn starches followed the order su2 > waxy > normal corn. Waxy and su2 starches were hydrolyzed to the same extent, which was higher than normal starch after a 72‐hr hydrolysis period.  相似文献   

11.
Proteins were detected in channels of commercial starches of normal maize, waxy maize, sorghum, and wheat through labeling with a protein‐specific dye and examination using confocal laser scanning microscopy (CLSM). The dye, specifically 3‐(4‐carboxybenzoyl)quinoline‐2‐carboxaldehyde (CBQCA), fluoresces only after it reacts with primary amines in proteins, and CLSM detects fluorescence‐labeled protein distribution in an optical section of a starch granule while it is still in an intact state. Starch granules in thin sections of maize kernels also had channel proteins, indicating that proteins are native to the channels and not artifacts of isolation. Incubation of maize starch with protease (thermolysin) removed channel proteins, showing that channels are open to the external environment. SDS‐PAGE analysis of total protein from gelatinized commercial waxy maize starch revealed two major proteins of about Mr 38,000 and 40,000, both of which disappeared after thermolysin digestion of raw starch. Commercial waxy maize starch granule surface and channel proteins were extracted by SDS‐PAGE sample buffer without gelatinization of the granules. The major Mr 40,000 band was identified by MALDI‐TOF‐MS and N‐terminal sequence analysis as brittle‐1 (bt1) protein.  相似文献   

12.
Physicochemical properties of starch of three common (Fagopyrum esculentum) and three tartary (F. tataricum) buckwheat varieties from Shanxi Province, China, were compared. Starch color, especially b*, differed greatly between tartary (7.99–9.57) and common (1.97–2.42) buckwheat, indicating that removal of yellow pigments from tartary buckwheat flour may be problematic during starch isolation. Starch swelling volume in water of reference wheat starch (2.8% solids and 92.5°C) was 20.1 mL; for the three common buckwheat starches it was 27.4–28.0 mL; and for the three tartary buckwheat starches it was 26.5–30.8 mL. Peak gelatinization temperature (Tp) in water was 63.7°C for wheat starch, 66.3–68.8°C for common buckwheat and 68.8–70.8°C for tartary buckwheat. Tp of all samples was similarly delayed (by 4.0–4.8°C) by 1% NaCl. Enthalpy of gelatinization (ΔH) was higher for all six buckwheat starches than it was for wheat starch. However, one common buckwheat sample had significantly lower ΔH than the others. Starch pasting profiles, measured by a Rapid Visco-Analyzer, were characteristic and similar for all six buckwheat starches, and very different from the reference wheat starch. A comparison of pasting characteristics of common and tartary buckwheat starches to wheat starch indicated similar peak viscosity, higher hot paste viscosity, higher cool paste viscosity, smaller effect of NaCl on peak viscosity, and higher resistance to shear thinning. Texture profile analysis of starch gels showed significantly greater hardness for all buckwheat samples when compared to wheat starch.  相似文献   

13.
Native starch from waxy mutant wheat Tanikei A6599‐4 is known to exhibit more stable hot paste viscosity than a typical waxy wheat (Tanikei H1881) and waxy corn. The objective of this study was to investigate the starch paste properties of Tanikei A6599‐4 after cross‐linking and compare with Tanikei H1881 and waxy corn. As an example of cross‐linking, the reaction (at 30, 60, 120, and 360 min) with sodium trimetaphosphate was used. In Rapid Visco Analyser (RVA) measurement, the unique characteristic was maintained in Tanikei A6599‐4 starch cross‐linked at low reaction time (<120 min) levels. Cross‐linking at a high reaction time (360 min) level suppressed the swelling of both Tanikei A6599‐4 and Tanikei H1881 starches but not waxy corn starch. Although unmodified Tanikei A6599‐4 starch showed the lowest paste clarity among unmodified waxy starches, this defect became unremarkable when starch was cross‐linked for ≥120 min. In gel‐dispersed dynamic viscoelasticity measurement, the order of G′ and G″ values was always Tanikei A6599‐4 > Tanikei H1881 > waxy corn. This indicates that cross‐linked Tanikei A6599‐4 and Tanikei H1881 starches have different starch properties and that swollen Tanikei A6599‐4 starch granules are more rigid than swollen Tanikei H1881 starch granules.  相似文献   

14.
The purpose of the present work was to examine whether partial acid hydrolysis (PAH) of a high‐amylose maize starch (ae‐VII) would enhance the effects of hydrothermal treatments to produce granular resistant starch (RS) that is stable to further heat treatment at atmospheric pressure. PAH ae‐VII starches were prepared by heating 35% (w/v) suspensions with 1% (w/w) HCl at 25°C for 6, 30, and 78 hr. Native and PAH starches were then treated by annealing (ANN) or heat‐moisture treatment (HMT). ANN was done at 70% moisture at 50, 60, or 70°C for 24 hr, and HMT was done at 30% moisture at 100, 120, or 140°C for 80 min. RS that survives boiling during analysis was determined by a modification of the AOAC method for determining total dietary fiber. RS was also determined by the Englyst method. Little change in the gelatinization enthalpy was found for ae‐VII starch after PAH, ANN, or HMT as individual treatments. After PAH, either ANN or HMT led to decreased gelatinization enthalpy. HMT and ANN alone increased boiling‐stable RS but decreased total RS. After PAH of ae‐VII, either ANN or HMT tended to increase the yield of boiling‐stable granular RS, with the greatest yield (≤63.2%) observed for HMT.  相似文献   

15.
To determine the rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) contents in a starch sample, the addition of amyloglucosidase is often used to convert hydrolyzates from α-amylase digestion to glucose. The objectives of this study were to investigate the exact role of amyloglucosidase in determining the digestibility of starch and to understand the mechanism of enzymatic actions on starch granules. Four maize starches differing in amylose content were examined: waxy maize (0.5% amylose), normal maize (≈27% amylose), and two high-amylose starches (≈57 and ≈71% amylose). Notably, without amyloglucosidase addition, the RS content increased from 4.3 to 74.3% for waxy maize starch, 29.7 to 76.5% for normal maize starch, 65.8 to 88.0% for starch with 57% amylose, and 68.2 to 90.4% for the starch with 71% amylose. In the method without α-amylase addition, less RS was produced than without added amyloglucosidase, except in maize at 71% amylose content. Scanning electron microscopy (SEM) revealed the digestive patterns of pinholes with α-amylase and burrowing with amyloglucosidase as well as the degree of digestion between samples. To understand the roles of amyloglucosidase and α-amylase in the in vitro test, multiple analytical techniques including gel permeation chromatography, SEM, synchrotron wide-angle X-ray diffraction, and small-angle X-ray scattering were used to determine the molecular and crystalline structure before and after digestion. Amyloglucosidase has a significant impact on the SDS and RS contents of granular maize starches.  相似文献   

16.
Manufacture of pasta products is paramount for durum wheat (Triticum turgidum L. var. durum). The recent development of waxy durum wheat containing starch with essentially 100% amylopectin may provide new food processing applications and present opportunities for value‐added crop production. This investigation was conducted to determine differences in some chemical and functional properties of waxy durum starch. Starch was isolated from two waxy endosperm lines and four nonwaxy cultivars of durum wheat. One of the waxy lines (WX‐1) was a full waxy durum wheat whereas the other line (WX‐0) was heterogeneous, producing both waxy and nonwaxy seed. Effects on starch swelling, solubility, pasting, gelatinization, and retrogradation were examined. The full waxy starch had four times more swelling power than the nonwaxy durum starches at 95°C, and was also more soluble at three of the four temperatures used. Starch pasting occurred earlier and peak viscosities were greater for starches from both waxy lines than for the nonwaxy starches, but their slurries were less stable with continued stirring and heating. Greater energy was required to melt gelatinized waxy starch gels, but no differences were found in either refrigerated storage or freeze‐thaw retrogradation, as determined by differential scanning calorimetry. The results of this investigation showed some significant differences in the starch properties of the waxy durum wheat lines compared to the nonwaxy durum wheats.  相似文献   

17.
Japonica (Tainung 67 [TNu67]) and waxy (Taichung 70 [TCW70]) rice, normal and waxy corn, and cross-linked waxy rice and corn starches were used in an investigation of the influence of the granular structure on the pasting behavior of starch, using small amplitude oscillatory rheometry. Both normal corn and normal rice (TNu67) starches had the highest storage moduli (G′), followed by their cross-linked versions; native waxy corn and rice starches had the lowest. Native waxy starches showed paste characteristics (G′ < 500 Pa; tan δ > 0.2) at concentrations of up to 35%. However, cross-linked waxy starches exhibited gel behavior at 10% concentration (cross-linked TCW70) or higher (cross-linked waxy corn starch). The degrees of swelling power were in the order: TCW70 > native waxy corn > TNu67 ≅ cross-linked TCW70 ≅ normal corn ≅ cross-linked waxy corn starches. Solubilities were in the order: normal corn > TNu67 > native waxy > cross-linked waxy starches. The addition of 2% purified amylose from indica rice (Kaohsiung Sen 7) did not induce gelation of waxy corn starch. Swelling powers of normal corn, TNu67, and crosslinked waxy starches were similar, but normal corn and TNu67 had much higher G′ value. Such results implied that the formation of gel structure was governed by the rigidity of swollen granules and that the hot-water soluble component could strengthen the elasticity of the starch gel or paste.  相似文献   

18.
Aqueous dispersions (2 mg/mL) of debranched corn starches of different amylose contents (waxy, normal, and high‐amylose) were subjected to extensive autoclaving and boiling‐stirring, and then the changes in starch chain profile were examined using medium‐pressure, aqueous, size‐exclusion column chromatography. As autoclaving time increased from 15 to 60 min, weight‐average chain length (CLw) of waxy, normal, and high‐amylose corn starches determined using pullulan standards decreased from 46 to 41.2, from 122.1 to 96.3, and from 207.3 to 151.8, respectively. Number‐average chain length (CLn) measured by the Nelson‐Somogyi method also decreased from 23.0 to 18.4, from 26.4 to 21.8, and from 66.5 to 41.5, respectively, indicating that thermal degradation of starch chains occurred. The CLw/CLn ratio for normal corn starch was higher than that for waxy corn starch, indicating an increase in polydispersity of the amylose fraction. Thermal degradation was also observed when the debranched starch was subjected to the boiling‐stirring treatment (0–96 hr). During 96 hr, the CLw and relative proportion of B≥2 chains of amylopectin released by debranching waxy corn starch increased, whereas those of B1 chains decreased. This change may indicate physical aggregation of B1 chains. But branches from normal and high‐amylose corn starches showed increases in CLw and the proportion of both B1 and B≥2 chains, along with substantial decreases in those of amylose chains. Therefore, thermal degradation of amylose was greater than that of amylopectin.  相似文献   

19.
Starches of waxy rices that showed varietal differences in hardness testing of cooked rice after amylopectin staling and high-amylose content (AC) rices differing in gel consistency (GC) and starch gelatinization temperature (GT) were studied to determine the factors related to varietal differences in amylopectin staling of cooked rice. Intermediate- and high-GT starches showed greater amylopectin staling of gelatinized rice by hardness testing values or differential scanning calorimetry (DSC) endotherm than did low-GT starches in both waxy and nonwaxy rices. Isoamylase-debranched amylopectins of waxy rices differed in the ratio of weight-average degree of polymerization (DPw) fractions, but these fraction ratios were not simply related to differences in amylopectin staling of cooked rice. Among high-AC rices, amylopectin from low-GT starch was confirmed to have higher iodine affinity (2.3–2.5%) than amylopectin from intermediate-GT starches (1.7–1.8%), regardless of GC. Within high-AC starch of the same GT type, soft-GC rice corresponded with more A + B1 DPw 16–18 and less B3 DPw 150–200 fractions of debranched amylopectin and low DPw of amylose. Amylopectin of amylose extender mutant of IR36 was confirmed to have a longer chain length than ordinary rice amylopectin: the debranched amylopectin has more B2 DPw 47–51 fraction, less A + B1 DPw fraction, but no B4 fraction with DPw > 200. Only high-AC amylopectin had debranched fraction with DPw >120.  相似文献   

20.
Starches were isolated from grains of waxy, heterowaxy, and normal sorghum. To study the relationship between starch structure and functionality and guide applications of these starches, amylose content, amylopectin chain-length distributions, gelatinization and retrogradation, pasting properties, dynamic rheological properties, and in vitro enzyme digestion of raw starches were analyzed. Heterowaxy sorghum starch had intermediate amylose content, pasting properties, and dynamic rheological properties. Stress relaxation was a useful indicator of cooked starch cohesiveness. Cooked heterowaxy sorghum starch (10% solids) had a viscoelastic-solid type of character, whereas cooked waxy sorghum starch behaved like a viscoelastic liquid. Amylopectin of normal sorghum starch had a slightly higher proportion of chains with degree of polymerization (DP) of 6-15 (45.5%) compared with amylopectin of heterowaxy starch (44.1%), which had a gelatinization peak temperature 2 degrees C higher than normal sorghum starch. Heterowaxy sorghum starch contained significantly lower rapidly digestible starch (RDS) and higher resistant starch (RS) than waxy sorghum starch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号