首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Baking and 2‐g mixograph analyses were performed for 55 cultivars (19 spring and 36 winter wheat) from various quality classes from the 2002 harvest in Poland. An instrumented 2‐g direct‐drive mixograph was used to study the mixing characteristics of the wheat cultivars. A number of parameters were extracted automatically from each mixograph trace and correlated with baking volume and flour quality parameters (protein content and high molecular weight glutenin subunit [HMW‐GS] composition by SDS‐PAGE) using multiple linear regression statistical analysis. Principal component analysis of the mixograph data discriminated between four flour quality classes, and predictions of baking volume were obtained using several selected mixograph parameters, chosen using a best subsets regression routine, giving R2 values of 0.862–0.866. In particular, three new spring wheat strains (CHD 502a‐c) recently registered in Poland were highly discriminated and predicted to give high baking volume on the basis of two mixograph parameters: peak bandwidth and 10‐min bandwidth.  相似文献   

2.
Development of a small‐scale method to measure dough extensibility, using a 2‐g mixograph and the TA.XT2 texture analyzer (TA) equipped with Kieffer rig, suitable for early‐generation wheat quality screening is presented. Three hook speeds 3.3, 7.0, and 10.0 mm/sec were tested on the TA. Only at the lower hook speed of 3.3 mm/sec were wheats, varying in quality, clearly differentiated. The ability to differentiate between wheats using the TA was compared with the Brabender Extensigraph. The sample ranking based on the resistance to extension (Rmax) from the TA at a hook speed of 10.0 mm/sec correlated highly (r = 0.99) to the ranking obtained on the extensigraph. Dough extensibility data from the extensigraph and the TA, using hook speed 10.0 mm/sec, was correlated (r = 0.90) to loaf volume. Similarly, dough extensibility on the TA, using hook speed 3.3 mm/sec, was correlated to loaf volume (r = 0.96). The effect of three dough water contents (farinograph absorption, farinograph absorption + 6%, and 2‐g mixograph water absorption) on physical properties of dough were evaluated by mixing the dough in a 2‐g mixograph and testing the extensibility on the TA. Dough prepared at farinograph absorption + 6% and at mixograph absorption allowed differentiation between wheats based on the resistance to extension (Rmax).  相似文献   

3.
A computerized 2‐g direct drive mixograph was used to study the mixing characteristics of flours milled from a range of breadmaking cultivars obtained from five separate locations around the UK, providing 54 flour samples. Fifteen parameters were extracted from each mixograph trace using the Mixsmart software program and correlated with baking volume using partial least squares multiple regression statistical analysis to give a prediction of baking volume. Location had a considerable influence on the prediction of baking volume. Excellent predictions of baking volume were obtained from flours from individual locations (R2 = 0.805–0.995), but predictions based on all cultivars without discriminating locations were poor. When mixograph and baking volume data for each cultivar were averaged over all five locations, a very high correlation was obtained (R2 = 0.999). Preparation of flour samples using rapid, small‐scale milling procedures (Brabender Quadrumat Jr. mill and Perten 3100 hammer mill) did not have any adverse effect on prediction of baking volume. Mixograph parameters obtained from six commercial glutens of varying quality gave good correlations with test baking volumes, based on 6% gluten addition to a control flour.  相似文献   

4.
The objective of this research was to determine whether computer‐analyzed (objective) mixograph parameters could replace conventional mixograph parameters in the evaluation of flour quality. The 642 hard winter wheat flours, collected from federal regional performance nurseries in 1995 and 1996, were analyzed by a conventional and computerized mixograph. Mixograph bandwidths at 6 min (BW6) showed the most significant linear correlation with subjective mixing tolerance scores (r = 0.81, P < 0.1%, n = 642). Prediction models of conventional and experimental baking parameters were developed by continuum regression using computer‐analyzed mixograph parameters of a calibration set (n = 282). The developed models could estimate conventional mixograph mixing time and tolerance scores, baking water absorption and mixing time, and bread loaf volume, showing R2 values of 0.86, 0.74, 0.68, 0.80, and 0.51, respectively, for a validation set (n = 380). These results indicated that computer‐analyzed mixograph parameters could be applied to develop prediction models to be used for flour quality evaluation in wheat breeding programs.  相似文献   

5.
为研究灌浆期高温胁迫对不同品种小麦蛋白组分及面团揉混特性的影响,以济麦22(JM22)和新麦26(XM26)为材料,通过灌浆初期(S1)和灌浆中期(S2)在田间搭棚进行高温胁迫处理,以未进行高温胁迫的大田小麦作对照(CK),收获后对小麦淀粉黏滞谱、蛋白质组分含量和揉混参数等进行分析。结果表明,与各自CK相比,JM22的黏滞谱参数除回复值和糊化温度降低外,其余参数均升高,XM26的黏滞谱参数除峰值时间外均降低。S1和S2使JM22的峰值黏度、低谷黏度、崩解值、最终黏度、峰值时间分别较CK提高2.81%和18.63%、7.71%和19.51%、11.88%和21.15%、1.88%和12.22%、2.45%和4.08%,且S2均大于CK和S1,S1与CK差异不显著;S1和S2使XM26的峰值黏度、低谷黏度、最终黏度、回复值分别较CK降低12.95%和31.21%、1.81%和27.18%、2.50%和22.22%、3.57%和14.39%,其中,S2、S1与CK三者之间的峰值黏度均达显著水平。与CK相比,高温胁迫后JM22的蛋白质含量降低,而XM26升高。两品种各组分蛋白含量均发生改变,S...  相似文献   

6.
CO2浓度增加对不同冬小麦品种后期生长与产量的影响   总被引:7,自引:3,他引:7  
应用自行设计的模拟未来气候变化的半开放式CO2浓度递增大棚(CGC),研究CO2浓度递增对不同冬小麦品种后期生长状况与产量的影响。结果表明,CO2浓度递增,生物总量与经济产量均为增加;不同品种对CO2浓度递增的反应程度不同。  相似文献   

7.
In a greenhouse experiment, wheat cultivars PDW 291, PBW 550, and TL 2908 were grown in alkaline sandy-loam soil treated with sodium selenate at 0, 2, and 4 mg selenium (Se) kg?1 soil. Selenate-treated wheat plants accumulated greater Se in roots, stems, leaves, and grains and showed growth retardation, snow-white chlorosis, decreased shoot length and chlorophyll, and reduced leaf area and produced less number of grains as compared to control plants. Maximum reduction in these parameters was observed in selenate-treated TL 2908 plants and most of the plants died before maturity with almost no grain formation with 4 mg Se kg?1 soil. Selenium accumulation resulted in decreased reducing sugar, starch, and protein contents in grains whereas total free amino acids increased significantly in all the three cultivars. Selenium accumulation in wheat showed metabolic disturbances and its accumulation in grains was beyond toxic levels, thus making it unfit for consumption.  相似文献   

8.
The effect on physical dough properties of nitrogen and sulfur fertilizer applied during cultivation was observed in two trials using the bread wheat (Triticum aestivum) cultivar Otane. Wheat flours from both trials were evaluated for physical dough properties under laboratory conditions and also under industrial conditions in the second trial. The laboratory and industrial optimum mechanical dough development (MDD) work input (WI) significantly increased when nitrogen (N) fertilizer was applied without sulfur fertilizer (S) during crop cultivation. With combined N and S fertilization, laboratory and industrial WI remained close to levels for grain grown without fertilizer. Reductions in extensigraph resistance to extension (Rmax) and increases in extensigraph extensibility (Ext) due to S fertilization also were observed. None of the observed changes in WI, Rmax, or Ext due to S fertilization significantly affected end‐product quality as measured by loaf volume, crumb grain, and bake score. The nexus between WI and Rmax was weakened by combined N and S fertilization in the first trial, but remained strong in the second trial. Both WI and Rmax increased as N fertilizer and flour nitrogen increased, but at different rates. This observation indicated that by applying N fertilizer to improve dough strength, a disproportionate and disadvantageous increase in WI also resulted, which could be tempered by S fertilization. In this regard, an optimum N:S fertilizer ratio of 3:1 was indicated, although this ratio would be dependent on the balance of available N and S in the soil. Flour N:S ratios <12.5 kept WI to levels desirable in an industrial MDD bakery. Correlations between laboratory WI, mixograph development time (except in the SN1 trial), and farinograph development time were significant. The 125‐g MDD mixers appeared to be more responsive when measuring mixing requirements than the mixograph and farinograph to variations in quality due to environmental and agronomic influences and correlated better with industrial performance.  相似文献   

9.
Soluble salts represent dissolved inorganic ions in solution and are typically measured in terms of electrical conductivity (EC). Often soluble salt measurements from different studies or laboratories cannot be cross-referenced or there is much confusion when comparing these results. The soluble salts from 13 composts and horticultural substrate materials were extracted using six different methods: saturated medium extract; pour-through, a water displacement method; and water suspensions using various ratios (by volume) of water:substrate (1:1, 1:2, 2;1, 5:1). EC ranged from 0.1 (peat and perlite) to 23.1 dS m?1 (turkey litter compost). A linear regression model was developed to allow cross-referencing between extraction methods of measurements of soluble salts concentration of the composts and substrates.  相似文献   

10.
Wheat (Triticum aestivum L.) genotypes with short mixing times usually have low mixing tolerance values, which make them more sensitive to overmixing in commercial bread production. In this study, we evaluated the genotypic and environmental effects on agronomic performance and end‐use quality of 27 experimental genotypes (hereafter referred to as mixing tolerant genotypes) which were identified in an initial screen as having short mixing times and good mixing tolerances to 1) determine whether genotypes identified in a preliminary end‐use quality screen as lines with usually long tolerances but short mixing times were due to their genotype (G), the environment (E), or G × E; and as these results were unusual, 2) determine whether or not our initial screen predicts end‐use quality, and 3) determine the stability of both agronomic and end‐use quality traits. The 27 genotypes and five check cultivars were grown in a randomized complete block design with two replicates in nine environments in 1997 and 1998. All plots were harvested for grain yield. The harvested grain from the first replicate and random genotypes from the second replicate were micromilled to produce flour samples for evaluation of flour yield, protein content, and mixograph mixing time and mixing tolerance values. Seed diameter, thousand kernel weight, and kernel hardness were also measured in three environments. Environment, G, and G × E interaction effects (mainly changes in magnitude) were significant for most agronomic and end‐use quality parameters. Our initial screen, which had identified 27 genotypes, was partially effective in identifying genotypes that have shorter mixing time values compared with their mixing tolerance values. We identified four genotypes (15%) from the mixing tolerant genotypes that had a good mixing tolerance value and relatively shorter mixing time, as did the released cultivars ‘Agate’ and ‘Scout 66’. However, mixing characteristics values of all genotypes fell within the acceptable limits, indicating our screen effectively identified genotypes with acceptable quality. Mixing tolerant genotypes, which had been identified as having short mixing time scores and long mixing tolerance scores, were considered stable across environments.  相似文献   

11.
Fermentation by human fecal bacteria of fractions of wheat bran prepared by preprocessing technology were examined and compared with a β‐glucan‐rich oat bran and a purified β‐glucan (OG). The wheat fractions were essentially a beeswing bran (WBA), mainly insoluble dietary fiber, and an aleurone‐rich fraction (WBB) containing more soluble fiber and some β‐glucan (2.7%). The oat bran (OB) had more endosperm and was very rich in β‐glucan (21.8%). Predigestion of WBB and OB to mimic the upper gastrointestinal (GI) tract gave digested wheat bran fraction B (WBBD) and digested oat bran (OBD), respectively. These predigested fractions were fermented in a batch technique using fresh human feces under anaerobic conditions. Changes in pH, total gas and hydrogen production, short chain fatty acids (SCFA), and both soluble and insoluble β‐glucan and other polysaccharide components, as determined from analysis of monosaccharide residues, were monitored. Fractions showed increasing fermentation in the order WBA < WBBD < OBD < OG. Variations in SCFA production indicated that microbial growth and metabolism were different for each substrate. Polysaccharide present in the supernatant of the digests had disappeared after 4 hr of fermentation. Fermentability of oat and wheat β‐glucan reflected solubility differences, and both sources of β‐glucan were completely fermented in 24 hr. Although the overall patterns of fermentation indicated the relative amounts of soluble and insoluble fiber, the anatomical origin of the tissues played a major role, presumably related to the degree of lignification and other association with noncarbohydrate components.  相似文献   

12.
不同灌溉方式对玉米植株生长参数及产量的影响   总被引:3,自引:0,他引:3  
为了探究不同的节水灌溉方式对玉米植株生长参数及产量的影响,选择在内蒙古通辽市设计低压管灌、膜下滴灌和喷灌这3种节水灌溉方式的试验,并在整个生长期内毛灌溉定额相同的条件下,分别观测在3种灌溉方式下玉米整个生长期内的土壤水分变化及玉米的植株高度、茎粗、叶面积指数、叶绿素含量、生物量、株籽粒重等指标。结果表明:灌溉定额相同时,不同的灌水次数对土壤水分含量有较大影响,进而影响作物的生长发育。不同的节水灌溉方式对玉米植株生长、产量有显著影响:在整个生长期内,玉米生物量膜下滴灌高于喷灌,喷灌高于低压管灌,膜下滴灌高于喷灌46.74%,高于低压管灌98.81%,喷灌高于低压管灌35.49%;膜下滴灌实际产量大于喷灌2.85%,大于低压管灌7.83%,喷灌大于低压管灌4.84%。总体来说,3种灌溉方式中,膜下滴灌最好,喷灌次之,低压管灌最差。  相似文献   

13.
Two field trials using four New Zealand wheat cultivars were undertaken to observe the effects of nitrogen and sulfur fertilization on protein composition, mixing requirements, and dough strength and to compare the results with that observed with a single cultivar, Otane. The results confirmed that adequate sulfur fertilization was necessary to ensure lower dough mixing requirements. The existence of a nexus between mixing requirements and dough strength was confirmed and genotype has significant effects on it. Variation in the content of HMW‐GS in the protein corresponded to changes in dough mixing requirement of Otane. Across the four cultivars, dough mixing requirements (mechanical dough development work input and mixograph development time) and dough strength (Extensigraph resistance to extension) depended on different aspects of protein composition. As the content of polymeric proteins increased, MDD work input increased, but mixograph development time decreased, while the effect on Rmax was small. Rmax, however, was more affected by either the content of small monomerics in the flour or the ratio between HMW‐GS peak area to total gliadin peak area. The ratio of MDD work input to Rmax was largely explained by the gliadin content of the flour. Thus, depending on the genetic background, it should be possible to adjust dough mixing requirements by modifying overall HMW‐GS, LMW‐GS, or gliadin content while maintaining dough strength.  相似文献   

14.
The objective of this study was to identify a suitable method for phenotyping preharvest sprouting (PHS) resistance in white bread wheat. Forty doubled‐haploid (DH) lines derived from a cross between two white‐grained spring wheats (Triticum aestivum L.) cultivar Argent (nondormant) and wheat breeding line W98616 (dormant) were evaluated for germination frequency, Falling Number (FN), and α‐amylase activity in dry and water‐imbibed seeds and spikes. The α‐amylase activity in dry seeds or spikes did not differ significantly between parent lines or lines of the DH population. Wetting of seeds or spikes for two days caused a five‐ to sevenfold increase in α‐amylase activity but only in Argent and the nondormant subgroup (49–100% germination) of the DH lines. A positive association (r = 0.60***) was detected between germination frequency and α‐amylase activity in imbibed seeds and spikes. Germination frequency could not be correlated to FN or α‐amylase activity in dry‐harvested seeds. FN showed a strong correlation (r = –0.83***) to α‐amylase activity in the dry‐harvested seeds but could not be correlated to α‐amylase activity in the imbibed seeds. The germination test was the most reliable method for measuring PHS resistance because seed dormancy provides potential resistance to PHS, whereas high α‐amylase activity may occur in grains without causing PHS.  相似文献   

15.
Wheat gluten was cross‐linked using water‐soluble 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide HCl (EDC). To enhance cross‐linking, N‐hydroxysuccinimide (NHS) was added to the reaction mixture. The cross‐linking efficiency was evaluated by the decrease in the amount of amino groups, the solubility of the protein in aqueous solutions with different pH levels, and by the change in the molecular weight distribution of the cross‐linked compounds. Cross‐linking was dependent on the reaction time, the molar ratio of added reactants, and the pH level of the reaction mixture. If the reaction was carried out at pH 3, no decrease in the amount of amino groups or solubility was observed. At pH 5–7, the amount of amino groups decreased from 15 to 10 mmol/100 g of protein. This was accompanied by a large decrease in the water solubility of the protein (<10%, w/v). Finally, reaction at pH 11 decreased the amount of amino groups from 15 to 8 mmol/100 g of protein. However, hardly any decrease in the water solubility was observed. Based on these results and SDS‐PAGE experiments, two cross‐link mechanisms are suggested: one resulting in inter‐ and the other resulting in intramolecular cross‐links.  相似文献   

16.
Thermostable mutant α‐amylases (21B, M111, and M77) with various degrees of thermostability were purified from Bacillus amyloliquefaciens F and used as improvers for breadmaking. Test baking with the mutant enzymes was conducted using the long fermentation sponge‐dough method. Addition of an appropriate amount of mutant α‐amylases to the ingredients distinctly increased the specific volume of the bread and improved the softness of breadcrumb as compared with the addition of Novamyl (NM), an exo‐type α‐amylase. M77 was the most effective in retarding the staleness of breadcrumb. The softness of breadcrumb during storage, however, was not correlated with the thermostability. All mutant α‐amylases weakened the mixing property of the dough, whereas they strengthened the property of fermented dough. Especially, M77 and NM had different effects on the dough properties, but their bread qualities were similar to each other. The strong tolerance of M77 dough to the long baking process might be due to the production of hydrolyzed starches, oligosaccharides in the range of maltopentaose to maltohexaose, as compared with NM. Therefore, in the light of present findings, these mutant α‐amylases are possible substitutes for NM as bread improvers.  相似文献   

17.
《Cereal Chemistry》2017,94(3):625-632
Six Australian milling oat cultivars grown over two growing seasons were characterized for differences in (1,3)(1,4)‐β‐glucan (β‐glucan) viscosity, solubility, molecular weight (Mw), and the effect of processing. Oat cultivars grown in 2012 had significantly higher extracted β‐glucan viscosity from oat flour than the same oat cultivar grown in 2011 (P < 0.05, mean 137 and 165 cP, respectively). Noodle β‐glucan mean viscosity for 2012 (147 cP) was significantly higher than for 2011 (128 cP). β‐Glucan from ‘Williams’ and ‘Mitika’ oats had the highest viscosity (P < 0.05) in flour (5.92 and 5.25%, respectively) and noodles (1.64 and 1.47%, respectively) for both years, compared with the other oat cultivars. β‐Glucan (Mw) of Williams for 2012 and ‘Kojonup’ for both years were the least affected by processing, with an average drop of 33% compared with a maximum of 63% for other cultivars. Therefore, Williams showed superior β‐glucan properties to other oat cultivars studied, and can potentially provide improved health benefits. High and low β‐glucan Mw populations were found in the same elution peak after processing. Oat cultivars chosen for processing should be those with β‐glucans that are more resistant to processing, and that maintain their physiochemical properties and, therefore, bioactivity.  相似文献   

18.
Preharvest sprouted wheat is often characterized by the falling number (FN) test. FN decreases in preharvest sprouted wheat as enzymatic degradation of the starchy endosperm increases. Wheat with FN values <250–275 is often discounted at the time of sale. The intent of this investigation was to evaluate the effects of debranning or pearling on the flour quality traits of five samples of wheat rated as low, med‐low, medium, med‐high, and sound that exhibited a range in FN values of 62–425 sec. Replicates of each sample were pearled for 30, 60, and 120 sec to remove portions of the outer bran layers before milling. FN was highly correlated with α‐amylase activity (r > ‐0.97) in the med‐low, medium, and med‐high FN sample sets as pearling time increased. FN increased in the medlow, medium, and med‐high FN samples by 128, 123, and 80%, respectively, after 120 sec of pearling. Pearling had no effect on flour FN of the low FN sample but α‐amylase activity was significantly decreased. Pearling had little or no effect on FN and α‐amylase activity of the sound sample. FN was moderately to strongly correlated with Rapid Visco Analyser (RVA), alveograph, and farinograph properties, and poorly correlated with protein content, flour yield, and bread loaf volume. In subsequent breadmaking studies, bread loaf volume, and crumb characteristics of flour from pearled wheat were not significantly different from loaf volume and crumb characteristics of flour from the corresponding nonpearled wheat.  相似文献   

19.
水分调控对两种筋力型小麦品种籽粒淀粉糊化特性的影响   总被引:3,自引:1,他引:3  
在池栽、防雨条件下,研究了不同灌水对两种筋力型小麦品种淀粉糊化特性的影响。结果表明,两种筋力型品种间淀粉粘度参数差异达0.01显著水平,强筋型品种豫麦34稀懈值、糊化温度低于弱筋型品种豫麦50,而最终粘度、反弹值、高峰粘度和低谷粘度大于豫麦50。水分调控对两种筋力型品种淀粉糊化特性有显著的影响,豫麦50主要粘度参数以灌4水处理和抽穗期灌1水处理较好,灌拔节1水处理较差;而豫麦34以灌1水处理较好,灌4水处理较差,其中拔节期灌1水与抽穗期灌1水差异不显著。分析两品种粘度参数之间的关系,豫麦50主要粘度参数间达显著相关水平,而豫麦34多数粘度参数间相关不显著,在栽培措施上豫麦50比豫麦34具有同步提高淀粉品质的可能性。  相似文献   

20.
The total protein of gluten obtained by the cold‐ethanol displacement of starch from developed wheat flour dough matches that made by water displacement, but functional properties revealed by mixing are altered. This report characterizes mixing properties in a 10‐g mixograph for cold‐ethanol‐processed wheat gluten concentrates (CE‐gluten) and those for the water‐process concentrates (W‐gluten). Gluten concentrates were produced at a laboratory scale using batter‐like technology: development with water as a batter, dispersion with the displacement fluid, and screening. The displacing fluid was water for W‐gluten and cold ethanol (≥70% vol, ‐12°C) for CE‐gluten. Both gluten types were freeze‐dried at ‐10°C and then milled. Mixograms were obtained for 1) straight gluten concentrates hydrated to absorptions of 123–234%, or 2) gluten blended with a low protein (9.2% protein) soft wheat flour to obtain up to 16.2% total protein. The mixograms for gluten or gluten‐fortified flour were qualitatively and quantitatively distinguishable. We found differences in the mixogram parameters that would lead to the conclusion of greater stability and strength for CE‐gluten than for W‐Gluten. Differences between the mixograms for these gluten types could be markedly exaggerated by increasing the amount of water to the 167–234% range. Mixograms for evaluation of gluten have not been previously reported in this hydration range. Mixograms for fortification suggest that less CE‐gluten than W‐gluten would be required for the same effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号