首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pup‐loaf bread was made with 10, 30, and 50% substitution of flour with wheat starch phosphate, a cross‐linked resistant starch (XL‐RS4), while maintaining flour protein level at 11.0% (14% mb) by adding vital wheat gluten. Bread with 30% replacement of flour with laboratory‐prepared XL‐RS4 gave a specific volume of 5.9 cm3/g compared with 6.3 g/cm3 for negative control bread (no added wheat starch), and its crumb was 53% more firm than the control bread after 1 day at 25°C, but 13% more firm after 7 days. Total dietary fiber (TDF) in one‐day‐old bread made with commercial XL‐RS4 at 30% flour substitution increased 3–4% (db) in the control to 19.2% (db) in the test bread, while the sum of slowly digestible starch (SDS) plus resistant starch (RS), determined by a modified Englyst method, increased from 24.3 to 41.8% (db). The reference amount (50 g, as‐is) of that test bread would provide 5.5 g of dietary fiber with 10% fewer calories than control bread. Sugar‐snap cookies were made at 30 and 50% flour replacement with laboratory‐prepared XL‐RS4, potato starch, high‐amylose (70%) corn starch, and commercial heat‐moisture‐treated high‐amylose (70%) corn starch. The shape of cookies was affected by the added starches except for XL‐RS4. The reference amount (30 g, as‐is) of cookies made with commercial XL‐RS4 at 30% flour replacement contained 4.3 g (db) TDF and 3.4 g (db) RS, whereas the negative control contained 0.4 g TDF and 0.6 g RS. The retention of TDF in the baked foods containing added XL‐RS4 was calculated to be >80% for bread and 100% for cookies, while the retention of RS was 35–54% for bread and 106–113% for cookies.  相似文献   

2.
Starch was isolated from 95 sorghum landraces from Zimbabwe using an alkali steep and wet‐milling procedure. The physicochemical properties of sorghum starch were examined for potential use in Southern Africa. All the landraces evaluated had a normal endosperm indicated by the amylose content of the starches. Starch properties were not correlated to most of the physical grain quality traits evaluated. Grain hardness was weakly correlated to starch gel adhesiveness (r = 0.36) and amylose content (r = 0.38) (P < 0.001). The mean peak viscosity (PV) of the sorghum starches was 324 Rapid Visco Analyser units (RVU) compared with 238 RVU in a commercial corn starch sample; PV was 244–377 RVU. Some landraces had low shear‐thinning starches, implying good paste stability under hot conditions. Pasting properties were highly correlated among the sorghum starches. The starch gel hardness showed considerable variation (44–71 g) among the landraces. Gelatinization peak temperatures were 66–70°C. The thermal properties of starches were not correlated with starch swelling and pasting properties. Genotype grouping by highest and lowest values in each category would allow selection of sorghums based on a specific attribute depending on the desired end use.  相似文献   

3.
The physical properties of octenyl succinic anhydride (OSA) starches prepared from rice, wheat, and potato starches were studied. Rice and wheat OSA starches had significantly higher peak viscosity (PV), hot paste viscosity (HPV), and cool paste viscosity (CPV), but potato OSA starch had only significantly higher CPV, relative to the native starch. The gel hardness was higher with lower degree of substitution (DS) but lower with higher DS OSA compared to native starch. The swelling volumes (SV) of rice and wheat OSA starches were significantly higher compared to native starch, but the SV of potato OSA starch was slightly lower at high DS. The gelatinization temperature (GT) of rice OSA starches was sharply lower at low DS; for wheat OSA starch it was slightly lower even at high DS, but potato OSA starches had higher GT than the native starch. The enthalpy of all the OSA starches decreased gradually with increased DS. This study showed that the magnitude of changes in physical properties of OSA-modified starches depends not only on their DS but also on the botanical origin of the native starches.  相似文献   

4.
The effect of starch crystallinity and phosphorus on starch gelatinization and retrogradation were studied using wide-angle X-ray powder diffraction, cross polarization/magic angle spinning (CP/MAS) 13C nuclear magnetic resonance (NMR) spectroscopy, 31P NMR spectroscopy, Rapid Visco Analyzer (RVA) and differential scanning calorimetry (DSC). Two starches differing significantly in peak viscosity (cv. Stephens, 283 BU; cv. Crew, 560 BU) were comparable in amylose content and starch crystallinity, while differing significantly in phospholipids content. Starch of lower peak viscosity had a higher phospholipids content and showed a slower rate of retrogradation. Starch from Stephens (0.098% phosphorus) had an enthalpy value of retrograded starch of 2.2 J/g after 14 days of storage, while starch from Crew (0.062% phosphorus) had an enthalpy value as high as 4.4 J/g. Defatting with a hot n-propanol and water (3:1) mixture caused substantial changes in peak viscosity. Peak viscosity for starch from Crew decreased by 75 RVU due to defatting, while starch from Stephens decreased by as much as 125 RVU. After defatting with the hot n-propanol water mixture, the rate and extent of starch retrogradation were comparable between the prime starches, which differed significantly in peak viscosity.  相似文献   

5.
Waxy (short grain), long grain, and parboiled (long grain) rice flours were extruded using three different temperatures and five different water feed rates. The water absorption and water solubility index of the extrudates was 0.67–5.86 and 86.45–10.03%, respectively. The fat absorption index was similar to that of unextruded flours with an average value of 0.96 g/g ± 0.12. Bulk density decreased with an increase in moisture, except waxy rice, which had a quadratic relationship. The viscosity profiles for long grain and parboiled rice were similar. Both initially increased in viscosity (>130 RVU), then decreased to ≈40 RVU. The final viscosity was ≈60 RVU. Waxy rice viscosity remained low (<20 RVU), then doubled upon cooling. The main difference in the digestion profiles was due to temperature. The flours extruded at 100°C digested significantly slower than those extruded at 125 and 150°C. Significant differences were not detected for a given temperature and moisture (P > 0.05) except for long grain and parboiled rice extruded at 100°C and 15% added moisture (F = 4.48, P = 0.03) and 150°C and 20% added moisture (F = 3.72, P = 0.05). Moisture appeared to have little effect for a given temperature, except when parboiled rice was extruded at 150°C. The digestion rate for 11 and 25% added moisture was significantly less than that for 20% (P ≤ 0.05).  相似文献   

6.
Four rice starches were isolated from waxy and nonwaxy rice cultivars collected from different places in China. Individual rice starches were examined, along with their corresponding mixtures in different ratios, in terms of pasting and hydration properties. Analysis by micro‐viscoamylography (MVAG) showed that waxy rice starch and its blends had higher peak viscosity (PV), breakdown (BD), and setback (SB) than the remaining starches and mixtures. Apparent amylose content (AC) was 16.95–29.85% in nonwaxy individual rice starches and 13.69–25.07% in rice starch blends. Incorporating waxy rice starch (25%) significantly decreased the AC. AC correlated negatively with swelling power (SP) (r = ‐0.925, P < 0.01). SP exhibited nonlinear relationship (r2 = 0.8204) with water solubility (WS) and both increased with temperature. The correlation showed that WS is also an index of starch characteristics and the granules rigidity affected the granule swelling potential. The results show that turbidity of gelatinized starch suspensions stored at 4 ± 0.5°C generally increased during storage up to five days.  相似文献   

7.
Cross‐linked carboxymethyl rice starches (CL‐CMRS) were prepared from reactions between a native Klong Luang 1 (KL1) rice starch and varied concentrations (2.5–15% w/w) of sodium trimetaphosphate (STMP) in simultaneous carboxymethylation and cross‐linking reactions set up using methanol as a solvent. Physicochemical as well as pharmaceutical properties of CL‐CMRS were evaluated in relation to the amount of STMP used and the degree of cross‐linking (DCx). At a low DCx, the viscosity of CMRS solution was enhanced through the formation of cross‐linked polymeric network and chain entanglement. At higher concentrations in the preparation reaction, STMP caused proportional decreases in the water solubility and ≤70‐fold of the solution viscosity, but promoted swelling and water uptake of the modified starches. Rheological behavior of the nonsoluble but swellable CL‐CMRS was similar to that of commercial superdisintegrants sodium starch glycolate (SSG), and cross‐carmellose sodium (CCS). The swelling and water uptake of CL‐CMRS were 5–7 and 6–25 times higher, respectively, than that of the native starch. Disintegration test of tablets containing 1 and 3% w/w of native and modified rice starches showed that M‐KL1‐5 and M‐KL1‐10 could be developed as tablet disintegrants.  相似文献   

8.
Physicochemistry and structural studies of two types of japonica rice, low amylose Calmochi-101 (CM101) and intermediate amylose M-202 (M202), were conducted to determine similarities and differences between the rices perhaps attributable to amylose content differences. The rheological behavior of the gelation and pasting processes of flours and starches was determined with high accuracy and precision using a controlled stress rheometer. Fat and protein, although minor constituents of milled rice, were shown to have significant effects on the physicochemical and pasting properties of starches and flours. Removal of protein and lipids with aqueous alkaline or detergent solutions caused lower pasting temperatures and higher overall viscosity in both starches, compared with their respective flours. There was less viscosity difference between M202 flour and its starch when isolated by enzymatic hydrolysis of protein. The protease did not reduce internally bound lipids, suggesting that fats help to determine pasting properties of rice flours and their respective starches. Structural integrity differences in individual granules of waxy and nonwaxy rice flours, starches, and whole raw, soaked, and cooked milled grain were revealed by fracture analysis and scanning electron microscopy. Calmochi 101 and M202 did not differ in weight-averaged molar mass (Mw) and root-mean-square radii (Rz) between flours and starches, as determined by high-performance size exclusion chromatography (HPSEC) and multiple-angle laser light scattering (MALLS) (Park, I.; Ibanez, A. M.; Shoemaker, C. F. Starch 2007, 59, 69-77).  相似文献   

9.
The physiochemical characteristics of β‐glucan in oat and barley foods can affect human physiological response. A method for continuous measurement of β‐glucan viscosity with a Rapid Visco Analyzer (RVA) was developed to overcome the complexity of the common protocols based on in vitro digestion methods. The effects of several parameters on viscosity and solubility were considered. Oat cereal foods showed different RVA viscosity profiles depending on their physiochemical characteristics. Products high in starch exhibited a high initial viscosity that was reduced by α‐amylase action, whereas products with low amounts of starch exhibited a slow increase in viscosity. The viscosity of all samples reached a plateau in the viscosity curve after 1–2 hr, which is the key for obtaining reproducible results. Optimum digestion condition was achieved using sodium phosphate buffer (pH 6.9) and 1% β‐glucan dispersion at 37°C and 160 rpm. A particle size of <0.6 mm gave more consistent viscosities than did larger particles without affecting the solubility of β‐glucan. Pancreatin and α‐amylase concentrations affected the viscosity profile by influencing the digestion rate of protein and starch in the samples, but pepsin had limited influence at pH 6.9. Highly significant Pearson correlation between the in vitro digestibility protocol and RVA methods was achieved, indicting that the developed method could be used as an effective alternative for measurement of β‐glucan viscosity.  相似文献   

10.
Pasting characteristics of maize starch heat‐treated with six different water‐to‐ethanol ratios (%wt base 0:100, 10:90, 20:80, 30:70, 40:60, 50:50) were investigated; treated starches were called EW 0, 10, 20, 30, 40, and 50, respectively. Endotherms in DSC analysis shifted to a higher temperature as the water content in water‐ethanol mixture increased. The removed amount of fatty acids was much higher in treatments for EW 10, 20, and 30. The RVA peak viscosity of EW 10 and 20 were highest among the treated starches and setbacks were more than twice that of untreated starch. The characteristic change in the RVA viscogram corresponded to the amount of leached amylose from the granule. EW 30 displays similar properties as conventional heat‐moisture‐treated starch, but maintained a higher viscosity of ≈300 RVU throughout the heating process. In treatment with water‐ethanol mixtures, heat‐moisture treatment and defatting effects generated new types of modified starches. EW 40 and 50 had no clear pasting peak on RVA, and showed a viscosity at low temperature similar to granular cold water gelling.  相似文献   

11.
This study focused on the performance of two hulless barley cultivars (Doyce and Merlin) and one commercial husked (hulled) sample using experimental milling. The purpose was to use experimental milling as a preliminary indicator of the milled streams with potential use for fuel ethanol production and fractions that could be used in food products. Experimental mills designed for flour production evaluation from wheat were Chopin CD1 Auto, Quadrumat Sr, Buhler, and an experimental Ross roller mill walking flow. Results indicate that the shorts had the highest levels of β‐glucan from all the mills. However, the β‐glucan content in the break flours was highest with the roller mill walking flow and the Chopin CD1 for the hulless cultivars. The lowest β‐glucan content in the break flour was found with the Buhler for Doyce. Break flour and, to a slightly lesser extent, reduction flour from all cultivars tested on all mills contained the highest starch content (up to 83%) and are therefore most appropriate for use as feedstock for fuel ethanol production. Conversely, bran and shorts from all cultivars and mills were lowest in starch (as low as 25%), making them ideal as low‐starch food ingredients.  相似文献   

12.
The raw starch granules from corn, rice, and wheat were hydrolyzed by practically pure glucoamylase (Rhizopus niveus). The bound lipids remaining in the residual starches were investigated, of which the major components of the lipids, free fatty acids (FFA) in corn starch, FFA and phospholipids (PL) in rice starch, and PL in wheat starch were determined. In each case, the bound FFA and PL were decreased to some extent during the initial stage of hydrolysis. During the later stages, the FFA continued to gradually decrease, while the level of PL stabilized. It was interesting that some of the bound lipids were released from the granules upon glucoamylase hydrolysis, differing from the model amylose-lipid complexes. Furthermore, the structures of the residual starches were investigated. The blue value and λmax of the starches were increased by partial hydrolysis of the starch granules using practically pure glucoamylase. Two gel-permeation chromatography analyses revealed that the relative amount of amylose fraction was increased by glucoamylase hydrolysis, and also that the increments were reduced by the defatting of bound lipids. The results suggest that the increase in amylose fraction is attributable to the existence of bound lipids in the granules.  相似文献   

13.
High‐intensity ultrasound (sonication) was investigated as a method to rapidly purify starch from sorghum and other cereal grains. To improve the process, buffers were optimized to solubilize sorghum proteins in combination with the sonication. Protein content and starch color were determined to evaluate the efficiency of the extraction process. Sonication times, SDS concentration, different types and concentrations of reducing agents (sodium metabisulfite, dithiothreitol, and β‐mercaptoethanol), and centrifugation speeds of the starch washing procedure were tested. Protein content of isolated sorghum starch was reduced to 0–0.14% (db) after 2 min of sonication (using any of the reducing agents tested). Sodium metabisulfite was chosen as the preferred reducing agent because of its lower toxicity and odor compared with other reducing agents tested. The optimum conditions for producing high‐purity sorghum starches (0.06% protein) were obtained using the following conditions: 2 min of sonication time with 12.5 mM sodium borate buffer, pH 10, containing 0.5% SDS (w/v) and 0.5% sodium metabisulfite (w/v) using 1,500 rpm centrifugation speed during starch washing. Starches separated by this method showed significantly less protein content and b values (yellowness) compared with starches separated by enzymatic methods or methods using NaCl solutions and protein extraction buffers with multiple washing steps, both of which take several hours to complete. Differential scanning calorimetry thermogram values for starches isolated by three different methods showed similar patterns, except that starches obtained with the enzymatic method had slightly higher values of To, Tp, and ΔH. Other cereal starches from whole wheat meal, wheat flour, corn, rice, and barley were also obtained rapidly using sonication.  相似文献   

14.
Nine hull‐less barley (HB) containing waxy (0–7% amylose), normal (≈25% amylose), or high amylose (≈42% amylose) starch with normal or fractured granule make‐up and 4–9% (1→3)(1→4)‐β‐d ‐glucans (β‐glucan) were pearled to remove 70% of the original grain weight in 10% intervals. The pearled fractions were analyzed for β‐glucan distribution within HB grain. Protein content of the pearled fractions indicated that the three outermost fractions contained pericarp and testa, aleurone, and subaleurone tissues, respectively. For all HB, β‐glucan and acid‐extract viscosity were very low in the outermost 20% of the kernel. For low β‐glucan HB, β‐glucan content was the greatest in the subaleurone region and declined slightly toward inner layers. For high β‐glucan HB, however, more than 80% of grain β‐glucan was distributed more evenly throughout the endosperm. Acid extract viscosity was significantly (P < 0.01) correlated with total (r = 0.75) and soluble (r = 0.87) β‐glucan content throughout the kernel of all HB. Growing conditions, location and year, had significant effects on the concentration of protein, starch and β‐glucan. However, protein, starch, and β‐glucan distribution patterns were not affected by growing conditions. The difference in β‐glucan distribution between low and high β‐glucan HB may explain the difference in milling performance of HB with low or high β‐glucan.  相似文献   

15.
A series of cross‐linked (0, 0.014, 0.018, 0.024, and 0.028% POCl3, dry starch basis) hydroxypropylated (8%) corn starches were extruded using a Leistritz micro‐18 co‐rotating extruder. Process variables included moisture, barrel temperature, and screw design. Differential scanning calorimetry and X‐ray diffraction studies showed the level of starch crystallinity decreased with increasing severity of extrusion conditions. Pasting properties of the extruded starches were examined using a Rapid Visco Analyser. Pasting profiles of starches extruded at different conditions displayed different hot paste viscosity and final viscosity. Increasing starch moisture content during extrusion and level of cross‐linking increased starch viscosity (P < 0.0001), whereas increasing extrusion temperature and shear decreased starch viscosity (P < 0.0001). Interactions were found between level of cross‐linking and screw design and between extrusion temperature and starch moisture content (P < 0.0001).  相似文献   

16.
RS4‐type resistant wheat starch (RWS) and resistant potato starch (RPS) were subjected successively to in vitro digestion with pepsin and pancreatin‐bile, and the indigestible residues (82.1% db and 74.1% db, respectively) were recovered and subsequently fermented by in vitro techniques using fresh human fecal microbiota as inoculum. Scanning electron microscopy of the indigestible residues showed surface erosion on the residual granules. Total gas production during the in vitro fermentation increased almost linearly over time with the two resistant starches exhibiting similar gas production rates, as well as a similar rate of production of total short‐chain fatty acids (SCFA). The indigestible fractions from both starches produced acetate as the major SCFA and relatively higher levels of butyrate than propionate, but wheat starch tended to produce more butyrate over time than potato starch. Fractional molar ratios of acetate, propionate, and butyrate from the RWS and RPS were 0.586:0.186:0.228 and 0.577:0.200:0.223, respectively. The calculated caloric contributions of the RWS and RPS are ≈33% lower than for unmodified starch and are comparable to those reported in the literature for RS2 and RS3 high‐amylose maize starches.  相似文献   

17.
β‐Glucan shows great potential for incorporation into bread due to its cholesterol lowering and blood glucose regulating effects, which are related to its viscosity. The effects of β‐glucan concentration, gluten addition, premixing, yeast addition, fermentation time, and inactivation of the flour enzymes on the viscosity of extractable β‐glucan following incorporation into a white bread dough were studied under physiological conditions, as well as, β‐glucan solubility in fermented and unfermented dough. β‐Glucan was extracted using an in vitro protocol designed to approximate human digestion and hot water extraction. The viscosity of extractable β‐glucan was not affected by gluten addition, the presence of yeast, or premixing. Fermentation produced lower (P ≤ 0.05) extract viscosity for the doughs with added β‐glucan, while inactivating the flour enzymes and increasing β‐glucan concentration in the absence of fermentation increased (P ≤ 0.05) viscosity. The physiological solubility of the β‐glucan concentrate (18.1%) and the β‐glucan in the unfermented dough (20.5%) were similar (P > 0.05), while fermentation substantially decreased (P ≤ 0.05) solubility to 8.7%, indicating that the reduction in viscosity due to fermentation may be highly dependent on solubility in addition to β‐glucan degradation. The results emphasize the importance of analyzing β‐glucan fortified foods under physiological conditions to identify the conditions in the dough system that decrease β‐glucan viscosity so that products with maximum functionality can be developed.  相似文献   

18.
Resistant starches (RS) were prepared from wheat starch and lintnerized wheat starch by autoclaving and cooling and by cross‐linking. Heat‐moisture treatment also was used on one sample to increase RS. The experimental resistant starches made from wheat starch contained 10–73% RS measured as Prosky dietary fiber, whereas two commercial resistant starches, Novelose 240 and 330, produced from high‐amylose maize starch, contained 58 and 40%, respectively. At 25°C in excess water, the experimental RS starches, except for the cross‐linked wheat starch, gained 3–6 times more water than the commercial RS starches, and at 95°C gained 2–4 times more. Cross‐linked RS4 wheat starch and Novelose 240 showed 95°C swelling powers and solubilities of 2 g/g and 1%, and 3 g/g and 2%, respectively. All starches showed similar water vapor sorption and desorption isotherms at 25°C and water activities (aw) < 0.8. At aw 0.84–0.97, the resistant starches made from wheat starch, except the cross‐linked wheat starch, showed ≈10% higher water sorption than the commercial resistant starches.  相似文献   

19.
The effects of ferulic acid and catechin on starch pasting properties were studied as part of an investigation into the structure and functionality of phenolics in starch‐based products. Commercial maize starch, starches from sorghum cultivars (SV2, Chirimaugute, and DC‐75), and the phenolic compounds ferulic acid and catechin were used in the investigation. Pasting properties were measured using rapid viscosity analysis. Ferulic acid and catechin (up to 100 mg each) were added to maize or sorghum starch (3 g, 14% mb) in suspensions containing 10.32% dry solid content. Addition of catechin resulted in pink‐colored pastes, whereas ferulic acid had no effect on paste color. Ferulic acid and catechin decreased hot paste viscosity (HPV), final viscosity, and setback viscosity of maize and sorghum starch pastes, but had no influence on the peak viscosity (PV) of the former. Both phenolics increased breakdown viscosity. Ferulic acid had greater influence on HPV, final viscosity, breakdown, and setback than catechin. Addition of catechin under acidic conditions (pH 3) decreased HPV, final viscosity, and setback of maize starch, but alkaline conditions (pH 11) slightly increased setback. Both acidic and alkaline conditions resulted in increased breakdown. Investigations on model‐system interactions between ferulic acid or catechin and starch demonstrated that phenolic type and pH level both significantly influence starch pasting properties, with ferulic acid producing a more pronounced effect than catechin. The significance of these interactions is important, especially in food matrices where phenolics are to be added as functional food ingredients.  相似文献   

20.
Starch is often added to batters to improve the texture and appearance of fried food products. However, comparisons of commercially available starches in terms of batter characteristics are rare. In this study, various corn starches, native or modified, were mixed with wheat flour (20% dry solids basis), and the physical properties of the batters after deep-fat frying were examined. Native corn starches of different amylose contents (high-amylose, normal, and waxy) and chemically modified corn starches (oxidized and cross-linked) were tested. The batter was prepared by adding water to the starch-flour mixtures (42% solids) and deep-fat frying at 180°C for 30 sec. The texture of the fried batter was analyzed using a texture analyzer (TA) with a Kramer shear cell. The pasting viscosity profile of the starch-flour mixtures (7% solids in water) was also measured with a Rapid Visco Analyser. When the native corn starches of different amylose contents were compared, the crispness (peak number before breakage) and hardness (maximum peak force) measured using the instrument were positively correlated with the amylose content in starches but negatively correlated with the residual moisture content of the fried batters. The peak viscosity and breakdown in viscosity profiles of the starch-flour mixtures were also negatively correlated with crispness. The use of high-amylose corn starch was effective not only in increasing the crispness, but also in reducing the oil uptake. However, the fried batter containing high-amylose starch was denser and harder than the batter containing normal starch. Among the modified starches tested, oxidized (0.4% active Cl2) and cross-linked (4% 99:1 mixture of STMP and STPP) starches showed improvements in the overall properties of the fried batters. With excessive oxidizations (>0.4% Cl2), however, the crispness was reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号