共查询到20条相似文献,搜索用时 0 毫秒
1.
Alma Delia Roman‐Gutierrez Frdric Mabille Stphane Guilbert Bernard Cuq 《Cereal Chemistry》2003,80(5):558-563
The dynamic water vapor adsorption properties were determined for two wheat flours (hard wheat flour and soft wheat flour) and compared with those of flour components (starch, damaged starch, gluten, water‐soluble pentosans, and water‐insoluble pentosans). Water vapor adsorption rates were determined from the changes in sample mass as a function of time during hydration after a step increase in relative humidity (rh). It was not possible to significantly discriminate the selected products by initial rates of adsorption (5.1 × 10‐2 to 6.4 × 10‐2 g/100 g of dry matter/min), except the water‐insoluble pentosans that were characterized by high values of adsorption rates (14 × 10‐2 g/100 g of dry matter/min). Changes in initial relative humidity conditions and %rh step sizes induced significant changes in adsorption rates. Calculations of apparent water diffusion coefficients were done using a derived form of Fick's law for polydisperse spherical particles. Apparent water diffusion coefficients (at 25°C and 60% rh) were estimated between 2.19 × 10‐15 and 3.72 × 10‐15 m2/sec for the selected wheat flours. Water‐insoluble pentosans are characterized by the highest values of diffusion coefficients (1.53 × 10‐13 m2/sec) when compared with the other wheat components. The calculated values of apparent water diffusion coefficient were discussed in regard to experimental conditions. 相似文献
2.
Ivana Sedej Anamarija Mandi Marijana Saka
Aleksandra Mian Vesna Tumbas 《Cereal Chemistry》2010,87(5):387-392
Plant phenolics and tocopherols content were determined in light and wholegrain buckwheat and wheat flour. Antioxidant activity of flours were comparatively assessed by scavenging activity on 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH•), hydroxyl (•OH), and superoxide anion (O2•–) radicals, reducing activity, and chelating activity on Fe2+. Rutin, quercetin, and ferulic acid were quantified in both buckwheat flours, while ferulic acid was quantified in wholegrain wheat flour. Significantly higher content of phenolics and tocopherols was found in buckwheat than in wheat flours. Tocopherols in buckwheat flours were present in the order: γ‐ > α‐>> δ‐tocopherol, and in wheat flours: α‐ > γ‐ >> δ‐tocopherol. Buckwheat flours possessed better scavenging abilities on DPPH•, •OH and O2•– radicals, as well as better reducing activity, while wheat flours showed better chelating activity on Fe2+, according to IC50 values. Results suggest the possibility of improving the antioxidant properties of wheat‐based food products through addition of buckwheat flour. 相似文献
3.
《Cereal Chemistry》2017,94(5):881-886
In this study, the impact of characteristics (physicochemical, rheological, and pasting properties) of different wheat flours on the quality of frozen cooked noodles was investigated. In this sample set, results showed the cooking loss of noodles related negatively to flour swelling power. The water absorption of noodles related negatively to the dough stability time, the area, and the resistance to extension. The wheat flour with higher dough development time resulted in frozen cooked noodles with higher hardness, chewiness, and adhesiveness. Springiness of noodles correlated negatively to degree of softening. The tensile properties of frozen cooked noodles were influenced by rheological and pasting properties of wheat flours. The present study indicated high quality of frozen cooked noodles demanded wheat flours with high dough gluten strength, peak viscosity, and final viscosity and with low pasting temperature. 相似文献
4.
Frozen storage increased the amount of liquid phase and decreased the storage modulus of water-flour mixtures. The liquid phase was studied by ultracentrifugation. The most significant change occurred during the first week of storage. The negative effects of ice crystals could be controlled by reducing the water content, which was seen as smaller amounts of liquid phase and higher dough rigidity after frozen storage (G′ values). Reduced water content also prevented an increase in the self-diffusion coefficient during frozen storage (1H NMR studies). Prefermented frozen doughs were examined under different conditions: with and without Skimo (additive from Puratos, Belgium), prefermentation time of 25 or 40 min, and reduced water content. The results obtained with autoradiographic method correlated best with the baking results and showed that S-kimo and shorter prefermentation time improve the water distribution of frozen prefermented doughs. Doughs contained small ice crystals after frozen storage and there were no large water patches in thawed doughs. Reduced water content and exclusion of S-kimo decreased the liquid phase of fermented doughs and increased dough rigidity. The baking properties of frozen prefermented doughs were better predicted by large deformation rheology (expansion potential of samples during oscillation). In general, flour quality had an obvious effect on the parameters. There was no correlation between the rheological properties and the values of liquid phase, but in most cases a high correlation between the total water content and rheological properties was observed. 相似文献
5.
During wheat dough processing, a large part of the interactions with water are governed by wettability properties of flour. The wettability properties of wheat materials (flat slices of wheat endosperm, flour‐based pellets, and gluten‐based pellets) were assessed by the measurement of contact angles of a sessile drop of three reference liquids (water, diiodomethane, and formamide) and estimated by equilibrium properties (contact angles and surface tension properties) and drop penetration rates. The surface tension (γs) of wheat materials was measured between 49.6 and 55.3 mJ/m‐2. The present work permitted the evaluation of specific wheat types (hard wheat vs. soft wheat) and evaluation of the influence of material structure (flat slices of endosperm vs. flour‐based pellets), and material nature (flour‐based pellets vs. gluten‐based pellets) on the wettability properties. The surface tension properties were considered with regard to the nonideal structure of sample surfaces by considering surface roughness and material porosity. 相似文献
6.
Zhiming Geng Pingping Zhang Jinbao Yao Dan Yang Hongxiang Ma Patricia Rayas‐Duarte 《Cereal Chemistry》2012,89(5):237-241
The relationship of solvent retention capacity (SRC) values with four solvents, alveograph and farinograph properties, and cookie‐baking performance was evaluated with 20 Chinese soft wheat genotypes, including four cultivars and 16 advanced lines grown in the 2009–2010 season. Significant positive correlations were observed between water SRC (WSRC), sodium carbonate SRC (SOSRC), lactic acid SRC, and sucrose SRC (SUSRC) values. WSRC, SUSRC, and SOSRC showed significant positive correlations with farinograph water absorption (WA), alveograph P (tenacity), and P/L (ratio of tenacity to extensibility). Cookie diameter was significantly correlated with wet gluten (r = –0.491, P < 0.05), WSRC (r = –0.882, P < 0.001), SUSRC (r = –0.620, P < 0.01), SOSRC (r = –0.712, P < 0.001), P (r = –0.787, P < 0.001), L (r = 0.616, P < 0.01), P/L (r = –0.766, P < 0.001) and WA (r = –0.620, P < 0.01), respectively. SRC values were effective predictors of cookie quality in Chinese soft wheat. Alveograph parameters were more closely correlated to cookie quality than were farinograph parameters. 相似文献
7.
Shivananda K. Garimella Purna Yong‐Cheng Shi Lan Guan Jeff D. Wilson Robert A. Graybosch 《Cereal Chemistry》2015,92(5):529-535
Waxy wheat (Triticum aestivum L.) contains endosperm starch lacking in amylose. To realize the full potential of waxy wheat, the pasting properties of hard waxy wheat flours as well as factors governing the pasting properties were investigated and compared with normal and partial waxy wheat flours. Starches isolated from six hard waxy wheat flours had similar pasting properties, yet their corresponding flours had very different pasting properties. The differences in pasting properties were narrowed after endogenous α‐amylase activity in waxy wheat flours was inhibited by silver nitrate. Upon treatment with protease, the extent of protein digestibility influenced the viscosity profile in waxy wheat flours. Waxy wheat starch granules swelled extensively when heated in water and exhibited a high peak viscosity, but they fragmented at high temperatures, resulting in more rapid breakdown in viscosity. The extensively swelled and fragmented waxy wheat starch granules were more susceptible to α‐amylase degradation than normal wheat starch. A combination of endogenous α‐amylase activity and protein matrix contributed to a large variation in pasting properties of waxy wheat flours. 相似文献
8.
9.
Flour qualities of polished wheat flours of three fractions, C‐1 (100–90%), C‐5 (60–50%), and C‐8 (30–0%), obtained from hard‐type wheat grain were used for the evaluation of four kinds of baking methods: optimized straight (OSM), long fermentation (LFM), sponge‐dough (SDM) and no‐time (NTM) methods. The dough stability of C‐5 in farinograph mixing was excellent and the maturity of polished flour doughs during storage in extensigraph was more improved than those of the commercial wheat flour (CW). There were no significant differences in the viscoelastic properties of CW dough after mixing, regardless of the baking method, while those of polished flour doughs were changed by the baking method; this tendency became clear after fermentation. The polished flours could make a better gluten structure in the dough samples after mixing or fermentation using LFM and SDM, as compared with other baking methods. Baking qualities such as specific volume and storage properties of breads from all polished flours made with SDM increased more than with other methods. In addition, viscoelastic properties of C‐5 and C‐8 doughs fermented by SDM were similar to those of CW, and the C‐5 breadcrumb showed softness similar to that of the CW. Also, SDM could make C‐5 bread with significantly higher elasticity and cohesiveness after storage for five days when compared with CW bread. Therefore, SDM with long fermentation, as compared with other baking methods, was considered suitable for use with polished flours to give better effects on dough properties during fermentation, resulting in more favorable bread qualities. 相似文献
10.
为探讨盐渍化土壤在冻融过程中孔隙水及未冻水含量的变化规律,运用核磁共振仪(NMR)测定了不同盐渍土与不同NaCl饱和试样的孔隙水及未冻水含量,同时研究了不同土质对冻结过程中未冻水含量的影响,分析了冻融过程中的滞后现象。试验设置8个处理,即轻度盐渍化粉砂壤土、中度盐渍化壤土2种土壤类型和蒸馏水、0.2%、0.6%、1.0%NaCl 4种溶液。结果表明:(1)在盐渍土冻结过程中,大孔隙降幅速率小孔隙降幅速率,而盐渍土的融解先从小孔隙开始。(2)无论是轻度盐渍土还是中度盐渍土,1.0%NaCl饱和溶液的未冻水含量最大。饱和溶液为1.0%NaCl的中度盐渍土在冻融过程中出现二次突变,其二次突变温度点不一样,融解时二次突变温度高于冻结时二次突变温度。(3)比较不同土质对冻融过程中未冻水含量可知,壤土未冻水含量粉砂壤土未冻水含量。在冻融过程中,结合T_2分布曲线可知,孔隙水的减少先从大孔隙开始,孔隙水的增多先从小孔隙开始;NaCl饱和溶液的浓度越高,其未冻水含量越大,冻结温度越低;不同土质对土壤未冻水含量有所影响,壤土的未冻水含量明显高于粉砂壤土的未冻水含量;盐渍土壤在冻结和融化过程中存在滞后现象,在冻融过程中的滞后现象明显区间,随浓度的增大,所处的温度范围有降低趋势。 相似文献
11.
A. Loosveld C. Maes W. H. M. van Casteren H. A. Schols P. J. Grobet J. A. Delcour 《Cereal Chemistry》1998,75(6):815-819
Water-extractable arabinogalactan-peptides (WE-AGP) were isolated from flour of eight different wheat cultivars (harvest year 1996). Little structural variation in WE-AGP of flour of the different wheat cultivars was observed. The arabinose-to-galactose (A/G) ratio of WE-AGP varied between 0.66 and 0.73. Methylation analysis showed that the proportion of β-1,3-galactopyranosyl residues is almost equal for the different WE-AGP samples (10.2–11.1%). More variation was observed for the proportion of the β-1,6-galactopyranosyl residues (9.4–13.0%) and β-1,3,6-galactopyranosyl residues (76.0–80.1%). The 1H-nuclear magnetic resonance spectra (D2O, 85°C, 300 MHz) were comparable, and gel permeation analysis consistently yielded a narrow peak with an apparent molecular weight between 5.0 × 104 and 10.0 × 104. Interpretation of the results was facilitated by α-L-arabinofuranosidase debranching of WE-AGP. For flour samples of 18 wheat cultivars (10 from 1994 harvest, eight from 1996 harvest), the variation in percentage of water-extractable arabinoxylan (WE-AX) (0.31–0.78% of dry matter) was much larger than the variation in percentage of water-extractable arabinogalactan (WE-AG) (0.24–0.33%). The ratio of WE-AX to WE-AG for flour samples of different wheat cultivars varied between 1.00 and 2.44. 相似文献
12.
The purpose of this study was to evaluate the differences among four retail whole wheat flours with respect to particle size distribution and composition of fractions separated by sieving. Interestingly, not only were significant differences discovered among the brands for particle size distribution, but lots within two of the brands were significantly different (P < 0.05), suggesting that flour particle size produced by the same company is not always consistent. Starch damage ranged from 4.67 to 7.69%. As expected, darker colors were associated with the larger particle size fractions, and the colors lightened as particle size decreased. This observation suggested that the differences in particle size resulted from differences in the degree to which the bran fraction of the kernel was milled, an observation substantiated by the distribution of ash in each fraction, which ranged from 0.37 to 38.0% of total ash. Distribution of protein ranged from 0.19 to 61.8% of total protein. These data are relevant because differences in particle size distribution and composition affect functionality, sensory acceptability, nutritional properties, and shelf life of whole wheat flour. 相似文献
13.
The baking performance of a set of flours from 13 wheat cultivars was determined by means of two different microscale baking tests (10 g of flour each). In the micro‐rapid‐mix test the dough was mixed for a fixed time at a high speed, whereas the microbaking test used mixing to optimum dough consistency in a microfarinograph. Quality parameters such as sedimentation value, crude protein content, dough and gluten extension data, and microfarinograph data were also determined. Finally, quality‐related protein fractions (gliadins, glutenins, SDS‐soluble proteins, and glutenin macropolymer) were quantitated by extraction/HPLC methods with reversed‐phase and gel‐permeation columns. All quality parameters were correlated with the bread volumes of both baking tests. The results demonstrated that the microbaking test (adapted mixing time) was much more closely related to the quality parameters than the micro‐rapid‐mix test (fixed mixing time), which hardly showed any correlation. Among the standard quality parameters, only the crude protein content showed a medium correlation with the bread volume of the microbaking test (r = 0.71), whereas the contents of gliadins (r = 0.80), glutenins (r = 0.76), and glutenin macropolymer (r = 0.80) appeared to be suitable parameters to predict the baking performance of wheat flour. All other quality parameters were not or were only weakly correlated and unsuitable for predicting baking performance. 相似文献
14.
Naofumi Morita Tomoko Maeda Megumi Miyazaki Makoto Yamamori Hideho Miura Ichiro Ohtsuka 《Cereal Chemistry》2002,79(4):491-495
The dough properties and baking qualities of a novel high‐amylose wheat flour (HAWF) and a waxy wheat flour (WWF) (both Triticum aestivum L.) were investigated by comparing them with common wheat flours. HAWF and WWF had more dietary fiber than Chinese Spring flour (CSF), a nonwaxy wheat flour. Also, HAWF contained larger amounts of lipids and proteins than WWF and CSF. There were significant differences in the amylose and amylopectin contents among all samples tested. Farinograph data showed water absorptions of HAWF and WWF were significantly higher than that of CSF, and both flours showed poorer flour qualities than CSF. The dough of WWF was weaker and less stable than that of CSF, whereas HAWF produced a harder and more viscous dough than CSF. Differential scanning calorimetry data showed that starch in HAWF dough gelatinized at a lower temperature in the baking process than the starches in doughs of WWF and CSF. The starch in a WWF suspension had a larger enthalpy of gelatinization than those in HAWF and CSF suspensions. Amylograph data showed that the WWF starch gelatinized faster and had a higher viscosity than that in CSF. The loaves made from WWF and CSF were significantly larger than the loaves made from HAWF. However, the appearance of bread baked with WWF and HAWF was inferior to the appearance of bread baked with CSF. Bread made with WWF became softer than the bread made with CSF after storage, and reheating was more effective in refreshing WWF bread than CSF bread. Moreover, clear differences in dough and bread samples were revealed by scanning electron microscopy. These differences might have some effect on dough and baking qualities. 相似文献
15.
为探明干旱处理与氮磷肥合用后小麦产量和养分积累及分配的变化,在盆栽条件下,以中麦8为试材,在设置3个氮磷肥施用量的基础上,每施肥处理下于开花期再利用称重法设置水分适宜(W1,SRWC=75%)、轻度亏水(W2,SRWC=60%)和重度亏水(W3,SRWC=45%)3个土壤水分水平,研究了肥水调控对冬小麦产量、养分积累及籽粒蛋白质组分的影响。结果表明,与花后土壤水分适宜相比,花后轻度亏水与重度亏水产量分别降低9.73%和15.55%,籽粒氮素积累量降低了3.41%和13.64%,醇溶蛋白含量降低了0.1%和1.1%,穗粒数、千粒重、籽粒磷素积累量、养分收获指数、氮素利用效率、清蛋白含量亦有不同程度的降低,但磷素利用效率、球蛋白含量及谷/醇比呈相反的趋势变化,其中,磷素利用效率以W3最高,达81.76 g·g~(-1),显著高于W1和W2。增施氮磷肥,穗数、千粒重降低,籽粒养分积累量及其蛋白质组分含量增加,但养分利用效率及氮素收获指数降低,其中,与F1(N 120kg·hm~(-2),P_2O_596 kg·hm~(-2))相比,F2(N 180 kg·hm~(-2),P_2O_5144 kg·hm~(-2))和F3(N 240 kg·hm~(-2),P_2O_5192 kg·hm~(-2))产量分别降低了7.23%和7.69%。土壤适度亏水,增施氮磷肥降低了产量、籽粒氮素分配比例及养分利用效率和氮素收获指数,籽粒蛋白质组分含量及谷/醇比提高;土壤重度亏水,增施氮磷肥降低了磷素利用效率、氮素收获指数和清蛋白含量及谷/醇比,提高了产量、籽粒磷素分配比例及球蛋白和醇溶蛋白含量。本研究结果为小麦产量和品质领域研究奠定了一定的理论基础。 相似文献
16.
Asian noodles were prepared by an objective laboratory method that included adding optimum water to the dry ingredients, mixing the ingredients to homogeneous salt distribution, and sheeting of the dough under low shear stress. The lightness (L*) values of alkaline‐ and salt‐noodle doughs made from 65% extraction hard white wheat flours (except KS96HW115 flour at ≈70% extraction) were higher than those from 60% extraction hard red wheat flours (except Karl 92 flour at ≈70% extraction). A hard white spring wheat, ID377s, and a Kansas line of hard white winter wheat, KS96HW115, to be released in 2000, gave the highest L* values for dough sheets stored for 2 and 24 hr at 25°C. Cooking losses were 5–9 percentage points higher for alkaline noodles than salt noodles, but the cooking yields of the two types of Asian noodles were almost the same. Cooked alkaline noodles made from a high‐swelling flour (SP93≈21 g/g) gave higher tensile strength than those made from several low‐swelling flours (SP93 ≈15 g/g) with the same protein contents (≈12.5%). However, the cooked salt noodles gave the same tensile strength. 相似文献
17.
Philippe Castello Sebastien Jollet Jacques Potus Jean-Luc Baret Jacques Nicolas 《Cereal Chemistry》1998,75(5):595-601
In control dough, endogenous wheat lipase was inactive, because the triacylglycerol (TAG), 1,2-diacylglycerol (DAG1,2), and 1,3-diacylglycerol (DAG1,3) fractions of nonpolar lipids were not affected by mixing. Conversely, the free fatty acid (FFA) and monoacylglycerol (MAG) fractions decreased, mainly due to the oxidation of polyunsaturated fatty acids (PUFA) catalyzed by wheat lipoxygenase. Addition of exogenous lipase to flour (15 lipase units [LU] per gram of dry matter) resulted in substantial modification of nonpolar lipids during dough mixing. Due to the 1,3 specificity of the lipase used in this experiment, the TAG and DAG1,3 fractions decreased, whereas the MAG and FFA fractions increased. The DAG1,2 fraction increased at the beginning of mixing and decreased after 40 min of mixing. Moreover, part of the PUFA released by lipase activity was oxidized by wheat lipoxygenase, resulting in major losses of PUFA. Conversely, the net content of the saturated and monounsaturated fatty acids (SMUFA) remained constant, because the free SMUFA content increased primarily at the expense of the esterified forms. For a constant mixing time of 20 min, increasing the amount of lipase added to dough (from 2.5 to 25 LU/g of dry matter) resulted in a linear decrease in the TAG fraction and a linear increase in the SMUFA content in the FFA fraction. At the same time, the PUFA content of the FFA fraction increased only for additions of lipase to flour of >5 LU/g of dry matter, due to partial oxidation by wheat lipoxygenase. 相似文献
18.
O. K. Chung J. B. Ohm A. M. Guo C. W. Deyoe G. L. Lookhart J. G. Ponte 《Cereal Chemistry》2002,79(6):774-778
Free lipids (FL) were extracted from straight‐grade flours (SF) and the air‐classified high‐protein fractions (ACHPF) of nine hard winter wheats. The mean values of FL contents in 10 g (db) SF and ACHPF were, respectively, 92.8 and 178.5 mg for total FL, 74.1 and 141.9 mg for nonpolar lipids (NL), 12.8 and 20.9 mg for glycolipids (GL), and 4.9 and 12.0 mg for phospholipids (PL). FL compositions of SF and ACHPF showed nonsignificant differences in NL (80.7 and 81.1% of the FL) but significant differences in GL (13.9 and 12.0% of the FL) and PL (5.4 and 6.9% of the FL). Fortification of SF with ACHPF by blending to reach 13% protein content increased gluten quantity and thereby loaf volume but decreased gluten index, loaf volume regression, and crumb grain scores. NL contents showed significant relationships with dry gluten contents (r = 0.79) and gluten index (r = ‐0.83) values, indicating that high NL content in ACHPF could decrease gluten quality of fortified flours. Thus, an optimum balance should be maintained during fortification. 相似文献
19.
麦田生态系统中的水肥时空关系与调控途径 总被引:4,自引:0,他引:4
本研究表明,小麦对水分的消耗和养分的吸收不是同表的;拔节--抽穗期是小麦对水分最敏感的时期,该期的水分状况对产量和肥效的影响最大,返青--拔节期是对水分最不敏感的时期。麦田灌水量直接影响肥料氮在土体中的淋洗深度,进而影响到其肥效的发挥与损失量,因而控制灌水量是减少水源浪费与肥料损失、提高肥效的重途径。并提出了以冬施肥为核心的缺水麦田水肥调控途径。 相似文献
20.
Hard winter wheat (Triticum aestivum L.) flours (n = 72) were analyzed for free lipids (FL) and their relationships with quality parameters. The two main glycolipid (GL) classes showed contrary simple linear correlations (r) with quality parameters. Specifically, kernel hardness parameters, flour yields, and water absorptions had significant negative correlations with monogalactosyldiglycerides (MGDG) but positive correlations with digalactosyldiglycerides (DGDG). MGDG showed negative correlations with gluten content but positive correlations with gluten index. The percentages of DGDG in FL had significant positive correlations among cultivars (n = 12) with mixograph and bake mix times (r = 0.71, P < 0.01 and r = 0.67, P < 0.05, respectively), mixing tolerance (r = 0.67, P < 0.05), and bread crumb grain score (r = 0.71, P < 0.01). These results suggest that increasing DGDG in FL could contribute to enhancing wheat quality attributes including milling, dough mixing, and breadmaking quality characteristics. FL content and composition (ratio of MGDG or DGDG to GL) supplement flour protein content to develop prediction equations of mixograph mix time (R2 = 0.89), bake mix time (R2 = 0.76), and loaf volume (R2 = 0.72). 相似文献