首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine the effects of flour type, baking absorption, variation in sheeting, and dough proofing time on the density, crumb grain (visual texture), and mechanical properties (physical texture) of bread crumb. All response variables were measured on the same bread crumb specimens. Bread loaves were prepared by a short‐time bread‐making process using four spring wheat flours of varying strength. After crumb density measurement, digital image analysis (DIA) was used to determine crumb grain properties including crumb brightness, cell size, cell wall thickness, and crumb uniformity. Tensile tests were performed on bone‐shaped specimens cut from the same bread slices used for DIA to obtain values for Young's modulus, fracture stress, fracture strain, and fracture energy. Proof time had the most profound influence on the bread with substantial effects on loaf volume, crumb density, crumb brightness, and grain, as well as crumb mechanical properties. Increasing proof time resulted in higher loaf volume, lower crumb density and brightness, coarser crumb with fewer and larger cells with thicker cell walls, and weaker crumb tensile properties. Varying flour type also led to significant differences in most of the measured crumb parameters that appeared to correspond to differences in gluten strength among the flour samples. With increasing flour strength, there was a clear trend to increasing loaf volume, finer and more uniform crumb grain, and stronger and more extensible bread crumb. Increasing baking absorption had virtually no effect on crumb structure but significantly weakened crumb strength and increased fracture strain. In contrast, varying the number of sheeting passes had a minor effect on crumb cellular structure but no effect on mechanical properties. The experimental data were consistent with a cause‐effect relationship between flour strength and the tensile strength of bread crumb arising as a result of stronger flours exhibiting greater resistance to gas cell coalescence, thereby having fewer crumb defects.  相似文献   

2.
Finite element analysis (FEA) has the potential for shedding light on the complex mechanical behaviour of many food products. In this paper, the *HYPERFOAM material model in the ABAQUS/Standard FEA package was applied to study the mechanical properties of the crumb of white bread loaves. The applicability of this material model was validated by uniaxial compression stress–strain data. Overall stress–strain curves of low-density bread crumb were well predicted by FEA; altering Poisson's ratio in the simulations (0 and 0·21) made little difference unless the strain was greater than 0·35 for denser crumbs. Experimental compressive Young's modulus and critical stress were well correlated to their counterparts predicted from the FEA material constants in the Ogden strain energy function. The crumb, with characteristics defined by the compressive material constants, was meshed by four-node axisymmetric continuum elements of uniform size to simulate indentation of the crumb. Two cylindrical flat-ended and two spherical indenters were modelled as *RIGID SURFACE. With the axisymmetric indentation FEA model, the load–displacement curves generated from cylindrical indentation were well predicted, whereas those from spherical indenters were under-predicted.  相似文献   

3.
Three enzyme systems (2 amylase‐based and 1 protease‐based) were tested in shelf‐stable bread to determine effectiveness in preserving texture during storage for eight weeks. Each enzyme was tested in formulations without glycerol or with 6% glycerol. Bread samples were analyzed to determine physical properties (crumb density, crust‐to‐crumb ratio, rate of moisture distribution from crumb to crust), mechanical properties (modulus, and a parameter [C1] describing resistance to high levels of deformation obtained by fitting stress‐strain data to a three‐parameter function), and thermal properties (thermal stability and enthalpy of transitions) as a function of storage time. Mechanical properties were further analyzed to predict asymptotic firmness. Bread firmness after storage as evaluated in terms of modulus and C1 were lower in all enzyme‐added systems, the effect of protease being the most significant. Enzymes had less effect on glycerol‐containing systems with no apparent trend. The breads had complex thermal behavior and exhibited multiple transitions. Both amylase preparations in the presence of glycerol reduced the amount of starch recrystallization.  相似文献   

4.
The cellular structure of bread crumb (crumb grain) is an important factor that contributes to the textural properties of fresh bread. The accuracy of a digital image analysis (DIA) system for crumb grain measurement was evaluated based on its capability to predict bread crumb density from directly computed structural parameters. Bread was prepared from representative flour samples of two different wheat classes, Canada Western Red Spring (CWRS) and Canada Prairie Spring (CPS). Dough mixing and proofing conditions were varied to manipulate loaf volume and crumb density. Sliced bread was subjected to DIA immediately after physical density measurement. Experiments were repeated for the same bread samples after drying to three different moisture contents. Five computed crumb grain parameters were assessed: crumb brightness, cell wall thickness (CWT), void fraction (VF), mean cell area, and crumb fineness (measured as number of cells/cm2). Crumb density ranged from 0.088 to 0.252 g/cm3 depending on proofing and mixing treatments, and was predominantly affected by the former. With increasing crumb density, bread crumb became brighter in appearance, mean cell size and CWT decreased, crumb fineness increased, and the VF decreased. Approximately 80% of the variation in fresh or dried crumb density could be predicted using a linear regression model with two variables, CWT and VF. Results indicated that DIA of directly computed crumb grain could accurately predict bread crumb density after images had been correctly classified into cells and background.  相似文献   

5.
Monoglycerides are widely used in the baking industry because of their antistaling effects, mainly suppressing crumb firming. Commercial monoglycerides are normally prepared from hydrogenated fats, with stearate being the most common fatty acid. In a previous study, monoglycerides such as monopalmitate (C16) and monostearate (C18) had positive effects on Canadian short process bread but no improvements on sponge‐and‐dough process (SDP) bread. The objective of this study was to investigate the effects of saturated monoglycerides of varying fatty acid chain length (C14–C22) on SDP breadmaking quality by using volume judgment, crumb image analysis, and texture measurements. Higher levels (1.00–1.50%) of all monoglycerides (C14, C16, and C18) significantly (P < 0.05) increased loaf volume and cell diameter. The larger cell diameter with increasing levels of these monoglycerides may have resulted from softer, more extensible dough handling properties and greater gas cell stability during baking. Addition of C16 and C18 caused the largest increase in crumb softness with increasing monoglyceride levels but showed relatively low resilience, which might be related to larger loaf volume (i.e., lower density of bread). However, addition of blended monoglycerides C14+C16 increased crumb softness and loaf volume while partially retaining resilience. Each monoglyceride had a different function in breadmaking quality and somewhat positive effects on SDP.  相似文献   

6.
The viscoelastic behavior of bread crumb was studied using dynamic mechanical analysis (DMA) in the compression mode with the frequency sweep. The dynamic storage modulus (E′), loss modulus (E″), and tanδ (E″/E′) were measured for bread crumb aged up to three days at ambient temperature. The viscoelastic properties of bread crumb showed a characteristic frequency dependence similar to that of a soft rubberlike solid. Typical behavior of bread crumb involved a transition from rubberlike to glasslike consistency with increasing frequency. At a low frequency region, the E′ and E″ values were relatively small and nearly constant, showing characteristics of the rubbery plateau. Then, they increased rapidly with increasing frequencies and approached a glasslike state. Tanδ was low and almost constant at low frequencies before the transition, then went through a prominent peak with increasing frequency. The frequency at which the tanδ of bread crumb started to rapidly increase was defined as the onset frequency (ƒo) of the transition. The ƒo values increased with the aging of bread crumb samples, which correlated highly to bread staling (r = 0.942). Both dynamic moduli E′ and E″ at ƒo also increased with the aging of bread, which correlated highly to firmness obtained using a texture analyzer in a static compression mode (r = 0.941 and 0.943, respectively). DMA measurements could be helpful in characterizing bread staling.  相似文献   

7.
The method to measure hardness and other viscoelastic properties of intact wheat kernels is presented. Wheat with 9.3% moisture showed high elastic behavior compared with wheat tempered at 22.5% moisture that showed a plastic behavior. Load‐deformation curves showed that bread wheat behaves as a more plastic material than durum wheat, which is a more elastic material. Yield point of all the wheat samples was ≈18.5 N, independent of wheat type and moisture content. The height of the wheat kernel increased linearly, and the compression area increased exponentially, with increasing moisture content. The modulus of elasticity of wheat ranged from 99.2 MPa for 22.5% moisture content to 394.8 MPa for 9.3% moisture content. Young's modulus range for soft wheat such as Salamanca, Saturno, and Cortazar cultivars was 232.2–308.5 MPa, as compared with Rayón bread wheat at 321.5 MPa and the Altar, Sofía, and Rafi cultivars of durum wheat that had elastic moduli of 438.7–485.8 MPa. The compression force and final stress decreased from 69.9 N and 40.1 MPa in soft wheat to 90 N and 78.9 MPa in durum, respectively. Total work range was 14.7 MPa/sec in soft wheat to 19.7 MPa/sec for durum wheat and, as expected, was higher in the durum and bread wheat than in soft wheat. The plastic part ranged from 2.4 MPa/sec in soft wheat to 0.6 MPa/sec in durum wheat.  相似文献   

8.
The possible use of phytase as a breadmaking improver has been tested in whole wheat breads by adding different amounts of fungal phytase. The effect of phytase addition on the fermentation stage and the final bread quality was analyzed. The phytase addition shortened the fermentation period, without affecting the bread dough pH. Regarding the whole wheat bread, a considerable increase of the specific bread volume, an improvement of the crumb texture, and the width/height ratio of the bread slice were obtained. An in vitro assay revealed that the improving effect of phytase on breadmaking might be associated with the activation of alpha-amylase, due to the release of calcium ions from calcium-phytate complexes promoted by phytase activity. As a conclusion, phytase offers excellent possibilities as a breadmaking improver, with two main advantages: first, the nutritional improvement produced by decreasing phytate content, and second, all the benefits produced by alpha-amylase addition can be obtained by adding phytase, which promotes the activation of endogenous alpha-amylase.  相似文献   

9.
The breadmaking potential of six oat varieties was compared with and related to their physicochemical properties. The most significant differences in the bread characteristics were found in the crumb structure. The varieties Buggy, Energie, and Zorro resulted in good bread quality with an even gas‐cell distribution characterized by a high number of relatively small pores. In contrast, Typhon, Ivory, and Nord 08/311 each had a large hole in the center of the crumb and accordingly poor quality. Breads differed little in specific volume, bake loss, and density. Rheological analysis revealed positive effects of low batter resistance to deformation on oat bread quality. On the basis of the physicochemical characterization, protein and fat contents were identified as key factors responsible for differences observed in bread quality, provided that starch damage and water‐hydration capacity were low. Additionally, high setback and final viscosity, as determined by Rapid Visco Analyser (RVA) analysis, positively affected oat bread quality. High α‐amylase activity was found to influence negatively the breadmaking performance of oats. Overall, protein, fat, dietary fiber content, starch pasting properties, and α‐amylase activity were responsible for the breadmaking properties of oat varieties.  相似文献   

10.
Standard white breads were stored with or without crust at 25°C in hermetic pouches. During two weeks of storage, the crumb moisture content and water activity (aw) decreased significantly when stored with crust. When stored without crust, moisture content and aw remained relatively unchanged. The causes of the initial firming of both breads over zero to seven days were not conclusive. But when stored beyond seven days, bread stored with crust was significantly firmer in texture and higher in amylopectin recrystallization than bread stored without crust. Moisture redistribution from crumb to crust played a significant role. This was accompanied by a decrease in freezable water in the bread crumb stored with crust. This loss in freezable water coincided with changes in the thermomechanical profile only in the case of sample stored with crust intact (and with a significant total and freezable water loss). Bread crumb stored without crust did not change in total and freezable water and showed less change in thermomechanical transitions. The transition occurring at ≈60°C (T2) correlated with amylopectin recrystallization but it could also have been caused by moisture loss during the analysis. Moisture migration from crumb to crust greatly reduced the total and freezable water in the crumb region, resulting in a significant reduction in the magnitude of the mechanical transition at ≈0°C (T1) as well as an increase in the storage modulus.  相似文献   

11.
The structure of bread crumb is an important factor in consumer acceptance of bakery products. The noninvasive monitoring of the gas cell formation during the proofing of dough can aid in understanding the mechanisms governing the crumb appearance in the baked product. The development of gas cells during the proofing of dough was monitored in a noninvasive manner using magnetic resonance imaging (MRI) at 4.7‐T. The acquired MRI time series were analyzed quantitatively using image analysis (IA) techniques. The effects of both kneading temperature and mechanical damage by molding were studied. When additional rheological stress was introduced during molding, a more heterogeneous (coarse) gas cell size distribution was observed, and the dough had a smaller specific volume (as measured by MRI). These characteristics were preserved in the bread crumb structure after baking. The fast‐deformation during molding also resulted in an isotropic growth of the dough during proofing, whereas slow‐deformation during molding resulted in anisotropic growth. This can be related to a better conservation of stress in the dough under a moderate molding operation. A higher temperature during kneading also resulted in a coarser distribution of the gas cells and a smaller MRI specific dough volume. No effect of kneading temperature on the growth anisotropy could be detected, however. This indicates that temperature has a smaller effect on the conservation of stress in the dough than molding. The current work illustrates the capability of MRI/IA for understanding and predicting the influence of food processing parameters on consumer‐relevant features in a food product (bread).  相似文献   

12.
Breadmaking properties were determined for formulations that included durum, soft, and spring wheat flour, using a pound-loaf sponge-dough baking procedure. Up to 60% durum or soft wheat flour plus 10% spring wheat flour could be incorporated at the sponge stage for optimum dough-handling properties. At remix, the dough stage required 30% spring wheat flour. Bread made with 100% spring wheat flour was used as a standard for comparison. Bread made with 60% durum flour exhibited internal crumb color that was slightly yellow. When storing pound bread loaves for 72 hr, crumb moisture content remained unchanged. Crumb firmness and enthalpy increased the most in bread made with 60% soft wheat flour. Crumb firmness increased the least in bread made with 100% spring wheat flour. Enthalpy changed the least in bread made with 60% durum flour. Crumb moisture content was significantly correlated with crumb firmness (r = -0.82) and enthalpy (r = -0.65). However, crumb moisture content was specific for each type of flour and a function of flour water absorption; therefore, these correlations should be interpreted with caution. Crumb firmness and enthalpy were significantly correlated (r = 0.65). Ball-milling flour resulted in an increase in water absorption of ≈2% and in crumb moisture content of ≈0.5% but had no effect on either crumb firmness or enthalpy.  相似文献   

13.
The role of lipid-binding proteins from wheat seed (puroindolines) on the breadmaking properties of wheat flour was investigated by determining the relationship between breadmaking quality and puroindoline content in samples of 32 wheat cultivars. An inverse relationship was mainly explained by the link between hardness and puroindoline contents. This link is in agreement with previous results which have shown a close structural identity between basic friabilins and puroindolines. Next, the effect of puroindolines in breadmaking was investigated by performing reconstitution experiments with two puroindoline-free hard cultivars of opposite quality (Florence Aurore and Ecrin) as indicated in the screened wheat sample. Addition of 0.1% puroindolines to these flours drastically modified both the rheological properties of doughs and the structure of the bread crumb. Puroindolines are essential to the foaming properties of dough liquor, and a close relationship was found between the fine grain crumb provided by reconstituted flours with puroindolines and the fine structure of corresponding dough liquor foams. The effect of puroindolines on bread volume was mainly related to the rheological properties of wheat doughs.  相似文献   

14.
Barley is rich in nutritionally positive compounds, but the quality of bread made of wheat–barley composite flours is impaired when a high percentage of barley is used in the mixture. A number of enzymes have been reported to be useful additives in breadmaking. However, the effect of β‐glucanase on breadmaking has scarcely been investigated. In this paper, the influence of different levels (0.02, 0.04, 0.06, and 0.08%, based on composite flour) of β‐glucanase (100,000 U/g) on the properties of dough and bread from 70% wheat, 30% barley composite flour were studied. Although dough development time, dough stability, and protein weakening value decreased after β‐glucanase addition, dough properties such as softness and elasticity as well as bread microstructure were improved compared with the control dough. β‐Glucanase also significantly improved the volume, texture, and shelf life of wheat–barley composite breads. The use of an optimal enzyme concentration (0.04%) increased specific volume (57.5%) and springiness (21%), and it reduced crumb firmness (74%) and staling rate. Bread with added β‐glucanase had a better taste, softness, and overall acceptability of sensory characteristics compared with the control bread. Moreover, the quality of wheat–barley composite bread after addition of 0.04% β‐glucanase was nearly equal to the quality of pure wheat bread. These results indicate that dough rheological characteristics and bread quality of wheat–barley composite flour can be improved by adding a distinct level of β‐glucanase.  相似文献   

15.
This study was performed using three Barbari flours (strong, medium, and weak) with different physical, chemical, and rheological properties. Determination of texture firmness of Barbari breads (A, B, and C, made of strong, medium, and weak flours, respectively) during storage was carried out with a texture analyzer and evaluating the bread crumb properties and changes during storage with a nondestructive ultrasonic technique. The bread microstructure was assessed with scanning electron microscopy, and the general process of starch gelatinization and retrogradation was evaluated with differential scanning calorimetry. The bread sensory properties were evaluated by 10 trained panelists. Barbari A, made from strong flour, had less firmness, lower transition of ultrasonic wave velocity, lower value of elastic modulus, reduced value of enthalpy, lower average temperature, larger pore diameter and area of images, and higher point total in sensory evaluation than Barbari B and Barbari C, particularly the latter, as storage time progressed. Barbari A's desirable quality characterization and longer shelf life were owing to the qualities of the flour, which enabled the production of dough with the appropriate properties. Eventually, the results of device‐based and sensory tests were significantly correlated. Ultrasonic nondestructive testing is recommended over other methods for assessing the texture, cell structure, and elastic properties of bread after baking and during storage, because it is fast, nondestructive, and less expensive than other methods and can be used during production.  相似文献   

16.
Flour mill streams obtained by milling grain of 10 bread wheat cultivars grown in the Skopje region of Macedonia were analyzed for rheological and breadmaking quality characteristics and for composition of gliadins and HMW‐GS. The objective of this study was to examine the relationships between the composition of gluten proteins and breadmaking quality, as well as to determine the importance of gluten proteins for technological quality of flour mill streams. The grain was milled in an experimental mill according to a standardized milling procedure, with three break and three reduction passages. The addition of two vibratory finishers in the milling scheme enabled better separation of bran. A small‐scale baking method for evaluation of the breadmaking properties was developed, and electrophoretic methods including acid‐PAGE and SDS‐PAGE were used to determine the composition of the gluten proteins. There were significant differences in the degree of dough softening of individual and total flour fractions of the flour mill streams for cultivars with different alleles from six loci, for farinograph water absorption from seven loci, and for bread loaf volume and crumb quality score from six loci. The Glu‐1 quality scores for the wheat cultivars investigated were 3–9 and proved to be a useful indicator of breadmaking quality. The novel feature of the investigation related to the breadmaking potential of the flour mill streams compared with straight‐run flours.  相似文献   

17.
The objective measurement of cereal endosperm texture, for wheat (Triticum spp. L.) in particular, is relevant to the milling, processing, and utilization of grain. The objective of this study was to evaluate the interlaboratory results of compression failure testing of wheat endosperm specimens of defined geometry. Parallelepipeds (bricks) and cylinders were prepared from individual soft and hard near‐isogenic wheat kernels and compressed in two orientations (parallel and perpendicular to the long brush‐to‐germ axis). Compression curves were used to derive failure stress, failure strain, work density (area under the curve), and Young's modulus. In all five laboratories, the ability to delineate hard from soft wheat endosperm material properties was quite high. Four laboratories compressed endosperm bricks in the same orientation, on edge; texture class (soft vs. hard) was consistently the greatest source of variation in analysis of variance models (F‐values from 417 to 1401, Young's modulus and failure stress, respectively). Failure stress was found to be the best overall means of measuring the difference in what is known in the vernacular as wheat hardness. Across laboratories, the absolute measures of all four material properties ranged on the order of about two‐ to threefold from low to high, although within a laboratory, results were highly consistent. Laboratory by texture class interaction was deemed to be of minor importance. Brick size and moisture content within the ranges tested were not major sources of variation, and cylinders prepared from endosperm produced results similar to those obtained from bricks. The results suggested that wheat endosperm might express some level of anisotropic behavior, as specimens compressed in the kernel orientation parallel to the long axis failed at lower strain and stress values, with lower work density, when compared with kernel orientation perpendicular to the long axis. A key feature of interlaboratory variation was identified as being instrument rigidity, a subject of ongoing research. In conclusion, the preparation of endosperm specimens of defined size and shape, in combination with compression failure testing at low moisture content (<18%), is useful for objectively delineating the phenomenon known as hardness. The study presented here will advance our ability to objectively measure cereal grain texture and the material properties of endosperm.  相似文献   

18.
Yeast bread is a major contributor of sodium in the American diet. Because of its functional impact on dough rheology and the quality of the final baked product, simply reducing the level of sodium chloride (salt) in the formula or replacing it with salt substitutes has found minimal success. The objective of this study was to determine the effect of sea salt containing 57 or 64% less sodium than common sea salt on the breadmaking properties and consumer acceptability of bread. The sodium content of the salt had no effect on dough strength, mixing time, gas production, loaf volume, or crumb grain. The flavor and overall liking of breads containing sea salt with 57 and 64% less sodium content were scored only slightly lower than bread containing the control salt by an untrained panel of 118 consumers. No difference in texture and no unacceptable flavor notes in the bread made with reduced‐sodium salts were reported. Thus, it appears that use of reduced‐sodium sea salt is a satisfactory alternative to reduce the sodium content of bread.  相似文献   

19.
Gluten-free breads are usually characterized by deficient quality characteristics as compared to wheat breads. Problems related to volume and crumb texture are associated with gluten-free breads even when rice flour is used, which seems to be the best raw material for this type of bread. The potential use of cyclodextrin glycosyl transferase (CGTase) as a rice bread improver is presented. The effect of CGTase addition to rice flour on dough rheology and bread quality was investigated. In addition, an experimental design was developed to optimize the levels of CGTase, hydroxypropylmethylcellulose (HPMC), and oil. The addition of CGTase produced a reduction in the dough consistency and also in the elastic modulus. With regard to the rice bread quality, better specific volume, shape index, and crumb texture were obtained. The amount of cyclodextrins in the bread crumb was quantified to explain the action of this enzyme. The data indicate that the improving effect of the CGTase results from a combination of its hydrolyzing and cyclizing activities, the latter being responsible for the release of cyclodextrins, which have the ability to form complexes with lipids and proteins.  相似文献   

20.
Scanning electron microscopy was used to study gas cell size, shape, and distribution throughout the breadmaking process. Flours that produced bread with a relatively good grain and a relatively poor grain were used. Micrographs of the dough samples were taken at mixing; before and after each of two punches; before and after panning; after proofing; and after 12, 18, and 24 min (complete) of baking. No differences were found between the two flours at any dough stage. However, after 12 min of baking, the cell distributions were different between the doughs. These results suggest that the crumb grain differentiates during the early stages of baking. The changes documented during this time, i.e., cells becoming larger and the cell walls thicker, indicate that some gas cells coalesce during the early stages of baking and that this is reflected in the crumb grain of the bread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号