首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Food characteristics strongly regulate digestive enzymatic activity of insects through direct influences on their midgut mechanisms. Insect performance is better on diets that contain nutrients in proportions that fit its digestive enzymes. Little is known about the influences of rearing history on parasitism success of Habrobracon hebetor Say. This research focused on the effect of nutrient regulation on survival, development, and parasitism of H. hebetor. Life history and digestive enzyme activity of fourth-stage larvae of H. hebetor were studied when reared on Ephestia kuehniella Zeller. This parasitoid was then introduced to Helicoverpa armigera (Hübner), and above-mentioned parameters were also studied in the first and fourth generations after transfer. In term of parasitism success, H. hebetor preferred E. kuehniella over He. armigera. When the first and fourth generations of He. armigera-reared H. hebetor were compared, the rearing history affected the life history and enzymatic activity of the parasitoid. A better performance of H. hebetor was achieved after it was reared on He. armigera for the four generations. Because, digestive α-amylase and general protease of the parasitoid were matched with the new host, it used reserve energy for a better performance. Thus, a better performance of H. hebetor could be obtained when the parasitoid was reared on its original host for at least four generations.  相似文献   

2.
This study aimed to evaluate the feeding responses and digestive proteolytic and amylolytic activity of Helicoverpa armigera (Hübner) on 11 corn (Zea mays L.) hybrids at 25 ± 1°C, 65 ± 5% relative humidity (RH), and a photoperiod of 16:8 (L:D) h. The fourth- and fifth-instar larvae fed on hybrid K47*K19 had the highest weight of food consumption and those reared on hybrid KSC705 had the lowest value of food consumption. The highest weight gain of the larvae was observed when H. armigera were fed hybrid KLM78*MO17 and lowest when they were fed hybrids K36 * MO17, KSC705, and K35 * K36. Pupal weight of H. armigera was heaviest when larvae were fed hybrid K47*K19 and lightest when they were fed hybrid KSC705. The highest proteolytic activity of the fourth-instar larvae was observed when they were fed hybrid KSC705, and the lowest activity was observed when they were fed hybrid K47*A67. Fifth-instar larvae that fed on hybrid K47*K19 showed the highest proteolytic activity. Fourth-instar larvae that fed on hybrid K36*MO17 showed the highest amylase activity. The fifth-instar larvae fed on hybrid K47*A67 showed the maximum amylase activity and those reared on the K48*K18 showed the minimum activity. Our results indicated that K36 * MO17, KSC705, and K48 * K18 were the most unsuitable hybrids for feeding H. armigera.  相似文献   

3.
The response of vegetative soybean (Glycine max) to Helicoverpa armigera feeding was studied in irrigated field cages over three years in eastern Australia to determine the relationship between larval density and yield loss, and to develop economic injury levels. Rather than using artificial defoliation techniques, plants were infested with either eggs or larvae of H. armigera, and larvae allowed to feed until death or pupation. Larvae were counted and sized regularly and infestation intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the two experiments where yield loss occurred, the upper threshold for zero yield loss was 7.51 ± 0.21 HIEs and 6.43 ± 1.08 HIEs respectively. In the third experiment, infestation intensity was lower and no loss of seed yield was detected up to 7.0 HIEs. The rate of yield loss/HIE beyond the zero yield loss threshold varied between Experiments 1 and 2 (−9.44 ± 0.80 g and −23.17 ± 3.18 g, respectively). H. armigera infestation also affected plant height and various yield components (including pod and seed numbers and seeds/pod) but did not affect seed size in any experiment. Leaf area loss of plants averaged 841 and 1025 cm2/larva in the two experiments compared to 214 and 302 cm2/larva for cohort larvae feeding on detached leaves at the same time, making clear that artificial defoliation techniques are unsuitable for determining H. armigera economic injury levels on vegetative soybean. Analysis of canopy leaf area and pod profiles indicated that leaf and pod loss occurred from the top of the plant downwards. However, there was an increase in pod numbers closer to the ground at higher pest densities as the plant attempted to compensate for damage. Defoliation at the damage threshold was 18.6 and 28.0% in Experiments 1 and 2, indicating that yield loss from H. armigera feeding occurred at much lower levels of defoliation than previously indicated by artificial defoliation studies. Based on these results, the economic injury level for H. armigera on vegetative soybean is approximately 7.3 HIEs/row-metre in 91 cm rows or 8.0 HIEs/m2.  相似文献   

4.
The response of soybean (Glycine max) and dry bean (Phaseolus vulgaris) to feeding by Helicoverpa armigera during the pod-fill stage was studied in irrigated field cages over three seasons to determine the relationship between larval density and yield loss, and to develop economic injury levels. H. armigera intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the dry bean experiment, yield loss occurred at a rate 6.00 ± 1.29 g/HIE while the rates of loss in the three soybean experiments were 4.39 ± 0.96 g/HIE, 3.70 ± 1.21 g/HIE and 2.12 ± 0.71 g/HIE. These three slopes were not statistically different (P > 0.05) and the pooled estimate of the rate of yield loss was 3.21 ± 0.55 g/HIE. The first soybean experiment also showed a split-line form of damage curve with a rate of yield loss of 26.27 ± 2.92 g/HIE beyond 8.0 HIE and a rapid decline to zero yield. In dry bean, H. armigera feeding reduced total and undamaged pod numbers by 4.10 ± 1.18 pods/HIE and 12.88 ± 1.57 pods/HIE respectively, while undamaged seed numbers were reduced by 35.64 ± 7.25 seeds/HIE. In soybean, total pod numbers were not affected by H. armigera infestation (out to 8.23 HIE in Experiment 1) but seed numbers (in Experiments 1 and 2) and the number of seeds/pod (in all experiments) were adversely affected. Seed size increased with increases in H. armigera density in two of the three soybean experiments, indicating plant compensatory responses to H. armigera feeding. Analysis of canopy pod profiles indicated that loss of pods occurred from the top of the plant downwards, but with an increase in pod numbers close to the ground at higher pest densities as the plant attempted to compensate for damage. Based on these results, the economic injury levels for H. armigera on dry bean and soybean are approximately 0.74 HIE and 2.31 HIE/m2, respectively (0.67 and 2.1 HIE/row-m for 91 cm rows).  相似文献   

5.
The cotton bollworm Helicoverpa armigera (Hubner) is one of the most destructive pest insects in Iran and many other countries. In this study, lethal and sublethal effects of methoxyfenozide, and thiodicarb were evaluated against H. armigera larvae that fed on insecticide-treated artificial diet. The effects of methoxyfenozide and thiodicarb were assessed in 3rd instars. Methoxyfenozide and thiodicarb showed LC50 values of 4 and 639 mg a.i./ml, respectively, in H. armigera larvae. Sublethal effects on development, adult longevity, and reproduction were observed in H. armigera larvae that survived exposure to an LC30 of the insecticides. Larvae that were exposed to an LC30 concentration of methoxyfenozide exhibited lower pupal weight and increased larval and pupal developmental times compared with thiodicarb treated larvae or control larvae. Adults that were exposed as larvae to an LC30 concentration of methoxyfenozide or thiodicarb showed reduced fecundity (35% and 30%, respectively) compared to control adults. The tested insecticides significantly reduced adult longevity. The longevity of adult females that as larvae were treated with an LC30 concentration of methoxyfenozide or thiodicarb was reduced by 28% and 23%, respectively, in comparison to control females. We predict that the combination of lethal and sublethal effects of the insecticides, especially methoxyfenozide, will induce significant effects on field population dynamics of H. armigera.  相似文献   

6.
Rapid identification of invasive species is crucial for deploying management strategies to prevent establishment. Recent Helicoverpa armigera (Hübner) invasions and subsequent establishment in South America has increased the risk of this species invading North America. Morphological similarities make differentiation of H. armigera from the native Helicoverpa zea (Boddie) difficult. Characteristics of adult male genitalia and nucleotide sequence differences in mitochondrial DNA are two of the currently available methods to differentiate these two species. However, current methods are likely too slow to be employed as rapid detection methods. In this study, conserved differences in the internal transcribed spacer 1 (ITS1) of the ribosomal RNA genes were used to develop species-specific oligonucleotide primers that amplified ITS1 fragments of 147 and 334 bp from H. armigera and H. zea, respectively. An amplicon (83 bp) from a conserved region of 18S ribosomal RNA subunit served as a positive control. Melting temperature differences in ITS1 amplicons yielded species-specific dissociation curves that could be used in high resolution melt analysis to differentiate the two Helicoverpa species. In addition, a rapid and inexpensive procedure for obtaining amplifiable genomic DNA from a small amount of tissue was identified. Under optimal conditions, the process was able to detect DNA from one H. armigera leg in a pool of 25 legs. The high resolution melt analysis combined with rapid DNA extraction could be used as an inexpensive method to genetically differentiate large numbers of H. armigera and H. zea using readily available reagents.  相似文献   

7.
The legume pod borer Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) has developed high levels of resistance to conventional insecticides, and therefore, efforts are being made to develop transgenic chickpea expressing toxin genes from the bacterium Bacillus thuringiensis (Bt) for controlling this pest. However, there is an apprehension that acid exudates in chickpea might interfere with the biological activity of Bt. Therefore, we studied the biological activity of Bt (BiolepR) on four chickpea genotypes with different levels of resistance to H. armigera under field conditions, and by incorporating lyophilized leaf and pod tissue into the artificial diet with and without Bt. The pH of the acid exudates varied from 2.1 to 2.9, and malic and oxalic acids were the major components of the acid exudates in different chickpea genotypes. There was no survival of H. armigera larvae in chickpea plants sprayed with 0.1, 0.2 and 0.5% Bt. There was a significant reduction in larval survival, larval and pupal weights and fecundity, and prolongation of larval and pupal periods in chickpea plots sprayed with Bt (0.05%) as compared to the unsprayed plots. Biological activity of Bt was lower on artificial diets with leaf or pod powder of chickpea genotypes, which might be because of a low intake of Bt toxins due to the antifeedant effects of acid exudates in the chickpea or reduction in biological activity of Bt due to the interaction of biochemical constituents in chickpea with the Bt toxins. Larval survival, larval and pupal weights, pupation and adult emergence were significantly lower on diets with leaf or pod powder of the H. armigera-resistant genotypes than on the susceptible check. Chickpea genotypes with resistance to H. armigera acted in concert with Bt to cause adverse effects on the survival and development of this insect. The results suggested that development of transgenic chickpeas expressing toxin genes form Bt will be quite effective for controlling of the pod borer, H. armigera.  相似文献   

8.
The cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is a widespread pest of many cultivated and wild plants in Europe, Africa, Asia, and Australia. In 2013, this species was reported in Brazil, attacking various host crops in the midwestern and northeastern regions of the country and is now found countrywide. Aiming to understand the effects of different host plants on the life cycle of H. armigera, we selected seven species of host plants that mature in different seasons and are commonly grown in these regions: cotton (Gossypium hirsutum, “FM993”), corn (Zea mays, “2B587”), soybean (Glycine max, “99R01”), rattlepods (Crotalaria spectabilis), millet (Pennisetum glaucum, “ADR300”), sorghum (Sorghum bicolor, “AGROMEN70G35”), and cowpea (Vigna unguiculata, “SEMPRE VERDE”). The development time of immatures, body weight, survivorship, and fecundity of H. armigera were evaluated on each host plant under laboratory conditions. The bollworms did not survive on corn, millet, or sorghum and showed very low survival rates on rattlepods. Survival rates were highest on soybean, followed by cotton and cowpea. The values for relative fitness found on soybean, cotton, cowpea, and rattlepods were 1, 0.5, 0.43, and 0.03, respectively. Survivorship, faster development time, and fecundity on soybean, cotton, and cowpea were positively correlated. Larger pupae and greater fecundity were found on soybean and cotton. The results indicated that soybean, cotton, and cowpea are the most suitable plants to support the reproduction of H. armigera in the field.  相似文献   

9.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is a serious pest of cotton and many other crops in northern China. To evaluate the contribution of alternative hosts as an effective refuge for transgenic cotton expressing the Bacillus thuringiensis (Bt) Cry1Ac toxin, the susceptibility to this toxin was measured in progeny derived from field-collected H. armigera larvae and pupae from different hosts in the Xiajin’s region of the Shandong Province in northern China. During 2008-2010, progeny from a total of 258,56,184 and 160 single-pair crosses derived from wheat (first-generation), Bt cotton (second-generation), Bt cotton (third-generation), and corn (third-generation) were screened on Cry1Ac diets, respectively. Based on relative average development rates (RADR) of H. armigera larvae in these F1 tests, the second and third-generation moths emerging from Bt cotton fields were more tolerant to the Bt toxin than the first and third-generation moths emerging from wheat and corn each year. These results suggest that there is significant variation in susceptibility to Bt toxins among H. armigera populations derived from different host crops. Alternate crops, such as corn, that maintain Bt susceptible populations of H. armigera could be used as refugia to minimize the evolution of resistance to Bt cotton.  相似文献   

10.
Cnidarian toxins represent a rich source of biologically active compounds. Since they may act via oxidative stress events, the aim of the present study was to verify whether crude venom, extracted from the jellyfish Pelagia noctiluca, elicits inflammation and oxidative stress processes, known to be mediated by Reactive Oxygen Species (ROS) production, in rats. In a first set of experiments, the animals were injected with crude venom (at three different doses 6, 30 and 60 µg/kg, suspended in saline solution, i.v.) to test the mortality and possible blood pressure changes. In a second set of experiments, to confirm that Pelagia noctiluca crude venom enhances ROS formation and may contribute to the pathophysiology of inflammation, crude venom-injected animals (30 µg/kg) were also treated with tempol, a powerful antioxidant (100 mg/kg i.p., 30 and 60 min after crude venom). Administration of tempol after crude venom challenge, caused a significant reduction of each parameter related to inflammation. The potential effect of Pelagia noctiluca crude venom in the systemic inflammation process has been here demonstrated, adding novel information about its biological activity.  相似文献   

11.
We report on screening tests of 66 extracts obtained from 35 marine sponge species from the Caribbean Sea (Curaçao) and from eight species from the Great Barrier Reef (Lizard Island). Extracts were prepared in aqueous and organic solvents and were tested for hemolytic, hemagglutinating, antibacterial and anti-acetylcholinesterase (AChE) activities, as well as their ability to inhibit or activate cell protein phosphatase 1 (PP1). The most interesting activities were obtained from extracts of Ircinia felix, Pandaros acanthifolium, Topsentia ophiraphidites, Verongula rigida and Neofibularia nolitangere. Aqueous and organic extracts of I. felix and V. rigida showed strong antibacterial activity. Topsentia aqueous and some organic extracts were strongly hemolytic, as were all organic extracts from I. felix. The strongest hemolytic activity was observed in aqueous extracts from P. acanthifolium. Organic extracts of N. nolitangere and I. felix inhibited PP1. The aqueous extract from Myrmekioderma styx possessed the strongest hemagglutinating activity, whilst AChE inhibiting activity was found only in a few sponges and was generally weak, except in the methanolic extract of T. ophiraphidites.  相似文献   

12.
13.
We describe the antimicrobial function of peptides derived from the C-terminus of the olive flounder LBP BPI precursor protein. The investigated peptides, namely, ofLBP1N, ofLBP2A, ofLBP4N, ofLBP5A, and ofLBP6A, formed α-helical structures, showing significant antimicrobial activity against several Gram-negative bacteria, Gram-positive bacteria, and the yeast Candida albicans, but very limited hemolytic activities. The biological activities of these five analogs were evaluated against biomembranes or artificial membranes for the development of candidate therapeutic agents. Gel retardation studies revealed that peptides bound to DNA and inhibited migration on an agarose gel. In addition, we demonstrated that ofLBP6A inhibited polymerase chain reaction. These results suggested that the ofLBP-derived peptide bactericidal mechanism may be related to the interaction with intracellular components such as DNA or polymerase.  相似文献   

14.
Helicoverpa armigera (Hübner) (Noctuidae: Lepidopetra) is a polyphagous pest of major crops grown in India. To prevent the damage caused by H. armigera farmers rely heavily on insecticides of diverse groups on a regular basis which is not a benign practice, environmentally and economically. To provide more efficient and accurate information on timely application of insecticides, this research was aimed to develop a forecast model to predict population dynamics of pod borer using Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN). The data used in this study were collected from the randomly installed sex pheromone traps at International Crops Research Institute for the Semi-arid Tropics (ICRISAT), Patancheru, Hyderabad. Several ARIMA (p, d, q) (P, D, Q) and ANN models were developed using the historical trap catch data. ARIMA model (1,0,1), (1,0,2) with minimal BIC, RMSE, MAPE, MAE, and MASE values and higher R2 value (0.53) was selected as the best ARIMA fit model, and neural network (7-30-1) was found to be the best fit to predict the catches of male moths of pod borer from September 2021 to August 2023. A comparative analysis performed between the ARIMA and ANN, shows that the ANN based on feed forward neural networks is best suited for effective pest prediction. With the developed ARIMA model, it would be easier to predict H. armigera adult population dynamics round the year and timely intervention of control measures can be followed by appropriate decision-making schedule for insecticide application.  相似文献   

15.
Indole derivatives including bromoindoles have been isolated from the South Pacific marine sponges Rhopaloeides odorabile and Hyrtios sp. Their structures were established through analysis of mass spectra and 1D and 2D NMR spectroscopic data. Their potential inhibitory phospholipase A2 (PLA2), antioxidant and cytotoxic activities were evaluated. The new derivative 5,6-dibromo-l-hypaphorine (9) isolated from Hyrtios sp. revealed a weak bee venom PLA2 inhibition (IC50 0.2 mM) and a significant antioxidant activity with an Oxygen Radical Absorbance Capacity (ORAC) value of 0.22. The sesquiterpene aureol (4), also isolated from Hyrtios sp., showed the most potent antioxidant activity with an ORAC value of 0.29.  相似文献   

16.
Honey bees are eusocial animals that exhibit both individual and social immune responses, which influence colony health. This is especially well-studied regarding the mite Varroa destructor Anderson and Trueman (Parasitiformes: Varroidae), a parasite of honey bee brood and disease vector. Varroa was introduced relatively recently to Apis mellifera L. (Hymenoptera: Apidae) and is a major driver of the catastrophic die-off of honey bee colonies in the last decade. In contrast, the original host species, Apis cerana Fabricius (Hymenoptera: Apidae) is able to survive mite infestations with little effect on colony health and survival. This resilience is due in part to a newly identified social immune response expressed by developing worker brood. Varroa infested female A. cerana brood experience delayed development and eventually die in a process called ‘social apoptosis’. Here, an individual’s susceptibility to Varroa results in colony level resistance. We tested for the presence of the social apoptosis trait in two Varroa resistant stocks of A. mellifera (Pol-line and Russian) with different selection histories and compared them to a known Varroa-susceptible stock (Italian). We assessed the survival and development of worker brood reared in either highly or lightly infested host colonies, then receiving one of three treatments: uninfested, experimentally inoculated with a Varroa mite, or wounded to simulate Varroa damage. We found that response to treatment was only differentiated in brood reared in lightly infested host colonies, where experimentally infested Russian honey bees had decreased survival relative to the mite-susceptible Italian stock. This is the first evidence that social apoptosis can exist in Western honey bee populations.  相似文献   

17.
Laboratory experiments have advanced our understanding of honey bee (Apis mellifera) responses to environmental factors, but removal from the hive environment may also impact physiology. To examine whether the laboratory environment alters the honey bee gut bacterial community and immune responses, we compared bacterial community structure (based on amplicon sequence variant relative abundance), total bacterial abundance, and immune enzyme (phenoloxidase and glucose oxidase) activity of cohort honey bee workers kept under laboratory and hive conditions. Workers housed in the laboratory showed differences in the relative abundance of their core gut taxa, an increase in total gut bacterial abundance, and reduced phenoloxidase activity, compared to bees housed in hives.  相似文献   

18.
19.
Despite numerous interventions, the ectoparasitic mite Varroa (Varroa destructor Anderson and Trueman [Mesostigmata: Varroidae]) and the pathogens it vectors remain a primary threat to honey bee (Apis mellifera Linnaeus [Hymenoptera: Apidae]) health. Hygienic behavior, the ability to detect, uncap, and remove unhealthy brood from the colony, has been bred for selectively for over two decades and continues to be a promising avenue for improved Varroa management. Although hygienic behavior is expressed more in Varroa-resistant colonies, hygiene does not always confer resistance to Varroa. Additionally, existing Varroa resistance selection methods trade efficacy for efficiency, because those achieving the highest levels of Varroa resistance can be time-consuming, and thus expensive and impractical for apicultural use. Here, we tested the hypothesis that hygienic response to a mixture of semiochemicals associated with Varroa-infested honey bee brood can serve as an improved tool for predicting colony-level Varroa resistance. In support of our hypothesis, we demonstrated that a mixture of the compounds (Z)-10-tritriacontene, (Z)-8-hentriacontene, (Z)-8-heptadecene, and (Z)-6-pentadecene triggers hygienic behavior in a two-hour assay, and that high-performing colonies (hygienic response to ≥60% of treated cells) have significantly lower Varroa infestations, remove significantly more introduced Varroa, and are significantly more likely to survive the winter compared to low-performing colonies (hygienic response to <60% of treated cells). We discuss the relative efficacy and efficiency of this assay for facilitating apiary management decisions and selection of Varroa-resistant honey bees, as well as the relevance of these findings to honey bee health, pollination services, and social insect communication.  相似文献   

20.
Helicoverpa armigera is the key pest of cotton in Spain, resulting in many insecticide treatments against it. The resistance status of H. armigera to different insecticides currently used in cotton was evaluated in Spain in two different seasons, 1999 and 2004. Four populations were tested in total, two in each season. Toxicological bioassays were conducted in the laboratory, and performed on third instar larvae by topical application of the insecticides. LD50's were estimated by probit analysis and resistance factors (RF) were calculated at the LD50 level. Four insecticides were evaluated, but only endosulfan reached a moderate resistance level (RF = 11.4), and the others (methomyl, chlorpyrifos and lambda-cyhalothrin) showed low resistance (RF between 1.9 and 6.0). Such results indicate the generally low resistance of H. armigera to most of the insecticides used against this pest in cotton in Spain. Possible explanations for this situation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号